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Abstract: A substantial effort has been devoted to various adaptive techniques of systems. Most
of these concepts work in the control domain, where every system only has one controller. Yet,
for the multi-controller counterpart — dynamic games, adaptations are usually considered from
a perspective of systems, for an example, evolutionary games. In this paper, we propose a new
adaptive approach for linear quadratic discrete-time games with scalar inputs and state feedback
Nash strategies. We consider the effort of adaptation under a Fictitious Play (FP) framework
with learning algorithms derived from conventional adaptive control methods. Convergence to
Nash strategies is proved with the condition that there exists a unique state feedback strategy,
which implies that the associated coupled discrete-time algebraic Riccati equations (DAREs)
have a unique positive semi-definite solution. The requirement of Persistency of Excitation (PE)
is satisfied by proper reference signals to be tracked.
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1. INTRODUCTION

In general, every closed-loop controller is “adaptive” in the
sense that it modifies its output in response to changes
of system states. However, an “adaptive controller” can
adapt not only its output, but its underlying control
strategy as well. Adaptive controllers can outperform their
fixed-parameter counterparts in terms of efficiency. They
can often eliminate errors faster and with fewer fluctu-
ations. In Åström and Wittenmark [1995], an adaptive
controller is defined as “a controller with adjustable pa-
rameters and a mechanism for adjusting the parameters”.
Usually, an adaptive control system has two loops: one
is the information feedback between the process and the
controller; the other is for the parameter adjustment.

In the control domain, where every system only has one
controller, a range of techniques, such as adaptive dual
control methods Alster and Belanger [1974], Bar-Shalom
and Tse [1974], normalization or dead zones Peterson
and Narendra [1982], Kreisselmeier and Anderson [1986],
model reference adaptive control Morse [1980], Narendra
et al. [1980], Goodwin et al. [1980], and self-tuning regu-
lators Åström and Wittenmark [1973], are used to design
the adaptive schemes. While in the game domain, there
are two concepts related to the adaptation design. The
first one is called evolutionary game theory (EGT) Smith
[1982] that originated as an application of the mathemat-
ical theory of games to biological contexts. Arising from

⋆ This work was supported in part by the Defense Advanced
Research Project Agency (DARPA) under Contract F33615-01-
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University College of Engineering.

the realization that frequency dependent fitness introduces
a strategic aspect to evolution, EGT is the application
of population genetics-inspired models of change in gene
frequency in populations to game theory. It differs from
classical game theory by focusing on the dynamics of strat-
egy change more than the properties of strategy equilibria.
The second one is Fictitious Play (FP) Brown [1951],
Fudenberg and Levine [1998]. In it, each player presumes
that its opponents are playing stable (possibly mixed)
strategies. Each player starts with some initial beliefs and
chooses a best response to those beliefs as a strategy in this
round. Then, after observing their opponents’ actions, the
players update their beliefs according to some learning rule
(e.g. reinforcement learning or Bayes’ rule). The process is
then repeated.

In this paper, we present a new adaptive approach for
linear quadratic games with state feedback Nash strate-
gies. We consider the effort of adaptation under a FP
framework with learning algorithms derived from conven-
tional adaptive control methods. When the parameters of
the objective functions are not shared among the decision
makers, an on-line adaptive scheme is provided for each
player to estimate the actual control gain used by the
other player. The convergence to Nash strategies is proved
with the condition that the associated coupled DAREs
have a unique positive definite solution. The requirement
of Persistency of Excitation (PE) is satisfied by proper
reference signals to be tracked.

The remainder of the paper is organized as follows. The
state feedback Nash strategies for linear quadratic games
are reviewed in Section 2. Then in Section 3 (one-side
adaptation) and Section 4 (two-side adaptation), we design
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adaptive laws for linear quadratic games, and provide
the proof of the convergence to Nash strategies given
that the associated coupled discrete-time algebraic Riccati
equations (DAREs) have a unique semi-positive definite
solution. Numerical systems are simulated in Section 5
to illustrate the proposed adaptation designs for linear
quadratic games with state feedback Nash strategies. Fi-
nally, conclusions are drawn in Section 6.

