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Abstract: The proposed fault diagnosis approach associates an adaptive observer for residual generation 

with set-membership computations based on zonotopes for residual evaluation. The main advantage of this 

approach is its rigorous propagation of pre-specified modeling uncertainty bounds to the computed 

residuals. Within the assumed modeling uncertainty bounds, fault detection is guaranteed to be free of 

false alarm, while the efforts made with set-membership computation minimize the conservativeness of 

fault detection decisions. The novelty compared to earlier works mainly resides in a guaranteed robustness 

to bounded parameter variations and in a method for dealing with occasional lack of input excitation. 

 

1. INTRODUCTION 

In model based fault diagnosis approaches, the mathematical 

model, which is at the basis of such approaches, is generally 

affected by modeling uncertainties. To achieve robust 

diagnosis decisions, it is often necessary to explicitly take 

into account such uncertainties. The robustness issue has 

been dealt with in the literature of fault diagnosis in different 

ways: statistical rejection (Basseville and Nikiforov, 1993), 

deterministic structured disturbance rejection (Chen and 

Patton, 1999), fuzzy logic reasoning, adaptive threshold 

decision (Zhang et al., 2001), and interval analysis or set 

membership approaches (Adrot et al., 2002; Stancu, 2003). 

The assumed form of modeling uncertainties has strong 

implications to the design of fault diagnosis methods. When 

bounded uncertainties are assumed, it is in principle possible 

make decisions free of any false alarm. However, due to the 

mathematical complexity in the processing of bounded 

uncertainties, such approaches usually lead to conservative 

decisions and may result in an unacceptable rate of 

misdetections. In order to reduce the conservativeness in such 

approaches, a method associating adaptive estimation and 

set-membership computation has been proposed in 

(Combastel and Zhang, 2006). In this method, the designed 

residual is related to the assumed uncertainty bounds through 

a dynamic model, and, for residual evaluation, the uncertainty 

bounds are propagated to the residual by set-membership 

computation. It can be seen as an adaptive threshold 

approach, but the application of set-membership computation 

makes it less conservative than traditional methods 

generating adaptive thresholds. 

The present paper further develops the results of (Combastel 

and Zhang, 2006) by enlarging the assumption about 

modeling uncertainties and by dealing with non persistently 

exciting inputs: As in the previous work, parametric faults are 

considered, but instead of assuming constant parameters in 

the fault-free case, the parameters related to faults may now 

vary slowly within some bounds and robust adaptive 

thresholds are computed accordingly. This first extension 

makes the model more realistic, thus improving the 

applicability of the method. A second contribution of the 

present paper consists in dealing with non persistently 

exciting inputs. The resulting divergence of the estimated 

parameters enclosure is controlled by the intersection with an 

a priori fixed (and possibly large) domain corresponding to 

some physical limits. Such limits represent values out of 

which the model is clearly no more valid. As a result, the 

estimated parameter bounds can never diverge, even though 

they may become very large (i.e. the precision of the 

parameter estimation becomes very low) when the inputs do 

not sufficiently excite the system. Though no fault diagnosis 

decision can be reliably taken when the excitation condition 

is not satisfied, the a priori parameter limits prevent the 

divergence of the fault diagnosis algorithm, so that it can 

easily recover its decision ability when the input excitation 

comes back. 

The paper is organized as follows: After the problem 

formulation in section 2, a residual generator based on an 

adaptive observer is given in section 3. The proposed fault 

diagnosis scheme based on set-membership computations is 

described in section 4, before its application to the simplified 

model of a satellite in section 5. 

2. PROBLEM FORMULATION 

Let Λ be a set of physical and/or identified parameters used 

to express a continuous vector field f modeling the system 

under study in the fault-free case: dx/dt = f(x(t), u(t), ω(t), Λ) 

