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Abstract: An approach is proposed for reconfigurable control structure design to obtain a
system tolerant to state-variable sensor faults. The method is based on discrete-time constrained
control design techniques for linear systems with state constraints, defined by linear equalities.
Degradation in steady state performance is dealt with fixing that state variable which is
associated with sensor fault to zero value. Since that control design can be viewed as a
specific pole-assignment problem, reconfigured LQ control structures, as well as stabilizing
reconfiguration structure are introduced.

1. INTRODUCTION

Automated diagnosis has been one of the more fruitful
applications in sophisticated control systems, with poten-
tial significance for domains in which diagnosis of systems
must proceed while the system is operative and testing
opportunities are limited by operational considerations.
The real problem is usually to fix the system with faults
so that system can continue its mission for some time with
some limitations of functionality. Consequently, diagnosis
is a part of larger problem known as fault detection,
identification and reconfiguration (FDIR). The practical
benefits of an integrated approach to FDIR seem to be
considerable, especially when knowledge of available fault
isolations and system reconfigurations is used to reduce
the cost and increase the reliability and utility of control
and diagnosis.

In the last years many significant results have spurred
interest in problem of determining control laws for systems
with constraints. One approach to the problem of find-
ing the optimal control results is technique dealing with
system constraints directly. If this constrained problem is
solvable, then one can modify optimized linear quadratic
control performance index to adapt it for constraints. A
special form of this constrained problem can be formulated
with the goal to optimize state feedback controller param-
eters while the system state variables satisfy the equality
constraints. These principles were presented e.g. in Ko and
Bitmead (2007).

In this paper the reconfigurable structure is suggested
where a control law from an admissible set of constrained
LQ control laws is singled out. It is assumed, that system
is free of actuator faults, and according to the performance
of FDIR the state variable sensor faults detection and
isolation is available to take equivalent control law for a

1 The work presented in this paper was supported by Grant Agency
of Ministry of Education and Academy of Science of Slovak Republic
VEGA under Grant No. 1/0328/08.

occurred sensor fault. This method is an adaptation of
methodology given in Ko and Bitmead (2005) and can
be noted as an extension to the pseudo-inverse methods
(PIM), presented e.g. in Staroswiecki (2005), as well as de-
graded reference models, used in Zhang and Jiang (2003).

Based on the discrete-time linear system state description,
as well as on nominal LQ performance index, the gen-
eralized performance indexes were formulated, which are
associated with the standard forms of algebraic Riccati
equations for time-invariant discrete LQ control. In ad-
dition for given sensor fault structures reconfigured LQ
control structures, as well as stabilizing reconfiguration
structure are defined. Finally numerical example is shown
in this paper to demonstrate the role of singularities in the
design procedure.

2. LQ CONTROL TASK

Generally, a discrete-time linear dynamic system can be
described by set of equations

q(i + 1) = Fq(i) + Gu(i) (1)

y(i) = Cq(i) (2)

where q(i) ∈ IRn, u(i) ∈ IRr, y(i) ∈ IRm and matrices
F ∈ IRn×n, G ∈ IRn×r, C ∈ IRm×n are finite valued.

For such system (1), (2) the optimal control design task is
to determine the control law

u(i) = −K(i)q(i) (3)

that minimizes the quadratic cost function

JN = qT (N)Q•q(N) +

N−1
∑

i=0

s
(

q(i),u(i)
)

(4)

s
(

q(i),u(i)
)

=

= qT (i)Qq(i) + 2qT (i)Su(i) + uT (i)Ru(i) =

=
[

qT (i) uT (i)
]

JJ

[

q(i)
u(i)

]
(5)
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JJ =

[

Q S

ST R

]

≥ 0, Q − SR−1ST ≥ 0 (6)

where matrices Q ≥ 0 ∈ IRn×n, Q• ≥ 0 ∈ IRn×n and
R > 0 ∈ IRm×m have full row rank, S ∈ IRn×r satisfies
(6) and K(i) ∈ IRn×r is the optimal control gain matrix.