2. STATE FEEDBACK NASH STRATEGIES FOR
LINEAR QUADRATIC GAMES

Let us consider two-person infinite-horizon linear quadratic
games

xk+1 = Axk + B1u1
k + B2u2

k (1)

with the cost functions

J1 =

+∞
∑

k=0

(

x⊤

k Q1xk + u1⊤
k R11u1

k + u2⊤
k R12u2

k

)

(2)

J2 =

+∞
∑

k=0

(

x⊤

k Q2xk + u1⊤
k R21u1

k + u2⊤
k R22u2

k

)

(3)

where xk ∈ Rn, ui
k ∈ Rmi , Qi > 0, Rij > 0, (A, Bi) is

stabilizable and (A, Ci) is observable (where Ci⊤Ci = Qi)
for i = 1, 2, k = 1, 2 · · · . We assume that both players have
perfect information structures, with which both players
know the exact system dynamics xk+1 = Axk + B1u1

k +
B2u2

k and measure exact system states xk. It is well known
(see Başar and Olsder [January, 1999]) that the Nash
strategy pair is specified by

u1∗
k := arg

u1

k

min J1 = γ1(xk) = L1xk (4)

u2∗
k := arg

u2

k

min J2 = γ2(xk) = L2xk (5)

where L1 and L2 are defined, respectively, by

L1 = −[R11 + B1⊤K1B1]−1B1⊤K1[A + B2L2] (6)

L2 = −[R22 + B2⊤K2B2]−1B2⊤K2[A + B1L1] (7)

K1 and K2 are specified in the following coupled DAREs,
that, by assumption, have a unique positive semi-definite
solution (in general, uniqueness and positive definiteness
of solutions is not necessary to obtain a Nash equilibrium,
see Başar and Olsder [January, 1999] Prop. 6.3. But in this
paper, we need them to prove convergence of our designed
adaptive laws).

K1 = Q1 + L1⊤R11L1 + L2⊤R12L2

+ (A + B1L1 + B2L2)⊤K1(A + B1L1 + B2L2) (8)

K2 = Q2 + L1⊤R21L1 + L2⊤R22L2

+ (A + B1L1 + B2L2)⊤K2(A + B1L1 + B2L2) (9)

It is straightforward to extend state feedback Nash strate-
gies to M -player cases.

3. ONE-SIDE ADAPTATION SCHEME

In the one-side adaptation scheme, only one of the two
players has perfect information of the cost functions of
both players, i.e., the player knows exact Q1, Q2, R11,
R12, R21, R22, while the other player only has access to
its cost function and does not know the parameters of the

cost function of its opponent. Without loss of generality,
we assume that player 1 knows exact Qi , Rij , A, Bi

while player 2 has access to Q2, R21, R22, A, Bi. We
also assume that player 1 will apply its state feedback
Nash strategies calculated based on the information of
system dynamics, system states and cost functions of both
players. Player 2 knows in advance that its opponent will
implement state feedback Nash strategies. By following the
concept of Fictitious Play (PE), player 2 will estimate the
control gain L1 first, and then calculate/estimate its own
best response control gain L2.

Assumption 1. In our proposed adaptive schemes includ-
ing one-side adaptation here and two-side one in Section 4,
we assume that ui is scalar.

3.1 Adaptation Design

In the one-side adaptation scheme, player 1, who has
perfect information structure, will apply its real state
feedback Nash strategies u1∗ = L1xk, so we follow the
conventional indirect adaptive control design method Tao
[2003]. Consider the system defined in (1) with fixed

controller (4) for player 1, let L̂1
k be an estimate of the

control gain L1 of player 1, from the point view of player
2. The block diagram of indirect adaptive control system
is shown in Fig. 1.