(ω(t) is a vector of bounded uncertainties). In the proposed 

scheme, each fault is modeled by a scalar element in the 

time-varying vector θ(t) and the influence of faults on the 
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system dynamical behavior is assumed to be modeled by the 

mapping Λ(θ(t)). Λ(.) can be obtained either from some 

physical knowledge (knowledge model) and/or from several 

estimations of Λ under a representative set of faulty operating 

conditions (set of behavioral models interpolated by θ). The 

proposed problem formulation thus covers both the case of 

multiple faults (when θ(t) is a non scalar vector) and the case 

of variation of several parameters due to a single fault (the 

variation of a single scalar element of θ(t) may change the 

value of any element of Λ(θ(t))). Finally, integrating Λ(.) into 

the expression of the vector field f leads to a model of the 

system including faults: dx/dt = g(x(t), u(t), ω(t), θ(t)). An 

approximate discretization scheme allows to derive a discrete 

time model from the original continuous time formulation: 

xk+1 = h(xk, uk, ϖk, θk) where ϖk is a vector of bounded 

uncertainties. The guarantee of inclusion may be lost if the 

discretization error is not properly enclosed. A linearization 

of h with an inclusion of the linearization error (only valid 

within a pre-specified domain) such as the one proposed in 

(Combastel, 2005) can be used to obtain the problem 

formulated in this paper which is similar to those of (Zhang et 

al., 2001; Zhang et al., 2002). Let xk ∈ ℜn
, uk ∈ ℜl

 and yk ∈ 

ℜm
 be respectively the state, input and output at the discrete 

time instant k of a system described by the equations: 

kkkkkkkk fwEuBxAx +++=+1  (1) 

kkkkk vFxCy +=  (2) 

 

where Ak, Bk, Ck, Ek, Fk are time varying matrices of 

appropriate sizes, wk ∈ [-1;+1]
n
 and vk ∈ [-1;+1]

m
 are 

normalized bounded (state and measurement) errors, and fk ∈ 

ℜn
 represents the influence of faults possibly affecting the 

system. The faults influence vector fk ∈ ℜn
 is assumed to 

satisfy the time varying regression model: 

kkkf θΨ=  (3) 

 

with Ψk ∈ ℜn×p
 and θk ∈ ℜp

. This regression model either 

comes from some physical knowledge about the fault, or 

consists of a general approximating estimator. In (Combastel 

and Zhang, 2006), the fault model was assumed to be fk = 

Ψkθ with a constant parameter vector θ. Though the constant 

fault model is often reasonable, it cannot ensure a guaranteed 

robustness to small variations that can be considered as 

normal. One contribution of this paper consists in proposing a 

fault diagnosis scheme which is robust to such pre-specified 

small variations:  

kkkk eG+=+ θθ 1  (4) 

 

The error ek is assumed bounded: ek ∈ [-1;+1]
p
 and Gk is a 

matrix of appropriate size. For instance, Gk can be chosen 

constant and diagonal to express that the difference between 

two consecutive values of θk in the fault-free case belongs to 

a box, the size of which is defined by the diagonal elements 

of Gk. Remark that, though the modeling error ek is assumed 

bounded, the parameter vector θk and its long term variation 

are not necessarily bounded by this model description. 

Ideally, the fault-free case should correspond to fk=0 or θk=0. 

For robustness, small deviations of θk from zero should be 

tolerated in the fault-free case. Let the logical flag SysOK 

indicate the status of the monitored system, with the values 

“true” and “false” respectively meaning “fault-free” and 

“faulty”. It is assumed that: 

SysOK ⇒ θk ∈ [-ε;+ε] (5) 
 

where ε ∈ ℜp
 defines a small domain (box) around the ideal 

fault-free case (θk = 0). According to such a model, a fault 

has occurred if the value of θk gets out of the domain [-ε;+ε]. 
This can directly be inferred from the contraposition of (5): 

θk ∉ [-ε;+ε] ⇒ ¬SysOK. 

Moreover, in any case (including the faulty case), it also 

seems quite reasonable to fix some physical limits to θk in 

order to deal with scenarios involving a lack of input 

excitation. As it will be further discussed in the paper, if 

some a priori knowledge allows to bound the values of θk 
within a (possibly large) finite domain, i.e., 

θk ∈ [-ϕ;+ϕ] (6) 
 

for some constant vector ϕ ∈ ℜp
, this information can be 

incorporated in the fault diagnosis algorithm though such 

information is not necessary in the design of the proposed 

residual generator. When available, [-ϕ;+ϕ] represents a 

centred p-dimensional interval vector (or box). Notice that  

[-ϕ;+ϕ] = D(ϕ)[-1;+1]
p
 where D(ϕ) is a diagonal matrix, the 

diagonal of which is the vector ϕ. 