3. CONSTRAINED CONTROL

Using control law (3) the steady-state equilibrium control
equation takes the form

q(i + 1) = (F − GK)q(i) (7)

y(i) = Cq(i) (8)

There is considered a design constraint

q(i) ∈ N (D) = {q : Dq = 0} (9)

where the state-variable vectors have to satisfy equalities

Dq(i + 1) = D(F − GK)q(i) = 0 (10)

D(F − GK) = 0 (11)

DF = DGK (12)

respectively, and N (D) is the constrain subspace. It is
supposed that states to be constrained in the null space of
D, and matrix (F−GK) is a stable matrix (all eigenvalues
of (F −GK) lie in the unit circle in the complex plane Z.
Under these conditions the state stays within the constrain
surface, i.e. q(i) ∈ N (D) and Fq(i) ∈ N (D).

All solutions of K are

K = (DG)⊖1DF + K◦ − (DG)⊖1DGK◦ (13)

where K◦ is an arbitrary matrix with appropriated dimen-
sion and

(DG)⊖1 = (DG)T
(

DG(DG)T
)†

(14)

is the Moore-Penrose pseudoinverse of DG. One can
therefore express (13) as

K = M + NK◦ (15)

where

M = (DG)⊖1DF (16)

and

N = Im − (DG)T
(

DG(DG)T
)†

DG (17)

is the projection matrix (the orthogonal projector onto the
null space N (DG) of DG). This results in

u(i) = −Mq(i) + N
(

− K◦q(i)
)

=

= −Mq(i) + Nu◦(i)
(18)

where

u◦(i) = −K◦q(i) (19)

(see e.g. Ko and Bitmead (2007), Krokavec and Filasová
(2007)).

4. CONSTRAINED LQ CONTROL

The systems under consideration are discrete-time linear
MIMO dynamic systems described by (1), (2). It is sup-
posed, that all state variables are measurable, and con-
straints take forms

q(i) ∈ N (dT
h ) = {q : dT

h q = 0}, h ∈ {1, 2, . . . , n} (20)

dT
h = [ 0 · · · 0 1h 0 · · · 0 ] (21)

Using identity q(i) = q(i) and (18), the system transform
was introduced

[

q(i)
u(i)

]

=

[

I 0
−Mh Nh

][

q(i)
u◦(i)

]

= T h

[

q(i)
u◦(i)

]

(22)

T h =

[

I 0
−Mh Nh

]

(23)

Mh = (dT
h G)⊖1dT

h F (24)

Nh = I − (dT
h G)T

(

dT
h G(dT

h G)T
)†

dT
h G (25)

to describe modified control law representation.

Theorem 1. For a system given in (1), (2) with equality
constraints (20), (21), the performance index (4), (5), and
gain matrices (24), (25) solution to the constrained LQ
control is given by

u(i) = −Khq(i) = −(Mh + NhK◦
h)q(i) (26)

where

K◦
h = (G◦T

h PG◦
h + R◦

h)−1(F ◦T
h PG◦

h + S◦
h)T (27)

and Nh is a regular matrix.

Here P (i) is a solution of the discrete Riccati equation

P (i−1) = F ◦T
h P (i)F ◦

h + Q◦−

(F ◦T
h P (i)G◦

h+S◦
h)(G◦T

h P (i)G◦
h+R◦

h)−1(G◦T
h P (i)F ◦

h+S◦T
h )

(28)

and

F ◦
h = F − GMh (29)

G◦
h = GNh (30)

Q◦
h = Q + MT

hRMh − SMh − MT
hS

T (31)

R◦
h = NT

hRNh (32)

S◦
h = (S − MT

hR)Nh (33)

Proof. Since system (1), (2) is linear in q(i) the quadratic
Lyapunov function can be of the form

v(q(i)) = qT (i)P (i−1)q(i) (34)

where P (i−1) ∈ IRn×n is a symmetric positive definite
matrix and P(−1) = P(0). If Lyapunov function takes
form (34), its difference is

∆v(q(i),u(i)) = v(q(i+1)) − v(q(i)) (35)

∆v(q(i),u(i)) =
[

qT (i) uT (i)
]

JV (i)

[

q(i)
u(i)

]

(36)

respectively, where

JV (i) =

[

F T P (i)F − P (i−1) F T P (i)G
(F T P (i)G)T GT P (i)G

]

(37)
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and Lyapunov function at the time instant N − 1 takes
value

VN−1 =

N−1
∑

i=0

∆v(q(i),u(i)) (38)

which, in turn, is equivalent to

VN−1 = qT (N)P (N−1)q(N) − qT (0)P (0)q(0) (39)

Adding (38) to (4) and subtracting (39) from (4) the
performance index for control law can be brought to the
form