Fig. 1. Indirect adaptive control design for one-side adap-
tation scheme

First, we have

x̂k+1 = Axk + B1L̂1
kxk + B2u2

k (10)

Since B1⊤B1 is a scalar, then from (1) and (10), we have

[B1⊤B1]−1B1⊤(x̂k+1 − xk+1) = (L̂1
k − L1)xk (11)

We introduce the estimation error ek = [B1⊤B1]−1B1⊤(x̂k−
xk), (ek is a scalar) then

ek = L̃1
k−1φk (12)

where L̃1
k−1

= L̂1
k−1

− L1 and φk = 1

z
[x]k = xk−1.

(Note, 1

z
[x]k denotes the output of the system with transfer

function 1

z
and input xk.)

Choose the adaptive law for L̂1
k as

L̂1
k = L̂1

k−1 −
ekφ⊤

k Γ

m2
k

(13)

where 0 < Γ = Γ⊤ < 2In is a gain matrix, and

mk =
√

κ + φ⊤

k φk, κ > 0

Remark 1. Given the persistence of excitation (PE) Åström
and Wittenmark [1995], (which will be satisfied and dis-
cussed in Section 3.2), we can easily prove convergence by
following the convergence proof of Normalized Gradient
algorithm (see Tao [2003],page 115-116).
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Next, we need to specify a design function or mapping, as
shown in Fig. 1, to calculate L̂2

k for each for L̂1
k. Following

the concept of FP, we use best response strategies as the
required design function.

From (7) and (9), we have a best response strategy for

player 2 given the estimated control gain L̂1
k of player 1,

L̂2
k =−[R22 + B2⊤K̂2

kB2]−1B2⊤K̂2
k [A + B1L̂1

k] (14)

K̂2
k = Q2 + L̂1⊤

k R21L̂1
k + L̂2⊤

k R22L̂2
k

+ (A + B1L̂1
k + B2L̂2

k)⊤K̂2
k(A + B1L̂1

k + B2L̂2
k)(15)

Fortunately, as shown in the following Lemma 1, we can
calculate the control gains via a standard Riccati equation
of a transformed system.

Lemma 1. The K̂2
k specified in (14) and (15) is the solution

to the discrete-time algebraic Riccati equation (DARE)

Ā⊤XĀ − X − Ā⊤XB̄[B̄⊤XB̄ + R̄]−1B̄⊤XĀ + Q̄ = 0

where Ā = A + B1L̂1
k, B̄ = B2, R̄ = R22, and Q̄ = Q2 +

L̂1⊤
k R21L̂1

k. And with the regularity condition specified
below (3), i.e., Qi > 0, Rij > 0, (A, Bi) is stabilizable,
(A, Ci) is observable (where Ci⊤Ci = Qi), there exists a
positive semi-definite solution to the above discrete time
algebraic Riccati equation.

Proof: By matrix manipulation, we can rewrite (15)
as

K̂2
k = Q̄ + L̂2⊤

k R̄L̂2
k + (Ā + B̄L̂2

k)⊤K̂2
k(Ā + B̄L̂2

k)

= Q̄ + Ā⊤K̂2
kĀ + L̂2⊤

k [R̄ + B̄⊤K̂2
kB̄]L̂2

k

+Ā⊤K̂2
kB̄L̂2

k + L̂2⊤
k B̄⊤K̂2

kĀ

= Q̄ + Ā⊤K̂2
kĀ + Ā⊤K̂2

kB̄[R̄ + B̄⊤K̂2
kB̄]−1B̄⊤K̂2

kĀ

−Ā⊤K̂2
kB̄[R̄ + B̄⊤K̂2

kB̄]−1B̄⊤K̂2
kĀ

−Ā⊤K̂2
kB̄[R̄ + B̄⊤K̂2

kB̄]−1B̄⊤K̂2
kĀ

= Q̄ + Ā⊤K̂2
kĀ

−Ā⊤K̂2
kB̄[R̄ + B̄⊤K̂2

kB̄]−1B̄⊤K̂2
kĀ (16)

In the above, the equality in the third line follows (14).
Wonham [1968] has proved that the necessary and suffi-
cient conditions for the existence of positive semi-definite
solution to the discrete time algebraic Riccati equation
(16) are (Ā, B̄) is stabilizable and (Ā, C̄) is observable
(where C̄⊤C̄ = Q̄).

