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Abstract: In some control and observations problems, it may be convenient, at least from the
analysis point of view, to use non proper systems. However, as far as their implementation is
concerned, proper approximations have to be designed. In this paper, we show how exponential
approximations can be rather easily designed. We consider the MIMO case and study the relative
stability of the approximation. As a by product, we show that the set of proper time-invariant
linear systems is dense in the set of regular linear descriptor systems.

NOTATION

• s is the Laplace complex variable.  is the complex number
√
−1.

Let x = a+ b ∈ C, |x| stands for its modulus and arg x stands for
the principal value of the argument of x.

/
F (ω) stands for the

phase-angle of the complex function F (ω) with ω ≥ 0, namely: (i)/
F (0) = argF (0), (ii)

/
F (ω) = argF (ω) + 2kπ with k ∈ Z, and (iii)

F (ω) is a continuous function of ω.

• ‖·‖2 stands for the Euclidean norm. We write: f(ε) = O(ϕ(ε)) when
there exist ε∗ > 0 and K > 0 such that |f(ε)| ≤ Kϕ(ε) for ε ∈ (0, ε∗)

and ϕ(ε) > 0. g +O(ϕ(ε)) means: g + f(ε) with f(ε) = O(ϕ(ε))

C∞(R+,Rm) is the space of infinitely differentiable functions v :
R+ → Rm and Lloc

1 (R+,Rm) stands for the locally integrable functions

v : R+ → Rm, namely
∫ t2
t1
‖v(t)‖2 dt <∞ for all t1, t2 ∈ R+.

• χi
k

denotes a k × 1 vector whose i-th component is 1 and the others
are zero (in the case that i > k all its components are taken equal to
zero). Ik denotes a k × k identity matrix, or simply I when the size
does not have to be explicitly indicated. BDM {X1, ..., Xk} denotes
a block diagonal matrix whose diagonal blocks are the matrices
X1, . . . , Xk. Tu{vT } denotes an upper triangular Toeplitz matrix
with first row vT . T`{v} denotes a lower triangular Toeplitz matrix
with first column v. Given a, b ∈ Z, a ≤ b, [|a, b|] denotes the ordered
set {z ∈ Z | a ≤ z ≤ b}.

• Let t ∈ N and St = {x1, . . . , xt} ⊂ R, for each r ∈ N such that r ≤ t,
Ct
r

(xim ) stands for the addition of all non-repeated products of
r factors taken from St, e.g. C4

3
(xim ) = x1x2x3 + x1x2x4 + x1x3x4

+x2x3x4 and Ct
1

(xim ) =
∑t

i=1
xi; it is also written: Ct

r
(xim )

=
∑

i1<···<ir

∏r

j=1
(xim ). We define: Ct

0
(xim ) = 1. C

t

r
(xim )

stands for the addition of all non-repeated products of r fac-

tors taken from St but excluding xt, e.g. C
4

3
(xim ) = x1x2x3 and

C
t

1
(xim ) =

∑t−1

i=1
xi. C

t

r
(xim ) stands for the addition of all non-

repeated products of r factors taken from St which always include xt,

e.g. C
4

3
(xim ) = x1x2x4 + x1x3x4 + x2x3x4 and C

t

1
(xim ) = xt. Note

that for all r ∈ [|1, t|] and a ∈ R hold:

C
t

r
(xim ) = C

t

r
(xim ) + C

t

r
(xim ) , xt+1C

t

r
(xim ) = C

t+1

r+1
(xim ) ,

C
t

r
(xim ) = C

t+1

r
(xim ) , C

t

r
(axim ) = a

r
C
t

r
(xim )

(1)
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1. INTRODUCTION

In this paper we are interested in finding a linear time-
invariant proper exponential approximation which gives a
solution of the following problem:
Problem 1. Given a linear time-invariant non-proper sys-
tem, Σc, with realization:

Nẇ(t) = w(t)− Γv(t) , u(t) = Θw(t) (2)
where v ∈ Rm, u ∈ Rn, and w ∈ Rn̂+n are the input, the
output and the descriptor variable, respectively. N is a
nilpotent matrix with index of nilpotency κ+ 1 and Γ is a
map such that the matrix [N Γ] is epic. We assume that v
is bounded and that the first κ derivatives of v exist and
are bounded Lipschitz continuous time functions, namely:

H1. ‖v(t)‖2 ≤ K0, for all t ≥ 0.
H2. ‖v(t1)− v(t2)‖2 ≤ L0 |t1 − t2|,

∥∥div(t1)/dti − div(t2)/dti
∥∥

2

≤ Li |t1 − t2|, for all t1, t2 > 0, i ∈ [|0, κ|].

with K0 and Li (i ∈ [|0, κ|]) some positive constants.

