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Abstract: A general approach in studies of evolutionary processes is discussed. Such process
can be described by a vector field with polynomial, analytic or smooth coefficients in phase
space. The corresponding complex systems are investigated by perturbation analysis of the
control and behavioral spaces together with associated bifurcation sets and discriminants. The
approach is based essentially on the modern theory of deformations, the theory of logarithmic
differential forms and integrable connections associated with deformations. Such a connection
can be represented as a holonomic system of differential equations of Fuchsian type whose
coefficients have logarithmic poles along the bifurcation set or discriminant of a deformation.
The main tool in analysis of such objects is a new method for computing the topological index
of a vector field.

1. INTRODUCTION

An evolutionary process is described by a vector field in
phase space. A point of phase space defines the state
of the system. The vector at this point indicates the
velocity of change of the state. The points where the vector
field vanishes are called equilibrium points, equilibrium
positions or singularities of the vector field.

It was shown by Poincaré [1879] that the typical phase
portraits in the neighbourhood of an equilibrium point of a
generic system can be classified so that the corresponding
list consists of the five simple types: two stable (focus,
node) and three unstable (saddle, focus, node).

Real evolutionary processes are usually described by
means of generic systems or, in other words, of systems
which are in general position. Such systems always depend
on parameters that are never known exactly. A small
generic change of parameters transforms a non-generic
system into a generic one. Thus, at the first sight, more
complicated cases might not be considered since they turn
into combinations of the above types after a small generic
perturbation of the system.

However, if one is interested not in an individual system
but in systems depending on parameters the situation is
quite different and more complex. Thus, let us consider
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the space of all systems divided into domains of generic
systems. The dividing sets (hypersurfaces) correspond to
degenerate systems. Under a small change of the para-
meters a degenerate system becomes non-degenerate. A
one-parameter family of systems is presented by a curve
which can intersect transversely the boundary separating
different domains of nondegenerate systems.

Hence, although for each fixed value of the parameter the
system can be always transformed by a small perturbation
into a nondegenerate one, it is impossible to do this
simultaneously for all values of the parameter. In fact,
every curve closed to the one considered intersects the
boundary of the separate hypersurface at a close enough
value of the parameter.

Thus, if one studies not an individual system only but the
whole family, the degenerate cases are not removable. If
the family depends on a one parameter than the simplest
degeneracies are unremovable one, those represented by
boundaries of codimension one (that is, boundaries given
by one equation) in the space of all systems. The more
complicated degenerate systems, forming a set of codimen-
sion two in the space of all systems, may be gotten rid of
by a small perturbation of the one-parameter family.

If one analyzes two-parameter families then one needs not
to consider degenerate systems forming a set of codimen-
sion three and so on. Therefore at first it ought to analyze
all generic systems, then degeneracies of codimension one,
then – two and so on (see Arnol’d [1981]). Herewith one
must not restrict the study of degenerate systems to the
picture at the moment of degeneracy, but must also include
a description of the reorganizations that take place when
the parameter passes through the degenerate value.
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2. CONTROL SPACE AND PARAMETERS

Let us consider a family of smooth functions
f : Rn ×Rr → R,

describing a certain process happening in various copies
of Rn governed by the function f and affected by the
point in Rr. The coordinate space Rn is usually called the
space of internal variables while Rr the space of external
variables over which each copy sits. Such terminology is
suitable when the variables in Rr label in physical space
as in mechanics, optics, biology or ecology, and so on.

For systems which one alters something and then to
observe what happens the variables in Rr are called the
control parameters while the variables in Rn are called
the behavioral parameters. Accordingly the space Rr is
referred to as the control space while Rn as the behavior
space. In the strictly mathematical context it natural to
call the space Rr the deformation space while its points
(or their coordinates) the parameters of a deformation.
The number r is correspondingly the external or control
dimension, or the dimension of deformation.