The above specifications (Gk, ε, ϕ) are based on the entire 

value of the vector θk. If the components of the vector θk have 
physical meanings, then faults can be similarly specified for 

each component of θk. This kind of specifications may be 

useful for fault diagnosis, as illustrated in Section 5. 

3. RESIDUAL GENERATION 

3.1 Residual computation form 

In (Guyader and Zhang, 2003) an adaptive observer for 

estimating xk and θk satisfying (1), (2) and (3) has been 

proposed in the following form: 

kkkkkk CKA Ψ+Γ−=Γ + )(1  (7) 

)ˆ(ˆˆ
1 kkk

T
k

T
kkkk xCyC −Γ+=+ µθθ  (8) 

)ˆˆ(           

)ˆ(ˆˆˆ

11

1

kkk

kkkkkkkkkkk xCyKuBxAx

θθ

θ

−Γ+

−+Ψ++=

++

+
 

  

(9) 

 

where Kk ∈ ℜn×m
 is a bounded matrix sequence designed so 

that Φk = Ak – KkCk is exponentially stable. Typically Kk is 

chosen to be the Kalman gain matrix. Its computation 

normally requires Ak, Ck and also the covariance matrices of 

state and output noises. Since these covariance matrices are 

unknown in the present case, they are considered as tuning 

parameters. It is known that, if the matrix pair (Ak, Ck) is 

uniformly completely observable, then for any chosen 
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positive definite covariance matrices, the Kalman gain is 

bounded and (Ak-KkCk) is exponentially stable (Jazwinski, 

1970). Γk ∈ ℜn×p
 can be viewed as a linearly filtered version 

of Ψk, the vector sequences 
kx̂  and 

kθ̂  are respectively the 

state and parameter estimates, µk>0 is a scalar parameter 

adaptation gain. The vector sequence 
kθ̂  computed in the 

above algorithm can be considered as a residual for the 

detection of the fault influence fk = Ψkθk. This residual 

generator (7)-(9) is similar to that of (Zhang et al., 2001; 

Zhang et al., 2002). However, a saturation projection operator 

is used in the latter to ensure the boundedness of the residual, 

whereas in this paper the residual is naturally bounded. 

3.2 Residual analysis form 

Equations (7)-(9) define the computation form of the residual 

corresponding to an algorithm for computing the residual 
kθ̂  

from input-output signals uk, yk. In the following, let us 

establish the analysis form of the residual which describes the 

relationship between the monitored fault and the residual, 

without forgetting the influence of the modelling errors. 

Theorem 1. The residual 
kθ̂  is driven by θk, wk, vk, ek through 

the following equations: 

kkkkkkkkkkkk evFKwECKA 11 )( ++ Γ−−+−= ηη  (10) 

kkk
T
k

T
kkkk

T
k

T
kk

kkk
T
k

T
kkk

evFCCC

CCI

+Γ−Γ−

ΓΓ−=+

µηµ

θµθ

           

~
)(

~
1

 
 

(11) 

kkk θθθ
~ˆ −=  (12) 

 

where Ak, Ck, Ek are as in the system (1)-(2), kkkK Γ,,µ  as in 

the residual generator (7)-(9) and 
kkk θθθ ˆ~

−= , 

kkkkk xx θη
~

ˆ Γ−−= . The proof of this result is given in 

(Guyader and Zhang, 2003). 

If 
kθ̂  is seen as an estimate of θk, then kθ

~  is the estimation 

error. Clearly, 
kθ
~  depends on wk, vk, ek which are unknown 

but bounded with known bounds. It will be shown that 
kθ

~  is 

bounded under some assumptions. 

Lemma 1. If Φk = Ak – KkCk is exponentially stable and Ψk is 

bounded, then Γk generated by (7) is also bounded. 

This classical result is known as the bounded input -bounded 

state (BIBS) stability. See, for example, (Freeman, 1965, 

page 168). 