Find a linear time-invariant strictly proper filter, Σfε :
ζ̇(t) = A(ε)ζ(t) + B(ε)u(t), y(t) = C(ε)ζ(t), and find positive
constants β and ε, such that:

Q1) ∃ K > 0 such that lim
ε→0
‖y(t)− u(t)‖2 ≤ Ke−βt, ∀ t > 0.

Q2) ∃ ε∗ > 0 such that Σfε is internally stable ∀ ε ∈ (0, ε∗).
Q3) The overall system, Σfε ◦ Σc is externally equivalent 2

to a linear time-invariant proper system.

In other words, we are looking for a proper filter, Σfε , which
makes proper the overall system, Σfε ◦ Σc, and which out-
put, y(t), exponentially tends to the non proper behaviour
of Σc. The interest is to finally synthesize the overall proper
system Σfε ◦ Σc as a proper approximation of Σc.

In (Méndez et al 2007) we have tackled Problem 1 for
the SISO case using the solid Singularly Perturbation
2 As introduced by Willems (1983) two models are externally equiv-
alent, if the corresponding sets of all possible trajectories for their
external behaviour (in our case the input–output trajectories) are
the same.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 1293 10.3182/20080706-5-KR-1001.0855



Theory (Kokotović 1999) as the analysis tool. In this paper
we consider the MIMO case, studying also the relative
stability of the approximation. As a by product, we find
that the proper time-invariant linear systems are dense
in the regular descriptor systems. For approximations
by means of time-variant linear systems and non-linear
systems the readers can see Ibrir (1999) and Levant (1998).

In Section 2 we show the principal results found in
(Méndez et al 2007). In Section 3 we study the relative
stability of the approximation for the SISO case. In Section
4 we tackle the MIMO case and in Section 5 we conclude.
All the technical results are proved in the Appendix.

2. ANTECEDENTS

In (Méndez et al 2007), we have tackled Problem 1 for
the SISO case. For this, we have considered the singularly
perturbed derivative coupling filter (SPDC–Filter):

ẋ(t) = −βx(t)− εκ+1(χ1
κ

)T z(t) ,

εż(t) = χκ
κ
x(t)−

(
Mκ − Uκ

)
z(t) + χκ

κ
u(t) ,

y(t) = (χ1
κ

)T z(t)

(3)

where x ∈ R1, z ∈ Rκ, u ∈ R1 and y ∈ R1. κ ∈ Z+ and β, ε ∈
R+. Uκ = Tu{(χ2

κ
)T } and Mκ is defined as 3 :

Mκ = BDM{M1, ...,Mκ/2} if κ is even , and

Mκ = BDM{M1, ...,M(κ−1)/2, 1} if κ is odd
(4)

Mi = (sin θi)I2 + T`{(cos2 θi)χ
2
2
} , θ1 = π/(2κ)

θi+1 = θi + ∆θ , ∆θ = π/κ , i ∈ [|1, κ− 1|]
(5)

The slow part of (3) is composed by a first order system
with an eigenvalue in −β and the fast part is composed
by a normalized low pass Butterworth filter. The transfer
function of the fast part is:

(χ1
κ

)T
(

sIκ + (Mκ − Uκ)

)−1

χκ
κ

= 1
/

∆B(s) (6)

∆B(s) = (s + 1)σo
∏σκ
i=1

(
(s + sin θi)

2 + cos2 θi
)

(7)
If κ is odd: σo = 1 & σκ = (κ− 1)/2, else: σo = 0 & σκ = κ/2.