Suppose that a submanifold M ⊂ Rn×Rr is given by the
equation

Dfu(x) = 0,
where fu(x) = f(x, u), (x, u) ∈ Rn × Rr, and D is the
usual differential of the image

fu : Rn −→ R.
In other words, the manifold M is the set of all critical
points of all the potentials fu in the family f. Denote by ξ
the restriction to M of the natural projection

π : Rn ×Rr −→ Rr, π(x, u) = u.

The critical set is identified with the subset C ⊂ M
consisting of singular points of the image ξ. In other words,
C consists of points in which the map ξ is singular, that is,
the rank of the derivative Dξ is less than r. The image of
the critical set ξ(C) ⊂ Rr is called the bifurcation set B.
It is not difficult to see, by computing Dξ, that C is the
set of points (x, u) ∈ M, at which fu(x) has a degenerate
critical point. It follows that B is the locus where the
number and nature of critical points change (that is, it
happens jump changes in the state of a control system); for
by structural stability of Morse functions such changes can
only occur by passing through a degenerate critical point.
In most applications (for instance, in problems of stability,
optimization, in studying caustics, wave fronts and so on)
it is the bifurcation set that is the most important, for
it lies in the control space, hence is ”observable”, and all
delay convention jumps occur in it.

Investigations show that a bifurcation set as variety pos-
sesses highly complicated topological, analytic, algebraic
and geometric structures. Herewith it appears that charac-
teristics of such a variety depend mainly on the structure of
its subvariety of singularities, which, in turn, also can pos-
sess singularities and so on. This observation directly leads
to the notion of a stratification variety, but in the most
general context the study of bifurcation sets is reduced to
the study of stratified varieties (see Whitney [1956]).

Remark that in virtue of the well-known splitting lemma
a smooth function f can be represented around a point,

where it has corank k, in the form:

f̃(x1, . . . , xk)± x2
k+1 ± . . .± x2

n

(perhaps with parameters in Rr for f̃). Herewith the
variables x1, . . . , xk are called essential while xk+1, . . . , xn

– unessential. Certainly, such presentation is very far from
unique. It should be also noted that most singularities met
by an r-dimensional family will even when not regular
or Morse, have codimension less than r. However, it is
possible to write an r-parameter family f, around a point,
where it meets transversely a singularity of codimension
ν, in a way in which only ν control parameters appear.
When one has done so, one may call the coordinates on
Rr that no longer appear, disconnected or dummy control
parameters.

3. DEFORMATIONS

In fact, most general evolutionary processes can be de-
scribed with the help of polynomial, analytical or smooth
functions and systems of equations as well as in a wider
context by systems of differential equations. In particular,
using properties of associated bifurcation sets, the discrim-
inants or, more generally, singular loci, basic properties
of the corresponding systems are investigated. One of
the most efficient tools of the investigation is a general
notion of integrable connection associated naturally with
any deformation of a system. Let us shortly discuss basic
ideas of the theory. Consider the system of polynomial or
analytic equations

f1(z1, z2, . . . , zm) = 0
...

fk(z1, z2, . . . , zm) = 0
(1)

given in a neighbourhood U of the origin in Cm. For
simplicity we shall assume that k = m−1 and the setX0 of
the solutions of our system in the neighbourhood U is one-
dimensional. We shall say that a point, laying on the curve
X0, is nonsingular if the differential form df1 ∧ . . .∧ dfm−1

does not vanish on it. Otherwise, this point (and the curve)
refers to as singular, or shortly a singularity. Without
loss of generality one can suppose that X0 has the only
singularity at the origin {0} ∈ X0 ⊂ Cm, that is, X0 is
the germ of a reduced curve.