JN = qT (0)P (0)q(0) +

N−1
∑

i=0

p
(

q(i),u(i)
)

(40)

where P (N − 1) = Q• and

p
(

q(i),u(i)
)

= s
(

q(i),u(i)
)

+ ∆v
(

q(i),u(i)
)

=

=
[

qT (i) uT (i)
]

J(i)

[

q(i)
u(i)

]

(41)

J(i) = JJ + JV (i) (42)

Using (22), (23) the performance index (40) can be equiv-
alently rewritten to the form

JN = qT (0)P (0)q(0) +

N−1
∑

i=0

p
(

q(i),u◦(i)
)

(43)

where
(

q(i),u◦(i)
)

=
[

qT (i) u◦T (i)
]

J◦
h(i)

[

q(i)
u◦(i)

]

(44)

J◦
h(i) = T T

h (JJ + JV (i))T h (45)

T T
h JJT h =

[

Q◦
h S◦

h

S◦T
h R◦

h

]

=

=

[

Q + MT
hRMh − SMh − MT

hS
T (S − MT

hR)Nh

NT
h (S − MT

hR)T NT
hRNh

]

(46)

T T
h JV (i)T h =

[

F ◦T
h P (i)F ◦

h − P (i−1) F ◦T
h P (i)G◦

h

G◦T
h P (i)F ◦

h G◦T
h P (i)G◦

h

]

(47)

where

F ◦
h = F − GMh (48)

G◦
h = GNh (49)

Thus, an equivalent standard form of (45) is

J◦
h(i) =

[

F ◦T
h P (i)F ◦

h−P (i−1) + Q◦
h F ◦T

h P (i)G◦
h + S◦

h

(F ◦T
h P (i)G◦

h + S◦
h)T G◦T

h P (i)G◦
h + R◦

h

]

(50)

Accepting this generalized weighting matrix there exists
such optimal control law u◦(i) = −K◦(i)q(i) satisfying
conditions

0 =
∂p(q(i),u◦(i))

∂u◦T (i)
=

[

0T IT
]

J◦
h(i)

[

q(i)
u◦(i)

]

=

=
[

(F ◦T
h P (i)G◦

h + S◦
h)T G◦T

h P (i)G◦
h + R◦

h

]

[

q(i)
u◦(i)

]
(51)

0 =
∂p(q(i),u◦(i))

∂qT (i)
=

[

IT 0T
]

J◦
h(i)

[

q(i)
u◦(i)

]

=

= (F ◦T
h P (i)F ◦

h−P (i−1)+Q◦
h)q(i)+

+(F ◦T
h P (i)G◦

h+S◦
h)u◦(i)

(52)

that

K◦
h(i) = (G◦T

h P (i)G◦
h + R◦

h)−1(F ◦T
h P (i)G◦

h + S◦
h)T (53)

P (i−1) = F ◦T
h P (i)F ◦

h+Q◦
h−(F ◦T

h P (i)G◦
h+S◦

h)K◦
h(i)(54)

i.e. P (i) = P T (i) > 0 is a solution of discrete Riccati
equation (28), and resulting solution to the LQ problem
with state equality constraints is given by the optimal
control law

u(i) = −
(

Mh + NhK◦
h(i)

)

q(i) (55)

It is clear, that (53), (54) imply (28), where existence of
(28) is conditioned by the inequality

G◦T
h P (i)G◦

h + R◦
h = NT

h

(

GTP (i)G + R
)

Nh > 0 (56)

Supposing that Nh is a regular matrix, then using (49)
and (56) one can obtain

(F ◦T
h P (i)G◦

h+S◦
h)(G◦T

h P (i)G◦
h+R◦

h)−1(G◦T
h P (i)F ◦

h+S◦T
h )

= (F ◦T
h P (i)G+S◦

0h)(GTP (i)G+R)−1(GTP (i)F ◦
h+S◦T

0h )

(57)

where

S◦
0h = S − MT

h R (58)

R > 0, GTP (i)G + R > 0, detNh 6= 0 (59)

Therefore for R > 0 and detNh 6= 0 solution (28) exists.
This concludes the proof.

It is clear, that the existence of constrained LQ control
over infinite-time horizon is related to the algebraic Riccati
equations

P = F ◦T
h PF ◦

h + Q◦−

(F ◦T
h PG◦

h+S◦
h)(G◦T

h PG◦
h+R◦

h)−1(G◦T
h PF ◦

h+S◦T
h )

(60)

The constant gain state feedback controller for infinite-
time horizon and control law (26) is given by a steady-state
solution P of (60) with R > 0 and detNh 6= 0.