Following Lemmas 2.1, 2.2, Theorem 3.1 and Theorem 5.1
of Kokotović (1999) we have the three key results:
Lemma 2. (Méndez et al (2007)). Let ε1(κ) be defined as:

ε1(κ) =

(
κ

3
2

(
(β + 1) + κ

1
2 + 2

√
(β + 1)κ1/2

))−1

(8)

If 0 < ε < min{1, ε1} then the SPDC–Filter (3) can be
expressed as the two-time-scale model:

ξ̇(t) = −
(
β − εκ+1(χ1

κ
)TL(ε)

)
ξ(t)−H(ε)χκ

κ
u(t)

εη̇(t) = −
(
(Mκ − Uκ) + εκ+2L(ε)(χ1

κ
)T
)
η(t) + χκ

κ
u(t)

y(t) = (χ1
κ

)TL(ε)ξ(t) + (χ1
κ

)T
(
1− εL(ε)H(ε)

)
η(t)

(9)

where L(ε) =
(
Iκ + εβ(Mκ − Uκ)−1

)
L(0) +O(ε2) and H(ε) =

εκ+1H(0) +O(εκ+2). If κ is odd then: L(0) = −
[
1 sin θ1 · · ·

1 sin θκ−1
2

1
]T and H(0) =

[
sin θ1 1 · · · sin θκ−1

2
1 1
]
, else:

L(0) = −
[

1 sin θ1 · · · 1 sin θκ
2

]T and H(0) =
[

sin θ1 1 · · ·
sin θκ

2
1
]
.

Theorem 3. (Méndez et al (2007)). If 0 < ε < min
{

1, ε1(κ),(
sinπ/(2κ)

)1/(κ+1)} there then exists ε∗0 > 0, such that the
two-time-scale model (9) (and so the SPDC–Filter (3)) is
Hurwitz stable.
3 If κ = 1, then: Uκ = 0 and Mκ = 1.

Theorem 4. (Méndez et al (2007)). Let us assume that
u(t) is a bounded Lipschitz continuous function. Namely,
for all t1, t2 ≥ 0 there exist K0, L0 ∈ R+ such that:

|u(t1)| ≤ K0 and |u(t1)− u(t2)| ≤ L0 |t1 − t2| (10)
Let ε ∈ R+ and p, q ∈ Z+ such that 1/p+ 1/q = 1. If:

ε < min

{
1, ε1(κ), β

2
,
(

sin(π/(2κ))√
2

)1/(κ+1)
, K
−1
0 , L

−q
0

}
(11)

there then exists ε∗ ∈ (0, ε∗0), such that for all ε ∈ (0, ε∗),
the output of the SPDC–Filter (3) is approximated by
y(t) = u(t) + e−(β+εκ+1)tx(0) +O(ε1/p) ∀ t > max{t∗, 0}, where
t∗ = O((ε/(sin θ1 −

√
2εκ+1)) ln(K0/ε1/p)).

3. RELATIVE STABILITY OF THE SPDC–FILTER

In Theorem 4, we have given conditions over the positive
parameter ε which guarantee a certain precision of the
approximation of the SPDC–Filter output. In this Section
we show that the relative stability of the SPDC–Filter (3)
depends on the choice of the positive parameter β. For this,
we study the phase and gain margins of its characteristic
equation FB (recall (5), (6) and (7)):
FB(ω) = 1 +KκGκ(ω) , Kκ = εκ+1

/
β ,

G−1
κ (ω) = (1 + ω/β)∆B(εω) ,

∆B(εω) = (1 + εω)σo
∏σκ
i=1

(
(1− (εω)2) + (2εω sin θi,κ)

)
,

(12)

If κ is odd: σo = 1 & σκ = (κ− 1)/2, else: σo = 0 & σκ = κ/2;
and θi,κ = π/(2κ) + (i− 1)π/κ, i ∈ [|1, κ|].