Theorem 2. Assume that: 

A1. kkkkkkk vwKCA ,,,,,, µΨ  ek are all bounded and Φk = Ak 

– KkCk is exponentially stable, 

A2. 0>kµ  is small enough so that  

1|||| ≤ΓkkkCµ  (13) 

where ||•|| denotes the spectral norm (the largest singular 

value) of a matrix, 

A3. there exists a constant α > 0 and an integer L > 0 such 

that, for all k ≥ L-1, 

∑
+−=

≥ΓΓ=
k

Lki

ii
T
i

T
iiLL ICCkJ

1

1)( αµ  
(14) 

Then ηk and 
kθ

~  governed by equations (10)-(11) are bounded. 

A proof can be found in (Guyader and Zhang, 2003). 

Inequality (14) is a persistent excitation condition: the 

regression matrix Ψk must be persistently exciting so that Γk, 

obtained by linearly filtering Ψk through (7), satisfies 

inequality (14). JL(k) can be interpreted as an input excitation 

criterion based on the data over a temporal window having a 

size of L samples. 

4. FAULT DIAGNOSIS 

4.1 Principle of the proposed fault diagnosis scheme 

For the purpose of fault diagnosis, it is important to compute 

the uncertainty envelope of 
kθ

~  following the uncertainty 

bounds of wk, vk, ek, since it then provides the error bounds of 

the fault parameter estimate 
kθ̂ . Noticing that (12) can 

obviously be rewritten as: 

kkk θθθ
~ˆ +=  (15) 

 

the equations (10), (11) and (15) can be viewed as a linear 

time varying (LTV) discrete time state space system with ηk, 

kθ
~  as states (concatenated in the vector zk), with wk, vk, ek (all 

concatenated in wk) and 
kθ̂  as inputs, and with θk as output: 

 zk+1 = Akzk + Ekwk (16) 

 θk = Ckzk + kθ̂   where: (17) 










ΓΓ−Γ−

−
=

)(

0

kk
T
k

T
kkk

T
k

T
kk

kkk
k

CCICC

CKA
A

µµ
 

(18) 










Γ−

Γ−−
=

+

kk
T
k

T
kk

kkkkk

k GFC

GFKE
E

µ0

1
, [ ]IC

k
0=  

(19) 

 

As the fault parameter estimate 
kθ̂  is computed from (7)-(9), a 

finite domain bounding the fault parameter θk can be 

computed from (17) if the bounds of zk can be derived from 

the assumed modeling uncertainty bounds. This task can be 

achieved through (16) where wk is the collection of the 

assumed modeling uncertainties: wk ∈ [-1;+1]n, vk ∈ [-1;+1]m 

and ek ∈ [-1;+1]p. It follows that wk is bounded by a unit 

hypercube: wk ∈ [-1;+1]n+m+p. Moreover, it is a reasonable 

assumption to consider that z0 belongs to a finite domain: z0 

∈ [z0]. As a result, computing a tight outer approximation of 

the set of possible values for the fault parameter θk consists in 

computing a tight domain enclosing all the possible outputs 

of the LTV system (16)-(17) when z0 ∈ [z0] and wk ∈ [-

1;+1]n+m+p (i.e. when the initial state set and the inputs are 

bounded). The computation of a set [θk] such that θk ∈ [θk] 
allows to achieve the three steps of a fault diagnosis scheme 

in a unified way: 

Fault detection. Following (5), a fault is guaranteed to have 

occurred when [θk] ∩ [-ε;+ε] = ∅. 
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Fault isolation. The ith fault (i=1…p) is guaranteed to have 

occurred when [θk]i ∩ [-εi;+εi] = ∅. The subscript i refers to 

the projection along the ith axis (which is very easy compute 

when [θk] is either a box or a zonotope: see Remark 2). 

Fault identification. The set [θk] encloses the set of possible 

values for the fault parameter vector θk. Its centre, kθ̂ , and its 

shape [
kθ

~ ] respectively provide an estimation of the faults and 

a characterization of the uncertainty around the estimate. [θk] 
is thus a fault identification result. 