We shall assume now that the equations of the system (1)
can be perturbed:

f1(z1, z2, . . . , zm) = t1
...
fm−1(z1, z2, . . . , zm) = tm−1

(2)

in such a manner that at each sufficiently small value
of parameters t = (t1, . . . , tm−1) ∈ Cm−1 in the chosen
neighbourhood U the set Xt of the solutions of the
system (2) is also one-dimensional. In other words, we
shall consider the principal (flat) deformation of the curve
singularity X0 given by the holomorphic map:

f :X −→ Cm−1. (3)

Let X be the intersection of a ball of a small radius ε > 0
centered at the distinguished point {0} ∈ X0 with f−1(T ),
where T ⊂ Cm−1 is a punctured ball of a radius 0 < δ � ε
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centered at the origin 0 = f(0). Consider the natural
restriction f :X −→ T of the mapping (3). Then for some
values of parameters t ∈ T the fibres Xt are non-singular
curve germs, for other ones the corresponding fibres may
have singular points called the critical points of map f.

4. PERIOD INTEGRALS

Denote by C ⊂ X the set of critical points of f and by D
its image f(C) ⊂ T. Thus, parameters corresponding to
the fibres with singularities form the set D which refers to
as the discriminant set, or the discriminant of the principal
deformationX0. In many important cases the discriminant
is the zero-set of the only equation h(t1, . . . , tk) = 0, that
is, D is a hypersurface. Set

T ′ = T −D, X ′ = X − C.

The restriction f :X ′ → T ′ is a local trivial differentiable
fibre bundle called the Milnor fibration of f, that is, fibres
Xt = f−1(t) ∩ X (of real dimension two) form a smooth
fibre bundle over T ′. Fix a point t0 ∈ T ′. Then for each
smooth closed path γ0 ⊂ Xt0 , corresponding to the 1-cycle
in H1(Xt0 ,C), it is possible to construct a family of 1-
cycles γ(t) ⊂ Xt, t ∈ T ′, such that γ(t0) = γ0.

If one takes a holomorphic differential form ω = g(z)dz1 ∧
. . .∧dzm of the maximal degree in a neighbourhood of the
origin in Cm, then using the identity df1 ∧ . . . ∧ dfm−1 ∧
ψ = ω one can find a differential form ψ, which is the
result of the division of ω by df1 ∧ . . . ∧ dfm−1. The form
ψ is not determined uniquely, but up to the summands
containing differentials of the functions f1, . . . , fm−1. It is
easy to prove, that for all parameters t, rather close to
zero, the integral

I(t) =
∫

γ(t)

ψ =
∫

γ(t)

ω

df1 ∧ . . . ∧ dfm−1
(4)

is determined correctly. Moreover, the integral I(t) is an
analytic function in the variable t. Integrals of such type
are called the period integrals.

Replacing the differential form ω with another, the inte-
gral (4), generally speaking, will also change. However, it is
possible to prove that the set of all such integrals contains
a finite number of the elements I1(t), . . . , Iµ(t) so that any
integral of the type (4) may be expressed by means of
these generators as a linear combination with holomorphic
coefficients. In the present context µ is the Milnor number
which is a topological invariant of the singularity X0.

The same observation holds, if one fixes the form ω and
takes various families γ(t). For definiteness, we shall fix a
family of vanishing cycles γ(t) and consider µ independent
period integrals of the following type

Ij(t) =
∫

γ(t)

ωj

df1 ∧ . . . ∧ dfm−1
,

where 1 ≤ j ≤ µ. The period integrals Ij(t) can be
differentiated with respect to the parameter t. Between
integrals and their derivatives there arose linear relations
(syzygies) with polynomial coefficients in t. These relations
generate a system of differential equations for the integrals
Ij(t) expressed through a finite number of independent
integrals.

5. CONNECTION

In such a way a system of differential equations in the
variable t is associated with the germ X0; this system is
defined correctly outside of the discriminant and refers
to as Gauss-Manin connection, or Gauss-Manin system,
associated with the principal deformation of X0. The main
problem is to describe a system of differential equations de-
fined on the whole space of parameters, which is equivalent
to the initial one outside of the discriminant (or, in other
words, to extend the initial system to the discriminant set).
It is possible to show that the solution of this problem
depends mainly on properties of the discriminants as well
as on properties of fibres of the deformation.