Let us recall that the magnitude Bode diagram of the
Butterworth filter is maximally flat at the origin and
moreover: |∆B(εω)| =

√
1 + (εω)2κ, which implies:∣∣∣Gκ(

√
β/ε)

∣∣∣ =
√
εβ
/√

1 + (εβ) + (εβ)κ + (εβ)κ+1 ,

|Gκ(0)| = 1 , ∂ |Gκ(ω)|
/
∂ω < 0 ∀ ω > 0

|∆B()| = ko
∏σκ
i=1

(2 sin θi,κ) =
√

2

If κ is odd: ko =
√

2 & σκ = (κ− 1)/2, else: ko = 1 & σκ = κ/2

(13)
We assume, in this Section, that inequality (11) of Theo-
rem 4 holds. Since ε < 1 and ε < β/2, we get: Kκ < 1. Thus,
the phase margin of (12), PhM(KκGκ(ω)), is lower bounded
by PhM(Gκ(ω)) = 180◦ −

/
Gκ(0) = +180◦. So, we only need

to study the gain margin of (12), GM(KκGκ(ω)). Namely,
we study the behaviour of the phase-angle of Gκ(ω):

For κ odd:
/
Gκ(ω) = −φβ(ω)− φε(ω)−

∑(κ−1)/2

i=1
φi,κ(ω)

For κ even:
/
Gκ(ω) = −φβ(ω)−

∑κ

i=1
φi,κ(ω)

φβ(ω) = arg (1 + (ω/β)) , φε(ω) = arg (1 + (εω)) ,

φi,κ(ω) = arg
((

1− (εω)2
)

+ 
(
2εω sin θi,κ

)) (14)

3.1 Case κ ≤ 3

For κ = 1, we get: GM(K1G1(ω)) = K−1
1

∣∣G−1
1 (∞)

∣∣ = +∞.

For κ = 2, we have: 0 ≤ φβ(ω) < π/2 for all ω ∈ [0, +∞) and
0 ≤ φ1,1(ω) + φ1,1(ω) ≤ π/2 for all ω ∈ [0, ε−1]. then:
GM(K2G2(ω)) ≥ K−1

2

∣∣G−1
2 (ε−1)

∣∣ = (1/ε)2+1ε−1
√

2 + 2(εβ)2

Let us now consider the case κ = 3. For this, let us first
note that (8) and (11) imply that: εβ < ε/ε1 < 1. And
(13) implies that: 2 sin θ1,3 = 1. Let ω̄c be the geometric
mean of the two corner frequencies, β and 1/ε, namely
log(ω̄c) = 1

2

(
log(β) + log(1/ε)

)
. Thus, for ω ∈ [0, ω̄c] we get:
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0 ≤ ω/β ≤ 1/
√
εβ, 0 ≤ εω ≤

√
εβ/1, and 0 < 1 − (εβ) ≤ 1 −

(εω)2 ≤ 1, which imply (see (14)): 0 ≤ φβ(ω) + φε(ω) ≤ π/2
and 0 ≤ φ1,3(ω) < π/2, for all ω ∈ [0, ω̄]. Then: 0 ≤ −

/
G3(ω)

< π, for all ω ∈ [0,
√
β/ε]. Therefore (recall (13)):

GM(K3G3(ω)) ≥ K−1
3

∣∣∣G−1
3 (

√
β/ε)

∣∣∣
= (1/ε)3+1

√
β/ε
√

1 + (εβ) + (εβ)3 + (εβ)3+1

3.2 Case κ > 3

We have already shown, that:
0 ≤ φβ(ω) + φε(ω) ≤ π/2 , for all ω ∈ [0,

√
β/ε] (15)

So, we only have to test the behaviour of
∑η

i=1
φi,κ(ω), with

η = (κ− 1)/2 for κ odd and η = κ/2 for κ even. We need the
following two technical Lemmas:
Lemma 5. Let Sη = {x1, . . . , xη}, xi = sin θi,κ. Then:

tan

(∑η

i=1
φi,κ(ω)

)
= ϕη(ω)

/
%η(ω) ,

ϕη(ω) =
∑σn

i=1
(−1)i+1(2εω)2i−1

(
1− (εω)2

)η−(2i−1)
Cη

2i−1
(xim )

%η(ω) =(
1− (εω)2

)η
+
∑σd

i=1
(−1)i(2εω)2i

(
1− (εω)2

)η−2i
Cη

2i
(xim )

(16)
when η is even, set: σn = σd = η/2, and when η is odd, set:
σn = (η + 1)/2 and σd = (η − 1)/2.
Lemma 6. Let η ∈ N \ {1}, Sη = {x1, . . . , xη} ⊂ R+,