4.2. Computation of a tight enclosure of the output of a LTV 

system with bounded initial state and bounded inputs 

The aim of this paragraph is to outline how the set [θk] can be 

efficiently computed using zonotopes (Kühn, 1998). A 

detailed description of the corresponding algorithm can be 

found in (Combastel and Zhang, 2006). Some definitions are 

first recalled. The name of a variable v in brackets, [v], will 

denote a domain of possible values for v: ][vv∈ . Such 

domains will be described by zonotopes which are a special 

class of convex polytopes. More precisely, a p-zonotope in 

ℜn
 with centre c∈ℜn

 and with shape matrix R∈ℜn×p
 is the 

linear image of a p-dimensional unit hypercube in ℜn
: 

c + Z(R) = c + R.[-1;+1]
p
 ⊂ ℜn

 (20) 
 

The (Minkowski) sum of two zonotopes is a zonotope the 

matrix shape of which can be computed by a matrix 

concatenation: Z(R1) + Z(R2) = Z([R1 R2]). The linear image 

of a zonotope is a zonotope obtained from a matrix product: 

LZ(R) = Z(LR). The smallest aligned box enclosing a 

zonotope Z(R) (also called interval hull) is Z(box(R)) where 

box(R) is a diagonal matrix, the i
th
 diagonal element of which 

is the 1-norm of the i
th
 line of R. Using the zonotope 

properties and assuming z0 ∈ [z0] = cz,0 + Z(Rz,0), an 

algorithm that can be used to compute [θk] = cθ,k + Z(Rθ,k) 

from (16)-(17) is (for k≥0) : 

 cz,k+1 = Akcz,k, Rz,k+1 = [AkRz,k   Ek] (21) 

 Rz,k = red(Rz,k) (22) 

 cθ,k = kθ̂ +Ckcz,k, Rθ,k = CkRz,k 
(23) 

 

red(.) is a reduction operator used to limit to a fixed value the 

increasing number of columns of Rz,k involved by (21). It 

mainly consists in sorting the columns of Rz,k on decreasing 

Euclidean norm and to enclose the influence of the smaller 

ones into a box in order to limit the zonotope complexity: see 

(Combastel, 2005) for details. 

Remark 1. if [z0] is centered (cz,0 = 0), then ∀k≥0, cθ,k = 
kθ̂ . 

Remark 2. The projection [θk]i of [θk] along the i
th
 reference 

frame axis is an interval that can be directly deduced from the 

interval hull of [θk]: [θk]i is an interval that can be defined by 

its centre, (cθ,k)i, the i
th
 (scalar) element of cθ,k, and by its half 

width, box(Rθ,k)ii, the i
th
 diagonal element of box(Rθ,k). 

4.3 Dealing with non persistently exciting inputs 

Theorem 2 proves that the estimation error 
kθ

~  is bounded 

under some assumptions. One of them (A3) states that the 

inputs should be persistently exciting. Such a condition does 

not rely on intrinsic properties of the system under study and 

may thus not always be fulfilled in practice. One idea to deal 

with non persistent excitation would consist in stopping the 

parameter adaptation (µk=0) when an excitation criterion 

based on JL(k) is not fulfilled for a predefined fixed L (14). 

Such a strategy could be implemented as follows: 

µk = µ   if   ∀s∈{k-L+1;…;k}, min(eig(JL(s)))>αmin 

µk = 0   otherwise 

(24) 

where µ and αmin>0 are constants and min(eig(.)) computes 

the minimal eigenvalue of the argument. However, such an 

approach has not been chosen because it suffers from three 

drawbacks: Firstly, tuning L is not trivial. Secondly, the 

adaptation of all the parameters is locked when the input 

excitation criterion is not satisfied. It may happen that the 

excitation is not sufficient to adapt some parameters while it 

is still sufficient to adapt some others. This will be illustrated 

in section 5. Thirdly, locking the adaptation of the estimate 
kθ̂  

does not prevent the estimation error 
kθ

~  and the domain [
kθ

~ ] 

enclosing its possible values to diverge when the inputs are 

not persistently exciting. However, it can be noticed that the 

residual analysis form given by (16)-(17) is always valid and, 

consequently, the zonotope [θk] encloses all the possible 

values of θk no matter how the input excitation is. One 

solution to prevent the domain [θk] from diverging (at least in 

some directions) when the excitation is not sufficient consists 

in updating [θk] as an outer approximation of the intersection 

between [θk] and [-ϕ;+ϕ] (6). This approach does not 

necessitate fixing any value for L. The domain [-ϕ;+ϕ] 

(=Z(D(ϕ))) represents some limits out of which θk has no 

physical meaning for the application under study. The 

relation [θk] = [θk] ∩ [-ϕ;+ϕ] ensures the boundedness of [θk] 
and thus makes the fault diagnosis scheme able to capture 

more precise information about θk when the input excitation 

comes back. To that purpose, the main difficulty consists in 

computing the outer approximation ∩ of the intersection 

between two zonotopes which is not, in general, a zonotope. 