Corollary 1. Since

F ◦
ch = F ◦

h − G◦
hK◦

h = F − GMh − GNhK◦
h =

= F − GMh − G(Kh − Mh) = F − GKh

(61)

one can see that the eigenvalues spectrum ρ(F ch) of
the closed-loop system matrix F ch = F − GKh is the
same as the eigenvalues spectrum of the designed closed-
loop system matrix F ◦

ch, obtained in modified LQ control
design.

Corollary 2. For any non-zero row vector dT
h , satisfying

(20), is

F − GKh = F − (GMh + GNhK◦
h) =

=F− G(dT
h G)⊖1dT

h F− G(Im−(dT
h G)⊖1dT

h G)K◦
h =

= (In − G(dT
h G)⊖1dT

h )(F − GK◦
h)

(62)
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Since (11) implies dT
h (F −GKh) = 0T , it is evident, that

matrices F ch = F − GKh, as well as

V h = (In − G(dT
h G)⊖1dT

h ) (63)

are singular matrices.

Corollary 3. If dT
h takes structure (21) then the following

is yielded

G(dT
h G)⊖1dT

h = [ 0 · · · 0 vh 0 · · · 0 ] (64)

vh = [ v1h · · · vh−1,h 1 vh+1,h · · · vn,h ]
T

(65)

and using (62) (with notation F •
ch = F −GK◦

h) it can be
shown that

det(zIn − V hF •
ch) = det

(

zIn − (F •
ch − vhf•T

ch )
)

=

= z det
(

zIn−1 − In⊘h(F •
ch − vhf•T

ch )IT
n⊘h

)

=

= z det
(

zIn−1 − W •
vh)

(66)

where f•T
ch is the h-th row of F •

ch, In⊘h can be obtained
by deleting the h-th row of identity matrix In, and W •

vh

is h-th principal minor of F •
vh = F •

ch− vhf•T
ch .

Corollary 4. The characteristic polynomial of constrained
LQ control, designed for dT

h having structure (21), is

P (z) = det(zIn − F ch) = z det
(

zIn−1 − W h) (67)

where W h is the h-th principal minor of F ch.

Equality (61), (67), (66) implies, that eigenvalue spectrum
of F ch is

ρ(F ch) = ρ(F ◦
ch) =

= {0, ρ(W h)} = {0, ρ(W ◦
h)} = {0, ρ(W •

vh)}
(68)

where ρ(·) denotes the eigenvalue spectrum of a square
matrix.

5. RECONFIGURABLE CONTROL

Following the design consideration outlined in Sections 3
and 4, and for selected vector dT

h having structure (21)
the reconfigurable control can be designed. It is supposed
that system is with no actuator fault and a single fault of
sensor is interpreted by condition (20). This interpretation
means that sensor outputs is stuck at fixed value equal zero
because of a malfunction and the measurement is qh = 0.

Theorem 2. For a system given in (1), (2) with equality
constraints (20), (21), the performance index (4), (5), and
gain matrices (24), (25) solution to the reconfigurable LQ
control is given by

u(i) = −KRhq(i) = −(Mh + NhK◦
Rh)q(i) (69)

where

K◦
Rh = K◦

h = (G◦T
h PG◦

h + R◦
h)−1(F ◦T

h PG◦
h + S◦

h)T (70)

Here P is a steady-state solution of the algebraic Riccati
equation (60) under conditions given in (59), and matrices
F ◦

h, G◦
h, Q◦

h, R◦
h, and S◦

h are the same as in (29)–(33).

Proof. Clear from Theorem 1.

Theorem 3. For a system given in (1), (2) with equality
constraints (20), (21), and gain matrices (24), (25), (74)
solution to a stabilizing reconfigurable control is given by

u(i) = −KShq(i) = −(Mh + NhK◦
Sh)q(i) (71)

This solution is obtainable using that K◦
Sh for which the

desired eigenvalue set of a matrix F ◦
Sch = F ◦

h − G◦
hK◦

Sh

is a set of stable variables with one eigenvalue equals to
zero. Here used matrices are given in (29) and (30).

Proof. Clear from Corollary 4.