It turns out that the connection in question can be rep-
resented in a quite elegant form. In order to explain this
idea we need the following notion. Let ω be a meromor-
phic differential form on S having poles along a reduced
divisor D ⊂ S. Then ω is called the logarithmic along D
differential form if and only if ω and its total differential
dω have poles along D at worst of the first order. That is,
hω as well as hdω are holomorphic differential forms on S
where h is a local equation of the hypersurface D ⊂ S.

The OS-module of logarithmic differential q-forms is usu-
ally denoted by Ωq

S(logD). Logarithmic differential forms
have many remarkable analytic and algebraic properties
(for example, see Aleksandrov [1990]).

Following Saito [1977] denote by DerS(logD) the OS-
module of logarithmic vector fields along D on S. This
module consists of germs of holomorphic vector fields η on
S for which η(h) belongs to the principal ideal (h)OS .
In particular, the vector field η is tangent to D at its
smooth points. The inner multiplication of vector fields
and differential forms induces a natural pairing of OS-
modules

DerS(logD)× Ωq
S(logD) −→ Ωq−1

S (logD).

For q = 1 this OS-bilinear mapping is a non-degenerate
pairing so that DerS(logD) and Ω1

S(logD) are OS-dual.

Let H be a free OS-module. Then a connection ∇ on H
with logarithmic poles alongD ⊂ S is a C-linear morphism

∇X/S : H −→ H⊗OS
Ω1

S(logD) (5)

satisfying the following conditions:

1) ∇(ω + ω′) = ∇(ω) +∇(ω′),
2) ∇(fω) = ω ⊗ df + f∇(ω), f ∈ OS .

Consider the case where Ω1
S(logD) is a free OS-module

of rank m. Obviously, in such a case Ωp
S(logD) =∧p Ω1

S(logD), p ≥ 1. It is often said that the divisor D is
free or, equivalently,D is a Saito free divisor. The following
characteristic property of such divisors was discovered by
Saito [1977].
Proposition 1. Suppose that there exist m logarithmic
vector fields V1, . . . ,Vm ∈ DerS(logD) such that for the
(m × m)-matrix M whose entries are the coefficients of
Vi, i = 1, . . . ,m, one has det(M) = ch, where c is a
unit. Then V1, . . . ,Vm form a basis of the free OS-module
DerS(logD). In particular, Ω1

S(logD) is a free OS-module
with the dual basis ω1, . . . , ωm.
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For example, Ω1
S(logD) is free when D is the discriminant

of the minimal versal deformation of the system defined
by a function with isolated singularity.

Now let D be a Saito free divisor. Then we can describe
the logarithmic connection (5) on Ω1

S(logD) itself. In other
words, let us consider the case when H = Ω1

S(logD) :

∇: Ω1
S(logD) → Ω1

S(logD)⊗OS
Ω1

S(logD).
Let ω1, . . . , ωm be free generators of the module Ω1

S(logD).
Then the connection ∇ can be expressed in terms of
Christoffel symbols in the following way:

∇ωi =
m∑

j=1

ωj ⊗ ωj
i , ωj

i =
m∑

k=1

Γjk
i ωk.

The connection ∇ is called torsion free if

dωi =
m∑

j=1

ωj
i ∧ ωj =

m∑
k,j=1

Γjk
i ωk ∧ ωj ,

and ∇ is called integrable if

dωj
i =

m∑
k=1

ωk
i ∧ ω

j
k, that is, d∇ = ∇∧∇,

where ∇ =‖ωj
i‖ is the coefficient matrix of the connection

∇. In particular, it means that the composition

H ∇−→ H⊗ Ω1
S(logD) ∇−→ H⊗∧2Ω1

S(logD)
is zero.

6. HOLONOMIC SYSTEMS

It is possible to associate with any integrable and torsion
free connection ∇ on the module Ω1

S(logD) a holonomic
system of Fuchsian type in the following way.

It is known (see Aleksandrov [1990]) that the multiplica-
tion by h induces the surjection

Ω1
S(logD) ·h−→ Tors Ω1

D −→ 0, (6)

whose kernel coincides with an OS-module

OS
dh

h
+ Ω1

S .