An algorithm allowing to compute cr+Z(Rr) = c1+Z(R1) ∩ 

c2+Z(R2) (where R1∈ℜn×p1
 and R2∈ℜn×p2

) is: 

M = [R1  –R2],     b = (c2-c1) (25) 

[ ]



















==

T

T
T

V

VS
UUVSUM

0

11
01 .

00

0
...  

(26) 

bUSVc
T

s 1
1

11
−

= ,   
T

s VVR 00= ,   ]0[
2111 pppIP ×=  (27) 

cr = c1 + R1P1cs,     Rr = R1P1Rs (28) 
 

(26) is a singular value decomposition (SVD) of M. The 

practical implementation of [θk] = [θk] ∩ [-ϕ;+ϕ] is done with 

two refinements: Firstly, the zonotope [θk] is not directly 

intersected with the box [-ϕ;+ϕ] but with the exact box 

intersection ci,k+Z(Ri,k) (Ri,k is diagonal) between [-ϕ;+ϕ] and 

the interval hull of [θk] (29). Secondly, the zonotope [θk] = 
cθ,k + Z(Rθ,k) is first reduced using the red operator in order to 

simplify the computations related to the ∩ operator (30): 
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ci,k + Z(Ri,k) = (cθ,k + Z(box(Rθ,k))) ∩ [-ϕ;+ϕ] (29) 

[θk] = (cθ,k + Z(red(Rθ,k))) ∩ (ci,k + Z(Ri,k)) (30) 

5. APPLICATION 

The proposed fault detection and isolation scheme is 

illustrated with the simulation of a controlled satellite. The 

satellite nominal orbit is assumed to be circular with the 

radius normalized to 1. The nominal angular velocity of the 

satellite is 3.49×10
-4
 rad/s. The classic continuous time 

linearized satellite model (Brockett, 1970) is sampled with 

the period Ts = 0.1s, what results in a discrete time model like 

(1)-(3), with: 


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Ek = 10-5I4,   Fk = 10-2I2, 

Gk = 10-3I2 

 

In is the n dimensional identity matrix. The components of the 

state vector xk ∈ ℜ4
 correspond to radial position, radial 

velocity, angular position and angular velocity, the 

components of the input vector uk = [u
1
k  u

2
k]

T
 ∈ ℜ2

 are the 

radial and tangential thrusts, the output vector yk ∈ ℜ2
 

correspond to distance and angle observations. The parameter 

vector θk ∈ ℜ2
 models reduced efficiencies of the radial and 

tangential thrusts. In the fault-free case, the admissible values 

of θk approximately represent 5% of the assumed range of 

possible values for θk: ε = 0.05[1 1]
T
, ϕ = [1 1]

T
. Moreover, 

the envelope [θk] is computed so as to be robust to variations 

of θk defined by Gk (4). 
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Fig. 1. Input signals u

1
k and u

2
k with respect to time. 

 

The square impulse signals shown in Fig. 1 are used as 

exciting inputs. The initial values used in the simulation are 

x0 = [1, 0, 0, 3.49×10
-4
]
T
 for the “real” system, Γ0 = 04×2, 0x̂  = 

[0.1, 0, 0, 3.49×10
-5
]
T
, 

0θ̂  = [-0.8, 0.8]
T
 for the observer and 

cz,0 = 06×1, Rz,0 = I6, d=40 (complexity parameter in red()) for 

the residual evaluator. The adaptive observer parameters are: 
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A first simulation aims at checking that the admissible 

variations of θk in the fault-free case are well enclosed in [θk]. 
To that purpose, the two components of θk correspond to the 

sampling of a sinusoidal signal with amplitude = 0.047 and 

period = 30s. The amplitude and the maximum slope of this 

signal are consistent with the bounds for the admissible 

variations of θk specified by ε and Gk. For the sake of 

checking, the state and measurement uncertainty are 

temporarily assumed to be zero (Ek and Fk are zero matrices 

only for the simulation in Fig. 2). 
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Fig. 2. Real value, estimated value and envelope of θ1,k under 

variations consistent with the fault-free specifications. 
 