Since (A, B2) is stabilizable, there exists a L̄ such that
(A + B2L̄) is Hurwitz, that is it has all its eigenvalues
inside the unit circle. Since B2⊤B2 is a scalar, there exists

a ¯̄L, such that

A + B2L̄ = Ā + B2 ¯̄L

Actually, ¯̄L = (B2⊤B2)−1B2⊤(A+B2L̄− Ā). Then (Ā, B̄)
is stabilizable (note that B̄ = B2).

Similarly, since (A, C2) is detectable (where C2⊤C2 =
Q2), we can always find a p̄ such that (A⊤ + C2⊤p̄) is
Hurwitz. From the condition Q2 > 0, we have Q̄ = Q2 +
L̂1⊤

k R21L̂1
k > 0. Then C̄⊤ > 0 where C̄⊤C̄ = Q̄. So there

exist a ¯̄p such that

A⊤ + C2⊤p̄ = Ā⊤ + C̄⊤ ¯̄p

Actually ¯̄p = (C̄⊤)−1(A⊤ + C2⊤p̄ − Ā⊤). Then (Ā⊤ +
C̄⊤ ¯̄p) is Hurwitz, too. Thus, (Ā, C̄) is observable. Applying
Wonham’s result, Lemma 1 follows. This completes our
proof.

Remark 2. We can easily obtain K̂2
k by using MATLAB

command dare(Ā, B̄, Q̄, R̄).

3.2 Persistency of Excitation

We propose a reference signal tracking method to satisfy
the excitation conditions (see Åström and Wittenmark
[1995], page 63-67). The cost functions of decision makers
need to be modified as follows:

J1 =
+∞
∑

k=0

[

(xk − rk)⊤Q1(xk − rk) + R11(u1
k − v1

k)2

+R12(u2
k − v2

k)2
]

(17)

J2 =

+∞
∑

k=0

[

(xk − rk)⊤Q2(xk − rk) + R21(u1
k − v1

k)2

+R22(u2
k − v2

k)2
]

(18)

To let the problem be well-defined (the optimal costs
for both player are bounded), we require that B1v1

k +
B2v2

k = rk+1 − Ark. (If the cost functions are bounded,
then k → +∞ ⇒ xk → rk and ui

k → vi
k ⇒ B1v1

k +
B2v2

k = rk+1 − Ark.)

Denoting x̄k = xk − rk and ūi
k = ui

k − vi
k, we can rewrite

system state equation (1) and cost functions (17)-(18) as

x̄k+1 = Ax̄k + B1ū1
k + B2ū2

k

J1 =

+∞
∑

k=0

(

x̄⊤

k Q1x̄k + ū1⊤
k R11ū1

k + ū2⊤
k R12ū2

k

)

J2 =
+∞
∑

k=0

(

x̄⊤

k Q2x̄k + ū1⊤
k R21ū1

k + ū2⊤
k R22ū2

k

)

It is a standard simultaneous linear quadratic game prob-
lem with Nash strategies

ū1∗
k := arg

ū1

k

min J1 = γ1(x̄k) = L1x̄k

ū2∗
k := arg

ū2

k

min J2 = γ2(x̄k) = L2x̄k

where L1 and L2 are defined in (6)-(7). Then

ui∗
k = Lix̄k + vi

k = Lixk + vi
k − Lirk = Lixk + p1

k

Assumption 2. In this scenario, we assume that player
2 only needs to estimate the control gain L1. Thus the
excitation condition of the adaptive law in (13) is satisfied
by choosing a proper reference input signal rk.