Here Ω1
S is the module of holomorphic differential 1-forms

on S generated by the differentials dz1, . . . , dzm over OS ,

Ω1
D = Ω1

S/(hΩ1
S +OSdh)

is the module of regular differential 1-forms on the divisor
D, and Tors Ω1

D is the torsion submodule of Ω1
D. The

support of Tors Ω1
D is contained in the singular locus

SingD of the hypersurface D. The torsion OD-module
Tors Ω1

D has a system of generators containing at least
m− 1 elements.

By definition, the generalized Fuchsian system is a holo-
nomic system of linear differential equations on S with
meromorphic coefficients containing in Ω1

S(logD) :
d I = Ω I, (7)

where I = tr(I1, . . . , Ik) is a vector-column of unknown
functions and the matrix differential form Ω is defined as
follows:

Ω = A0
dh

h
+

∑̀
i=1

Ai
ϑi

h
.

Here the differential 1-forms ϑi ∈ Ω1
S , i = 1, . . . , `, corre-

spond via (6) to non-zero elements of the torsion submod-
ule Tors Ω1

D, and Ai ∈ End(Ck) ⊗OS , i = 0, 1, . . . , `, are
coefficient matrices with holomorphic entries such that the
integrability condition dΩ = Ω ∧ Ω holds.

It is not difficult to show that one can associate to any
integrable and torsion free connection ∇ on the module
Ω1

S(logD) the generalized Fuchsian system of type (7)
(see Aleksandrov [2006]). Moreover, using the Christoffel
symbols of such connection, it is possible to express the
integrability condition in terms of commuting relations of
the coefficient matrices Ai, i = 1, . . . , `.

Under some additional assumptions on entries of the coef-
ficient matrices Ai it is possible to investigate the system
of type (7) and to describe its explicit solutions. In fact,
such solutions are quite useful in describing the control of
evolutionary processes, perturbations of multidimensional
systems, and many applications in dynamical systems,
bifurcation theory, etc. (for example, see Marsden et al.
[1976], Arnol’d [1981]).

7. TOPOLOGICAL INDEX

The index of a vector field is one of the very first concepts
in topology and geometry of smooth manifolds, and its
properties underlie important results of the theory, in-
cluding the Poincaré-Hopf theorem, which states that the
total index of a vector field on a closed smooth orientable
manifold is independent of the field and coincides with
the Euler-Poincaré characteristic of the manifold. When
studying singular varieties such as bifurcation sets, dis-
criminants, etc., it is natural to ask whether there exists a
similar invariant in a more general context. One possible
generalization of this type, which originally arose in topol-
ogy of foliations, turned out to be well suited for use in
the theory of singular varieties. In this section, we shortly
describe a new method for the calculation of the index of
vector fields on a hypersurface on the basis of the theory of
logarithmic differential forms and vector fields. The main
idea of our approach is to describe the index in terms of
meromorphic differential forms defined on the ambient va-
riety and having logarithmic poles along the hypersurface
(see Aleksandrov [2005]). We shall see that the systematic
use of the theory of logarithmic forms permits one not only
to simplify the calculations dramatically but also to clarify
the meaning of the basic constructions underlying many
papers on the subject (for example, see Bobylëv [1986]).

7.1 Regular differential forms

Let S be a complex manifold of dimension m = n + 1,
n ≥ 1, and let Ωq

D be the OD-module of germs of regular
(Kähler) differentials of order q on D, so that

Ωq
D,x = Ωq

S,x/
(
h·Ωq

S,x + dh ∧ Ωq−1
S,x

)
, q ≥ 0,

where x ∈ S. By analogy with smooth case, elements
of Ωq

D,x are usually called germs of regular holomorphic
forms on D. Now let Der(D) = HomOD

(Ω1
D,OD) be

the sheaf of germs of regular vector fields on D and let
us consider an element V ∈ Der(D). By V ∈ Der(S)
we denote a holomorphic vector field on S such that
V|D = V. Then the interior multiplication (contraction)
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ιV : Ωq
S −→ Ωq−1

S of vector fields and differential forms
defines the structure of a complex on Ω•

S , since ι2V = 0. The
contraction ιV induces a homomorphism ιV : Ωq

D −→ Ωq−1
D

of OD-modules and also the structure of a complex on
Ω•

D. The corresponding ιV -homology sheaves and groups
are denoted byH∗(Ω•

D, ιV ) andH∗(Ω•
D,x, ιV ), respectively.