Theorem 4. For a system given in (1), (2) with equality
constraints (20), (21), the performance index (4), (5), and
gain matrices (24), (25) solution to the reconfigurable LQ
control with an integral action is given by

u(i) = −KRhq(i) = −(Mh + NhK◦
Rh + K⋄

h)q(i) (72)

where

K◦
Rh = K◦

h = (G◦T
h PG◦

h + R◦
h)−1(F ◦T

h PG◦
h + S◦

h)T (73)

K⋄
h = ahG⊖1Dh (74)

Here P is a steady-state solution of the algebraic Riccati
equation (60) under conditions given in (59), matrices F ◦

h,
G◦

h, Q◦
h, R◦

h, and S◦
h are the same as in (29)–(33), and

G⊖1 = (GGT )†GT (75)

Dh = diag (dT
h ) (76)

ah = −g−1

h , gh = (GG⊖1)h (77)

where (·)h denotes the h-th diagonal element of any square
matrix.

Proof. Condition (11) implies for KRh = Kh = Mh +

+NhK◦
h that dT

h (F − GKh) = 0T , i.e. all elements of
the h-th row of F −GKh are equal to zero. The additive
feedback gain K⋄

h guaranties, that structure of the matrix
GK⋄

h is

−GK⋄
h = [ 0 · · · 0 gh 0 · · · 0 ] (78)

gh = [ g1h · · · gh−1,h 1 gh+1,h · · · gn,h ]
T

(79)

Therefore
P (z) = det(zIn − (F − GKRh)

)

=

= (z−1) det
(

zIn−1−W Rh) = (z−1) det
(

zIn−1−W h)

(80)

where W Rh is the h-th principal minor of F − GKRh.

Theorem 5. For a system given in (1), (2) with equality
constraints (20), (21), and gain matrices (24), (25), (74)
solution to a stabilizing reconfigurable control with an
integral action is given by

u(i) = −KShq(i) = −(Mh + NhK◦
Sh + K⋄

h)q(i) (81)

This solution is obtainable using that K◦
Sh for which the

desired eigenvalue set of a matrix F ◦
Sch = F ◦

h −G◦
hK◦

Sh is
a stable eigenvalue set with one eigenvalue equals to zero,
as well as with an additive gain matrix (74). Here used
matrices are given in (29) and (30).

Proof. Clear from Corollary 4 and Theorem 4.

Note that reconfiguration tasks based on constrained state
controllers with an integral action have to use additive
output feedback.
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6. ILLUSTRATIVE EXAMPLES

To demonstrate properties of the proposed approach, a
system with two-inputs and two-outputs is used in the
example. The parameters of this system are

F =

[

0.9993 0.0987 0.0042
−0.0212 0.9612 0.0775
−0.3875 −0.7187 0.5737

]

G =

[

0.0051 0.0050
0.1029 0.0987
0.0387 −0.0388

]

, C =

[

1 0 0
0 0 1

]

for sampling period ∆t = 0.1 s.

Case 1: Reconfiguration based on constrained LQ control

Assuming the performance index (4), (5) with

Q =

[

1 0 0
0 1 0
0 0 1

]

, R = 0.05

[

1 0
0 1

]

, S = 0.02

[

0 0
1 1
0 0

]

and the 3rd sensor fault constraint dT
3 = [ 0 0 1 ], there

were obtained feedback gain matrix parameters

M3 =

[

−4.9935 −9.2616 7.3930
−0.1029 9.2855 −7.4121

]

N3 =

[

0.5013 0.5000
−0.4996 0.4987

]

New design parameters were then recomputed as follows

F ◦
3 =

[

0.9997 0.0995 0.0036
−0.0015 0.9977 0.0483

0.0000 0.0000 0.0000

]

G◦
3 =

[

0.0051 0.0050
0.1009 0.1007
0.0000 0.0000

]

Q◦
3 =

[

1.2500 0.4634 −0.3701
0.4634 1.8590 −0.6861

−0.3701 −0.6861 1.5480

]

R◦
3 =

[

0.0025 0.0025
0.0025 0.0025

]

, S◦
3 =

[

0.0000 0.0000
0.0200 0.0200
0.0000 0.0000

]

Applying the Matlab function dare(.) to design matrix K◦
3

the optimal solution was obtained as

K◦
3 =

[

7.5872 6.0515 2.4267
0.0000 4.0000 −2.0000

]

and the final feedback gain matrix becomes

KR3 = M3 + N3K
◦
3 =

[

−1.1902 −4.2280 7.6095
8.8000 14.3061 −7.1962

]