4. TWO-SIDE ADAPTATION SCHEME

For the same linear quadratic infinite horizon simultaneous
game defined in (1)-(9), we provide adaptation design,
parameter convergence, and persistence of excitation for
the two-side adaptation scheme, in which each player needs
to estimate the control gain of its opponent. We assume
that each player has access to its own cost function as well
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as the system dynamics, and does not know the parameters
of the cost function of its opponent. i.e., player 1 knows
Q1 , R12, R11, A, B1 and B2 while player 2 has access to
Q2, R21, R22, A, B1 and B2. We also assume that each
player knows in advance that its opponent will implement
state feedback Nash strategies. So, player 2 (or player 1)
will estimate the control gain L1 (or L2) first, and then
calculate/estimate its own best response control gain L2

(or L1) by using FP concept.

4.1 Adaptation Design

Consider the system defined in (1), let L̂12
k and L̂21

k be,
respectively, the estimate of the control gain L2 and L1

from the point view of player 1 and player 2. Player 1
then calculates the associated estimate L̂11

k of its own

control gain L1 from L̂12
k . Similarly, player 2 calculates

the associated estimate L̂22
k of its own control gain L2 from

L̂21
k . The block diagram of indirect adaptive control system

is shown in Fig. 2.

Fig. 2. Indirect adaptive control design for two-side adap-
tation scheme

First we have

x̂1
k+1 = Axk + B1L̂11

k xk + B2L̂12
k xk (19)

x̂2
k+1 = Axk + B1L̂21

k xk + B2L̂22
k xk (20)

xk+1 = Axk + B1L̂11
k xk + B2L̂22

k xk (21)

where xk is the real system state, x̂1
k and x̂2

k are the
estimates of system state for player 1 and player 2, re-
spectively. Since B1⊤B1 and B2⊤B2 are non-zero scalars,
we obtain, from (19)-(21),

[B2⊤B2]−1B2⊤(x̂1
k+1 − xk+1) = (L̂12

k − L̂22
k )xk (22)

[B1⊤B1]−1B1⊤(x̂2
k+1 − xk+1) = (L̂21

k − L̂11
k )xk (23)

We introduce the estimation errors e1
k = [B2⊤B2]−1B2⊤(x̂1

k−
xk) and e2

k = [B1⊤B1]−1B1⊤(x̂2
k − xk). (ei

k is a scalar) for
player 1 and player 2, respectively, then

e1
k = L̃2

k−1φk (24)

e2
k = L̃1

k−1φk (25)

where L̃2
k−1

= L̂12
k−1

− L̂22
k−1

, L̃1
k−1

= L̂21
k−1

− L̂11
k−1

and

φk = 1

z
[x]k = xk−1. (Note, 1

z
[x]k denotes the output of the

system with transfer function 1

z
and input xk.)

Choose the adaptive law for L̂12
k and L̂21

k as

L̂12
k = L̂12

k−1 −
e1

kφ⊤

k

(m1
k)2

Γ1 (26)

L̂21
k = L̂21

k−1 −
e2

kφ⊤

k

(m2
k)2

Γ2 (27)

where m1
k =

√

κ1 + φ⊤

k φk, m2
k =

√

κ2 + φ⊤

k φk, κ1 > 0

, κ2 > 0, 0 < Γ1 = Γ⊤
1 ≤ I, and 0 < Γ2 = Γ⊤

2 ≤ I.
Convergence is proved and discussed in Section 4.2.

As shown in Fig. 2, for any L̂12
k (or L̂21

k ), a design function

or mapping will be used to calculate the associated L̂11
k

(or L̂22
k ). From (6)-(9), we have a best response strategy

for player 1 (or player 2) given the estimated control gain

L̂12
k (or L̂21

k ) of player 2 (or player 1) at time k,

L̂11
k = −[R11 + B1⊤K̂1

kB1]−1B1⊤K̂1
k[A + B2L̂12

k ] (28)

L̂22
k = −[R22 + B2⊤K̂2

kB2]−1B2⊤K̂2
k[A + B1L̂21

k ] (29)

where

K̂1
k = Q1 + L̂11⊤

k R11L̂11
k + L̂12⊤

k R12L̂12
k

+(A + B1L̂11
k + B2L̂12

k )⊤K̂1
k(A + B1L̂11

k + B2L̂12
k )