7.2 Homological index

If the vector field V has an isolated singularity at a point
x ∈ D, then ιV -homology groups of the complex Ω•

D,x

are finite dimensional vector spaces, so that the Euler
characteristic

χ
(
Ω•

D,x, ιV
)

=
n+1∑
i=0

(−1)i dimHi

(
Ω•

D,x, ιV
)
,

of the complex of regular differentials is well-defined. It is
called the homological index of the vector field V at the
point x ∈ D and denoted by Indhom,D,x(V ) (see Gómez-
Mont [1998]). At nonsingular points of D the homological
index coincides with the topological index, or, equivalently,
with the Poincaré-Hopf local index.

7.3 Logarithmic index

Let us consider a vector field V ∈ DerS(logD). The interior
multiplication ιV defines the structure of a complex on
Ω•

S(logD).
Lemma 2. If all singularities of the vector field V are iso-
lated, then ιV -homology groups of the complex Ω•

S(logD)
are finite dimensional vector spaces.

Proof. Assume that S ∼= Cm, m = n + 1, and the
point x0 = 0 ∈ D ⊂ S is an isolated singularity of
the field V, so that V(x0) = 0. Then V(x) 6= 0 at each
point x in a sufficiently small punctured neighbourhood
of x0. In a suitable neighbourhood of x there exists a
coordinate system (t, z′1, . . . , z

′
n) such that V = ∂/∂t. Since

V(h) ⊆ (h)OS,0, it follows that D ∼= T × D0, where T is
a small disc in the variable t and D0 is a hypersurface in
Cn. It is easy to show that

Ωq
Cn+1,0(logD) ∼=(

Ωq
Cn,0(logD0)⊕ Ωq−1

Cn,0(logD0) ∧ dt
)
⊗C OC,0.

Indeed, for germs of holomorphic forms one has the iso-
morphism Ωq

D,0
∼=

(
Ωq

D0,0 ⊕ Ωq−1
D0,0 ∧ dt

)
⊗C OC,0 which

can readily be obtained by considering of the canonical
projections of the analytic set T × D0 onto the first and
second factors and the definition of Ωq

D,0. The desired iso-
morphism for germs of logarithmic forms can be obtained
by a similar argument with the use of the exact sequence

0 → Ωq
Cn+1,0 +

dh

h
∧ Ωq−1

Cn+1,0 →

→ Ωq
Cn+1,0(logD) ·h−→ Ωq

D,0 → Ωq
D,0/Tors Ωq

D,0 → 0,

which follows from the exact sequence expressing the tor-
sion subsheaves Tors Ωq

D in terms of logarithmic differen-
tial forms (see Aleksandrov [2005]).

Further, in the q-th piece of the complex (Ω•
S,0(logD), ιV)

one has
Ker (ι∂/∂t) ∼= Im (ι∂/∂t) ∼=

(
Ωq

Cn,0(logD0)⊕ (0)
)
⊗C OC,0.

That is, the corresponding homology groups vanish for
all q. The same conclusion readily follows for the point
x0 ∈ S \D. Consequently the ιV -homology groups of the
complex Ω•

S(logD) may be non-trivial only at singular
points of the field. Since the sheaves of logarithmic forms
as well as their cohomology are coherent, we arrive at the
statement of the Lemma.