The feedback system matrix F Rc3 = F − GKR3 and its
eigenvalues are

FRc3 =

[

0.9614 0.0487 0.0014
−0.7673 −0.0157 0.0048

0.0000 0.0000 0.0000

]

, eig (FRc2) =

[

0.9215
0.0242
0.0000

]

It is easily verified, that using generally some another
performance index parameters and dT

1 = [ 1 0 0 ], as well

as dT
2 = [ 0 1 0 ], one can obtain gain matrices for the rest

sensor fault models.

Note that the system matrix F ◦
· is a singular matrix,

therefore the performance index weighting matrices spec-
ification can be a non-trivial task.

Case 2: Reconfiguration based on stabilizing constrained
control

Assuming the 3rd sensor fault constraint dT
3 = [ 0 0 1 ],

obtained feedback gain matrix parameters were

M3 =

[

−4.9935 −9.2616 7.3930
5.0064 9.2855 −7.4121

]

N3 =

[

0.5013 0.5000
0.5000 0.4987

]

If the specified desired closed-loop matrix eigenvalues set
is ρ(Fc3) = { 0, 0.5, 0.8 }, using the standard Matlab
function place(.) to design matrix K◦

S3 the result is

K◦
S3 =

[

4.9179 3.2150 −6.3395
4.9591 3.2067 −6.3231

]

and for given M3 and N3 the final value for the feedback
gain matrix becomes

KS3 =

[

−0.0216 −6.0466 1.0535
9.9656 12.4922 −13.7353

]

Using this feedback gain matrix the closed-loop system
matrix F Sc3 and its eigenvalues are

FSc3 =

[

0.9496 0.0671 0.0675
−1.0026 0.3504 1.3248

0.0000 0.0000 0.0000

]

, eig (FSc3) =

[

0.0
0.5
0.8

]

Analogously for any other desired sets of eigenvalues can
be obtained the gain matrices for the rest types of sensor
faults.

Case 3: Dynamic properties of closed-loop system reconfig-
uration

Assuming that the stabilizing control for given sys-
tem was obtained using the standard Matlab function
place(.) for desired closed-loop eigenvalue set ρ(Fc3) =
= { 0.2, 0.5, 0.8 } and nominal system matrices F , G.
Then the solution of the above task is

KN =

[

−4.4207 −7.4955 1.7509
19.5070 16.1414 −1.7903

]

F Nc =

[

0.9242 0.0562 0.0042
−1.4935 0.1393 0.0740

0.5398 0.1977 0.4365

]

, eig (FNc) =

[

0.2
0.5
0.8

]

Then, realizing for the sub-system which is specified by
vectors

cT
1 = [ 1 0 0 ] , gT

1 = [ 0.0051 0.1029 0.0387 ]

the gains of the reference external input signal were
computed as

GN1 =
1

cT
1 (I − F Nc)−1g1

= 13.2308

GR31 =
1

cT
1 (I − F Sc3X3)−1g1

= 9.7895
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Fig. 1. Step response of the closed-loop system without
control reconfiguration for the third sensor fault

where

X3 = diag [ 1 1 0 ]

In Figure 1 and 2, an example is shown of the closed-loop
sub-system step response using control laws

u(i) = −KNq(i) + GNu(i), GN = diag [ 13.2308 0 ]

u(i) = −KS3q(i) + GR31u(i), GR31 = diag [ 9.7895 0 ]

Specially, at the Figure 2, one can see a dead time between
the fault occurrence time instant and the reconfiguration
starting time, which reflect a time consumption for fault
detection and isolation.

7. CONCLUDING REMARKS

Based on the state equation, the performance index pa-
rameters and the system constraint equations for time-
invariant discrete LQ control problem, the generalized
Riccati equations for linear equality constrained system,
obtained according to the minimum principle, are given in
the paper. Obtained solution was used to design a recon-
figurable LQ control as well as stabilizing reconfigurable
control. The proposed method present some new design
features and generalizations where it was emphasized that
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Fig. 2. Step response of the closed-loop system with control
reconfiguration and the third variable sensor fault

the advantage offered by the proposed approach is, the
state variable associated with a faulty sensor may be
fixed at zero value also after that time instant when the
reconfigured control is started.
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