Fig. 2 shows that the real value of θ1 (starting from 0) is well 

enclosed by the computed envelope, the centre of which 

corresponds to the estimate of θ1. The estimate follows θ1 

only with some delay due to the convergence of the 

adaptation toward the quickly varying sinusoid signal. The 

results for θ2 (not reported here) are similar. 

A fault scenario that has been studied is reported in Fig. 3. 

The efficiency of the radial thrust is decreased by θ1=-0.25 

between k=25 and k=75. θ1=0 at other times, when the radial 

thrust is normal. The efficiency of the tangential thrust is 

decreased by θ2=-0.25 between k=50 and k=75 (θ2=0 

elsewhere). The two faults appear and disappear through 10s 

ramps. 
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Fig. 3. Temporal evolution of the intervals bounding the fault 

parameters θ = [θ1  θ2]
T
. Top: [θ1]. Bottom: [θ2]. 

 

The envelopes reported on Fig. 3 take into account and 

characterize the large uncertainties induced by the 

imprecision of initial conditions and the transient related to 

the convergence of the observer. They also contribute to 

robustly detect and isolate the faults. The two grey plots in 

Fig. 3 correspond to the two elements of 
kθ̂ , providing an 

estimation of the faults (second plot within the envelopes). 

The fault isolation decision related to this multiple and 

intermittent faults scenario is reported on Fig. 4. 

The consequences of a loss of excitation on the first input are 

now studied on the same fault scenario. The results are 

reported on Fig. 5, Fig. 6 and Fig. 7. 
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Fig. 4. Fault isolation. Top: fault θ1. Bottom: fault θ2. 
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Fig. 5. Input signals u

1
k and u

2
k. No persistent excitation. 

 

Fig. 6 shows that when u
1
k is not exciting the system (t ∈ 

[40;170]), the envelope [θ1], that had previously converged 

after the transient due to the uncertain initial conditions, tends 

to diverge until it reaches the physical limits ([-1;+1] for θ1). 

During this phase, the estimate of θ1 does not follow the 

sinusoidal signal used to simulate the first fault. The accuracy 

of the estimation of θ1 increases when u
1
k excites again the 

system. In the same time, the estimation of the parameter 

modelling the second fault does not suffer from the loss of 

excitation induced by u
1
k. Even if this point is rather specific 

to the application under study, it is also a consequence of not 

stopping the adaptation when the excitation criterion is not 

fulfilled ((24) is not implemented). The knowledge of [θ1], 

even very imprecise at certain times, suffices to continue 

estimating θ2 rather accurately and to follow the sinusoid 

signal used for its simulation. 
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Fig. 6. Fault estimation. Top: [θ1]. Bottom: [θ2]. 
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Fig. 7. Fault isolation. Top: fault θ1. Bottom: fault θ2. 
 

It must be noticed that the direct link between the excitation 

of u
1
k (resp. u

2
k) and [θ1] (resp. [θ2]) is due to the natural 

decoupling between tangential and radial values in the 

satellite model. However, the description of domains by 

zonotopes allows to deal with stronger dependencies that may 

appear in other applications. Finally, a scenario where both 

inputs are simultaneously null during some time has been 

studied and shows that both [θ1] and [θ2] first tend to reach 

their maximum range (physical limits) before converging 

toward a better accuracy once the input excitation is back. 

6. CONCLUSION 

In the proposed fault diagnosis scheme, a single adaptive 

observer combined with set-membership computations based 

on zonotopes performs the fault detection, fault isolation and 

fault identification tasks in an integrated way. The robustness 

properties are specified a priori by some uncertainty bounds. 

As shown by the satellite example, the case of multiple and 

intermittent faults is naturally handled, even when the inputs 

are not persistently exciting the system. The study of more 

complex applications will be the subject of future work. 
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