K̂2
k = Q2 + L̂21⊤

k R21L̂21
k + L̂22⊤

k R22L̂22
k

+(A + B1L̂21
k + B2L̂22

k )⊤K̂2
k(A + B1L̂21

k + B2L̂22
k )

By Lemma 1, we can prove that K̂1 and K̂2 satisfy
the following discrete time algebraic Riccati equations,
respectively,

Ā⊤

1 K̂1
kĀ1 − K̂1

k − Ā⊤

1 K̂1
kB1[B1⊤K̂1

kB1

+R11]−1B1⊤K̂1
kĀ1 + Q̄1 = 0 (30)

Ā⊤

2 K̂2
kĀ2 − K̂2

k − Ā⊤

2 K̂2
kB2[B2⊤K̂2

kB2

+R22]−1B2⊤K̂2
kĀ2 + Q̄2 = 0 (31)

where Ā1 = A+B2L̂12
k , Q̄1 = Q1+L̂12⊤

k R12L̂12
k , Ā2 = A+

B1L̂21
k , and Q̄2 = Q2 + L̂21⊤

k R21L̂21
k .

Remark 3. We may obtain K̂1
k and K̂2

k by MATLAB com-
mand dare(Ā1, B

1, Q̄1, R11) and dare(Ā2, B
2, Q̄2, R22),

respectively.

4.2 Parameter Convergence and Persistency of Excitation

To satisfy the excitation conditions (see Åström and
Wittenmark [1995], page 63-67), we propose a reference
signal tracking method, in which the cost functions of
decision makers need to be modified as specified in (17)-
(18). As mentioned in the one-side adaptation scheme (see
Section 3.2), we also require that B1v1

k + B2v2
k = rk+1 −

Ark. (If the cost functions are bounded, then k → +∞ ⇒
xk → rk and ui

k → vi
k ⇒ B1v1

k + B2v2
k = rk+1 − Ark.)

It is already verified in Section 3.2 that under the perfect
information structure the Nash strategies are

ū1∗
k := arg

ū1

k

min J1 = γ1(x̄k) = L1x̄k = L1xk + p1
k

ū2∗
k := arg

ū2

k

min J2 = γ2(x̄k) = L2x̄k = L2xk + p2
k

where L1 and L2 are defined in (6)-(7).

Assumption 3. In this scenario, we assume that each
player only needs to estimate the control gain of its oppo-
nent. Thus the excitation conditions of the adaptive laws
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in (26)-(27) are satisfied by choosing a proper reference
input signal rk.

From Lemma 1, we know that for any L̂12
k (or L̂21

k ), we

can obtain the unique positive semi-define solution K̂1
k (or

K̂2
k), then we can calculate L̂11

k (or L̂22
k ) by using equation

(28) or (29). Let us define two functions as follows:

f1 : L̂12
k 7−→ L̂11

k (32)

f2 : L̂21
k 7−→ L̂22

k (33)

In general, the functions operate on row vectors.

Definition 1. Similar to the “reaction curve” concept of
game theory, we define two properties as

Property I:

{

‖f1(f2(a)) − L1‖2 ≤ ‖a − L1‖2

‖f2(f1(b)) − L2‖2 ≤ ‖b − L2‖2

Property II:















‖a1 − L1‖2 ≤ ‖a2 − L1‖2 ⇒
‖f2(a1) − L2‖2 ≤ ‖f2(a2) − L2‖2

‖b1 − L2‖2 ≤ ‖b2 − L2‖2 ⇒
‖f1(b1) − L1‖2 ≤ ‖f1(b2) − L1‖2

where ‖a‖2 is the standard Euclidean norm. For row vector

a, ‖a‖2 =
√

aa⊤. The equalities in Property I hold only
when a = L1 and b = L2.

For the scalar case, the reaction-curve-like relation be-
tween f1 and f2 is shown in Fig. 3.