Thus if the vector field V has isolated singularities, then
the Euler characteristic

χ
(
Ω•

S,x(logD), ιV
)

=
n+1∑
i=0

(−1)i dimHi

(
Ω•

S,x(logD), ιV
)

of the complex of logarithmic differential forms is well de-
fined for any point x ∈ S. It is called the logarithmic index
of the field V at the point x and denoted by Indlog D,x(V).
It follows from the preceding that Indlog D,x(V) = 0 when-
ever V(x) 6= 0.

7.4 The index of vector fields on hypersurfaces

To study the ιV -homology of the complex Ω•
D, one can

use an approach based on a representation of regular
holomorphic differential forms on the hypersurface D via
meromorphic forms with logarithmic poles along D (see
Aleksandrov [2005]). Recall [loc. cite] that for all q =
0, 1, . . . , n+ 1, there exist exact sequences

0 → Ωq−1
S,x /h · Ω

q−1
S,x (logD) ∧dh−→ Ωq

S,x/h · Ω
q
S,x → Ωq

D,x → 0
of OS,x-modules, where ∧dh is the homomorphism of exte-
rior multiplication. Hence one obtains the exact sequence

0 →
(
Ω•

S,x/hΩ
•
S,x(logD), ιV

)
[−1] ∧dh−→

−→
(
Ω•

S,x/hΩ
•
S,x, ιV

)
−→

(
Ω•

D,x, ιV
)
→ 0

(8)

of complexes. Indeed, the fact that the multiplication by
∧dh induces a morphism of complexes follows from the
identity

ιV(ω) ∧ dh = ιV(ω ∧ dh) + (−1)q−1ω ∧ V(h),
since the second summand from the right-hand side van-
ishes in the quotient complex Ω•

S/hΩ
•
S in view of the

condition V(h) ∈ (h)OS,x. Now note that from the exact
sequence

0 −→ (Ω•
S,x, ιV) ·h−→ (Ω•

S,x, ιV) −→ (Ω•
S,x/hΩ

•
S,x, ιV) −→ 0

of complexes it follows that χ
(
Ω•

S,x/hΩ
•
S,x, ιV

)
= 0. Thus

from the exact sequence (8) one obtains
Indhom,D,x(V ) = −χ((Ω•

S,x/hΩ
•
S,x(logD), ιV)[−1])

= χ(Ω•
S,x/hΩ

•
S,x(logD), ιV).

Proposition 3. Suppose that x ∈ D is an isolated singular-
ity of a vector field V ∈ Der(logD), the germs vi ∈ OS,x

are determined by the expansion V =
∑

i vi∂/∂zi, and
JxV = (v1, . . . , vm)OS,x. Then

Indhom,D,x(V ) = dimOS,x/JxV − Indlog D,x(V ).

Let us consider the case when D is a Saito free divisor.
Then the complex

(
Ω•

S,x(logD), ιV
)

is naturally isomor-
phic to the Koszul complex K•

(
(α1, . . . , αm);OS,x

)
on

the generators ei = ωi, i = 1, . . . ,m, where the germs
αi ∈ OS,x are determined as coefficients of the expansion
V =

∑
i αiVi of V in the basis of logarithmic vector fields.

In this case one readily obtains the following identity:
Indlog D,x(V) = χ

(
K•

(
(α1, . . . , αm);OS,x)

)
.
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Corollary 4. Let Jlog D,xV = (α1, . . . , αm)OS,x. Suppose
that the coefficients (α1, . . . , αm) form a regular OS,x-
sequence. Then

Indhom,D,x(V) = dimOS,x/JxV − dimOS,x/Jlog D,xV.