ℵ`,η(ω) = (2εω)`
(
1− (εω)2

)η−`
Cη
`

(xim )

−(2εω)`+2
(
1− (εω)2

)η−`−2
Cη
`+2

(xim )
(17)

where ` ∈ [|0, η − 2|]. If:

ω ≤ ε−1

(√
1 + Cη2 (xim ) +

√
Cη2 (xim )

)−1

(18)

Then:
ℵ`,η(ω) > 0 (19)

We then have the third principal result:
Theorem 7. Let κ > 3. If:

β ≤ (1/ε)

(√
1 +
∑η−1

i=1

∑η

j=i+1
sin θi,κ sin θj,κ

+

√∑η−1

i=1

∑η

j=i+1
sin θi,κ sin θj,κ

)−2 (20)

where η = (κ− 1)/2 for κ odd and η = κ/2 for κ even. Then:
0 ≤ −

/
Gκ(ω) < π , for all ω ∈ [0,

√
β/ε] (21)

Moreover:
GM(KκGκ(ω)) ≥ K−1

κ

∣∣∣G−1
κ (

√
β/ε)

∣∣∣
= (1/ε)κ+1

√
β/ε
√

1 + (εβ) + (εβ)κ + (εβ)κ+1

(22)

Proof. Since κ > 3, then: η ∈ N \ {1}. Let Sη = {x1, . . . , xη},
and xi = sin θi,κ. From (16) and (17), we have that ϕη(ω)

and %η(ω) can be also expressed as follows:
ϕη(ω) =

∑σ̄n
i=1
ℵ(4i+1),η(ω) + ψϕη (ω) , (23)

where if σn is even: σ̄n = σn/2− 1 and ψϕη (ω) ≡ 0, else: σ̄n =

(σn − 3)/2− 1 and ψϕη (ω) = (2εω)2σn−1
(
1− (εω)2

)η−(2σn−1)

Cη2σn−1 (xim ).
%η(ω) =

∑σ̄d
i=1
ℵ4i,η(ω) + ψ%η (ω) , (24)

where if σd is odd: σ̄n = (σd − 1)/2 and ψ%η (ω) ≡ 0, else
σ̄d = σd/2− 1 and ψ%η (ω) = (2εω)2σd

(
1− (εω)2

)η−2σd
Cη2σd (xim ).

From (16): ϕη(0) = 0 and %η(0) = 1. Then:
∑η

i=1
φi,κ(0) = 0.

From (23), (24), (20), and Lemma 6, we get (note
that (20) also implies βε < 1): ϕη(ω) > 0 and %η(ω) > 0,
for all ω ∈

[
0,
√
β/ε
]
. Then: 0 ≤

∑η

i=1
φi,κ(ω) < π/2, for all

ω ∈
[
0,
√
β/ε
]
, which together with (15) imply (21).

(22) directly follows from (21) and (13). 2

4. PROPER APPROXIMATION

We are now in position for solving Problem 1 in the
MIMO case. For this, let us assume that the non proper
compensator (2) is completely observable. Then, its Kro-
necker canonical form has only n row minimal indices
blocks of sizes (κi + 1)× (κi + 1), i ∈ [|1, n|], such that κi > 0,∑n

i=1
κi = n̂, and max{κ1, . . . , κn} = κ (Gantmacher 1959).

Carrying system (2) to its Kronecker canonical form, we
get:

N = BDM {N1, . . . , Nn} , Ni = T`{χ2
(κi+1)

} ,

Θ = BDM
{
θT1 , . . . , θ

T
n

}
, θi = χ

(κi+1)

(κi+1)
,

Γ =
[

ΓT1 · · · ΓTn
]T

, Γi =
[
γ
i,0

γ
i,1
· · · γ

i,κi

]T
,

with γ
i,j
∈ Rm and γ

i,0
6= 0 , j ∈ [|1, κi|] , i ∈ [|1, n|]

(25)

Defining the following matrices:

Γ̂i =
[
γ̂

1,i
. . . γ̂

n,i

]T
, i ∈ [|0, κ|] , where

γ̂
j,i

=

{
γ
j,(κj−κ+i)

for i ∈ [|κ− κj , κ|]
0 otherwise

, j ∈ [|1, n|]
(26)

we get from (25) and (2):

u(t) =

(
Γ̂0

dκ

dtκ
+ Γ̂1

dκ−1

dtκ−1 + · · ·+ Γ̂κ−1
d
dt

+ Γ̂κ

)
v(t) (27)

with Γ̂0 6= 0. Let K0,j , L0,j , L1,j , . . ., Lη̄,j , the Lips-
chitz positive constants of the m components, vj , of
v; namely: ‖vj(t)‖2 ≤ K0,j , ‖vj(t1)− vj(t2)‖2 ≤ L0,j |t1 − t2|,∥∥divj(t1)/dti − divj(t2)/dti

∥∥
2
≤ Li,j |t1 − t2|, for all t ≥ 0,

t1, t2 > 0, j ∈ [|1,m|], i ∈ [|0, κ|]. In accordance with (27) and
(10), let us define the Lipschitz positive constants:

K0 =
∑m

j=1

(∥∥Γ̂κχ
j
m

∥∥
2
K0,j +

∑κ−1

i=0

∥∥Γ̂iχ
j
m

∥∥
2
L(κ−1−i),j

)
,

L0 =
∑m

j=1

∑κ

i=0

∥∥Γ̂iχ
j
m

∥∥
2
L(κ−i),j .

Then: |u(t1)| ≤ K0 and |u(t1)− u(t2)| ≤ L0|t1 − t2| ∀ t1, t2 ≥ 0.

4.1 Convergence

Problem 1 is solved by the fourth principal result:
Theorem 8. Let the Multivariable SPDC–Filter, Σfε ,

ẋ(t) = −βx(t)− εKεCoz(t) ,
εż(t) = Box(t) +Aoz(t) +Bou(t) , y(t) = Coz(t)

(28)

where: x ∈ Rn, z ∈ Rn̂, u ∈ Rn, and y ∈ Rn, and:
Ao = BDM {A1, . . . , An} , Bo = BDM

{
b1, . . . , bn

}
,

Kε = BDM {εκ1 , . . . , εκn} , Co = BDM
{
cT1 , . . . , c

T
n

} (29)

Ai = (−Mκi + Uκi ), bi = χκi
κi
, ci = χ1

κi
, with i ∈ [|1, n|] (30)

Let ε ∈ R+ and p, q ∈ Z+ such that 1/p+ 1/q = 1. If:

ε < min

{
1, ε1(κ̄), β

2
,
(

sin(π/(2κ))√
2

)1/(κ+1)
, K
−1
0 , L

−q
0

}
(31)

there then exists ε̄∗ > 0 such that, for all ε ∈ (0, ε̄∗), the
Multivariable SPDC–Filter, Σfε , is internally stable and:

lim
ε→0

ε∈(0, ε̄∗)

∥∥∥∥y(t)−
(∑κ

i=1
Γ̂κ−i

di

dti
+ Γ̂κ

)
v(t)

∥∥∥∥
2

≤ ‖x(0)‖2 e−βt ,

(32)
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for all t > 0. Moreover, the composite overall system,
Σfε ◦ Σc, is externally equivalent to the Singularly Per-
turbed Proper System:

ẋ(t) = −βx(t)− εKεCoz̄(t)− εΓ0v(t) ,

ε ˙̄z(t) = Box(t) +Aoz̄(t) +
(
AoRp +BoΘ

)
Γv(t) ,

y(t) = Coz̄(t) +K−1
ε Γ0v(t)

(33)

where:
Γ0 =

[
γ

1,0
· · · γ

n,0

]T
, Rp =

[
Rp1 · · · Rpn

]
,

Rpi =
[

(1/εκi−1)A
κi−1
o b̂pi · · · b̂pi 0

]
, i ∈ [|1, n|]

(34)

b̂pi =
[
b̃
T

i,1 · · · b̃
T

i,n

]T
∈ Rn̂ , b̃i,j ∈ Rκj ,

b̃ i,j
j 6=i

= 0 , b̃i,i = (1/ε)bi , i ∈ [|1, n|] (35)

with: z̄(t) = z(t)−Rpw(t).

Proof.