Remark 4. Property I means that each player will use its
reaction chance to improve its strategy in the sense that
the distance from the current control gain to the optimal
control gain is reduced at each reaction time.

Remark 5. Property II means that the distance (from the
current control gain to the optimal control gain) relation
between the two players is positive.

Theorem 1. For the system defined in (1) with objective
functions in (17)-(18), if the associated coupled discrete
time algebraic Riccati equation specified in (6)-(9) has a
unique positive semi-definite solution, then the two-side
adaptation with adaptive laws in (26)-(27) and design
equations in (28)-(29) will guarantee convergence, i.e.,

lim
k→+∞

L̂
ij
k = Lj

where i = 1, 2 and j = 1, 2.

5. NUMERICAL SIMULATIONS

Consider the system defined in (1) - (3) with

A =

[

1 3
2 4

]

, Q1 =

[

1.5 0
0 1.5

]

, Q2 =

[

1.6 0
0 2.1

]

B1 = [1.3, 1.7]⊤, B2 = [1.5, 1.6]⊤, R11 = 0.4, R12 = 1.0,
R21 = 1.0, and R22 = 0.5. We can calculate K1, K2, L1

and L2 from the coupled discrete-time algebraic Riccati
equation specified in (6)-(9),

K1 =

[

2.3609 1.0957
1.0957 3.4812

]

, K2 =

[

2.5639 1.2059
1.2059 4.2965

]

L1 = [−0.4992,−1.1682] and L2 = [−0.5215,−1.1295].
We first carry out the two-side adaptation based on the
adaptive laws (26)-(27) for the system with cost functions
in (17)-(18). The parameters of adaptive laws are chosen
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Fig. 3. Reaction-curve-like relation between function
L̂11

k = f1(L̂12
k ) and L̂22

k = f2(L̂21
k ). Since we assume

that there exist a unique positive semi-definite solu-
tion to the coupled discrete time algebraic Riccati
equations in (6)-(9), there is only one cross point
(marked by a green cross in this plot), which is com-
posed of the real control gains L2 and L1 of Player 2
and Player 1, respectively.

as Γ1 = 0.8I, Γ2 = 0.9I, κ1 = 1.1 and κ2 = 1.7. The
reference signals are generated by

rk =

[

1.7 sin(3.5k)
3.5 cos(0.9k2 + 0.4k + 0.1)

]

As shown in Fig. 4, we can see that when k −→ +∞,

L̂12
k −→ L2, L̂22

k −→ L2, L̂21
k −→ L1,

L̂11
k −→ L1, x̂2

k −→ xk, and x̂2
k −→ xk.

We can verify the relations specified in (??)-(??) from

Fig. 5, which shows that max(‖L̂11
k − L1‖2, ‖L̂21

k − L1‖2)

and max(‖L̂22
k − L2‖2, ‖L̂12

k − L2‖2) are non-increasing
sequences.

6. CONCLUSIONS

In this paper, we focused on the adaptivity analysis of the
infinite-horizon perfect-state two-player linear quadratic
games under a FP framework, in which both players will
apply Nash strategies based on the available information
set. For each player, we designed an indirect adaptive
method to estimate the control gain of its opponent, us-
ing the concept of Fictitious Plays. With stabilizability
and observability conditions, we proved that given the
estimated control gain, each player can always calculate
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Fig. 4. L̂ij , Lj , xk and x̂i
k in two-side adaptation for

a simultaneous game: reference signal tracking case.
{L̂ij

k }s is the sth element of L̂
ij
k . The reference signal

is rk = [1.7 sin(3.5k), 3.5 cos(0.9k2 + 0.4k + 0.1)]⊤.

We can see the convergence of L̂
ij
k to Lj .

his best response from the associated discrete-time alge-
braic Riccati equations. Convergence was proved and the
excitation conditions were satisfied as well. Finally, nu-
merical examples were simulated to illustrate our adaptive
approaches for the two-side adaptive schemes.
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