7.5 Normal hypersurfaces

Let Z = SingD be the singular locus of a reduced divisor
D, and let c = codim (Z,D) be the codimension of Z in
D. It is well-known (see Aleksandrov [1990]) that c = 1
for Saito free divisors, that is, in a sense, the singularities
of D form the maximal possible subset of the divisor. For
c ≥ 2, Serre’s criterion implies that the hypersurface D
is a normal variety. For further analysis of this case we
use the following reformulation due to Saito [1977] of the
notion of logarithmic forms.
Lemma 5. The germ ω of a meromorphic differential q-
form at a point x ∈ S with poles along D is the germ
of a logarithmic form (that is, ω ∈ Ωq

S,x(logD)) if and
only if when there exists a holomorphic function germ
g ∈ OS,x, a holomorphic (q − 1)-form germ ξ ∈ Ωq−1

S,x

and a holomorphic q-form germ η ∈ Ωq
S,x, such that

(i) dimCD ∩ {z ∈M : g(z) = 0} ≤ n− 1,

(ii) gω =
dh

h
∧ ξ + η.

Let %: Ωq
S,x(logD) −→ Ωq

S,x be the homomorphism of
multiplication by h, and let ω ∈ Ωq

S,x(logD). Then there
exists an element g ∈ OS,x in Lemma 5 such that
ghω ∈ hΩq

S,x + dh ∧ Ωq−1
S,x , that is, ghω = 0 in Ωq

D,x.
Since the germ g defines a zero non-divisor in OD,x, in
particular, this means that hω ∈ Tors Ωq

D,x, where the
torsion submodule of the sheaf of regular q-differentials is
denoted by Tors Ωq

D,x. Thus, Im (%) ⊆ Tors Ωq
D,x (actually

one has the equality). If Tors Ωq
D,x = 0, then the germ g

in (ii) can only be an invertible element; consequently,

Ωq
S,x(logD) ∼= Ωq

S,x +
dh

h
∧ Ωq−1

S,x . (9)

In fact, this isomorphism can be obtained without the
preceding argument if one directly makes use of the
exact sequence for the torsion submodules Tors Ωq

D,x (for
example, see Aleksandrov [1990]).
Theorem 6. Let D be a normal hypersurface. Then

Indhom,D,x(V ) =

dimOS,x/(h, JxV) +
n+1∑
i=c′

(−1)i dimHi(Ω•
D,x, ιV ),

where c′ = 2[ c+1
2 ] + 1, the square brackets denote the

integer part of rational numbers, and the sum is zero by
convention if the lower limit is greater than the upper
limit.

Proof. It is well-known that Tors Ωq
D = 0 if 0 < q < c.

Hence, together with the isomorphism (9), this means that
Ωq

S,x/hΩ
q
S,x(logD) ∼= Ωq

D,x for all such q. Therefore, it
follows from the exact sequence (8) that

Hi(Ω
q
D, ιV ) ∼= Hi−1(Ω

q
D[−1], ιV ) = Hi−2(Ω

q
D, ιV )

for all i = 3, . . . , c + 1. In particular, in this range the
dimensions of the ιV -homology groups of the complex Ω•

D,x

in the two series H2i and H2i−1 coincide. Further, one can
readily see that the dimensions of groups H1 and H2 also
coincide (see Aleksandrov [2005]), whence the desirable
formula follows. The integer part in the lower limit of the
sum is needed in order to distinguish between the cases of
even and odd codimension.
Corollary 7. Suppose that a point x ∈ D is an isolated
singularity of the hypersurface D as well as of a vector
field V ∈ Der(logD), V(h) = ϕh and ϕ ∈ OS,x. Then

Indhom,D,x(V ) =
dimOS,x/(h, JxV) + ε dim Ann Bx

(h)/(ϕ)Bx,

where ε = −1 if n is even and ε = 0 otherwise, and Bx is
the local ring OS,x/JxV.

8. CONCLUSION

In many applications (say, in the theory of dynamical sys-
tems, bifurcation theory, in economic, biology, chemistry,
etc.) a stable equilibrium state describes the established
conditions in the corresponding real system (see Marsden
et al. [1976], Arrowsmith et al. [1982]). When it merges
with an unstable equilibrium state the system must jump
to a completely different state: as the parameter is changed
the equilibrium condition in the neighbourhood considered
suddenly disappears. The described results allow one to
investigate in detail jumps of this kind with the use of
invariants of bifurcation sets and discriminants associated
with deformations of a complex system.
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