Given the block diagonal structure of (28)–(30), we get
from (31) and Theorem 3 that the Multivariable SPDC–
Filter, Σfε , is Hurwitz stable for all ε ∈ (0, ε̄∗). And from
(31), (27), and Theorem 4, we get (32).

From (2) and (28), Σfε ◦ Σc is:[
In+n̂ 0

0 N

]
ẋfc(t) =

[
Ap Bp
0 In+n̂

]
xfc(t) +

[
0

−Γ

]
v(t) ,

y(t) =
[
Cp 0

]
xfc(t)

(36)

Ap =

[
−βIn −εKεCo

(1/ε)Bo (1/ε)Ao

]
, Bp =

[
0

(1/ε)BoΘ

]
,

Cp =
[

0 Co
] (37)

with: xfc =
[
xT zT wT

]T . Taking into account the partic-
ular forms of Σc and Σf , we get from (25), (29) and (37):

Bp =
[
Bp1 · · · Bpn

]
, Bpi =

[
0 · · · 0 bpi

]
, bpi =

[
0 b̂

T

pi

]T
(38)

where: Bpi ∈ R(n+n̂)×(κi+1), bpi ∈ Rn+n̂, and i ∈ [|1, n|].

We need the following Lemma:
Lemma 9. Let us define the matrices Qp and Rp as follows:

Qp = − (ApRp +Bp) , Rp =
[
Rp1 Rp2 · · · Rpn

]
,

Rpi =
[
A
κi−1
p bpi · · · Apbpi bpi 0

]
, i ∈ [|1, n|]

(39)

Then for i ∈ [|1, n|]:
Rp +QpN = 0 (40)

For κi > 1 : CpA
ki−1
p bpi = (1/εκi )χi

n
,

For κi > 2 : CpA
j
pbpi = 0 , j ∈ [|1, κi − 2|] ,

For κi = 1 : Cpbpi = (1/εκi )χi
n
,

(41)

CpRp = BDM
{
νT1 , . . . , ν

T
n

}
, νi = (1/εκi )χ1

(κi+1)
(42)

Let us apply the following change of variable ξfc =[
ξ
T
fc ξ̃

T
fc

]T
=

[
In+n̂ −Rp

0 In+n̂

]
xfc and let us premultiply (36)

by
[

In+n̂ Qp
0 In+n̂

]
. Then, we get from Lemma 9:[

In+n̂ 0
0 N

]
ξ̇fc(t) =

[
Ap 0
0 In+n̂

]
ξfc(t) +

[
−QpΓ
−Γ

]
v(t) ,

y(t) =
[
Cp (CpRp)

]
ξfc(t)

(43)
Now, since: −

(
I +
∑κ

i=1
N idi/dti

)
(Nd/dt− I) = I, we get:

y(t) = Cpξfc(t) + (CpRp)
(
I +
∑κ

i=1
N idi/dti

)
Γv(t). But, from

(25) and (42) we realize that:

y(t) = Cpξfc(t)

+BDM

{
1

εκ1

(
χ1
κ1+1

)T
, . . . ,

1

εκn

(
χ1
κn+1

)T}
Γv(t)

= Cpξfc(t) +K−1
ε BDM

{
γT

1,0
, . . . , γT

n,0

}
v(t)

which together with (43), (39) and (34.a) imply that the
composite overall system (36) is externally equivalent to:

˙
ξfc(t) = Apξfc(t) + (ApRp +Bp)Γv(t) ,

y(t) = Cpξfc(t) +K−1
ε Γ0v(t)

Let us note that (30), (4) and (5) imply: (χ1
κi

)TAj−1
i χκi

κi
=

0, j ∈ [|1, κi − 1|]. Then for i ∈ [|1, n|] and j ∈ [|1, κi|]:

Aj−1
p bpi =

[
−(1/ε)KεCoA

j−2
o b̂pi

(1/εk)Aj−1
o b̂pi

]
=

[
0

(1/εk)Aj−1
o b̂pi

]
Hence: Rpi =

[
0

Rpi

]
. Also (30), (4) and (5) imply: (χ1

κi
)T

A
κi−1
i χκi

κi
= 1, hence: CoRpΓ = K−1

ε Γ0, namely: ApRpΓ =[
−εKεCoRpΓ

(1/ε)AoRpΓ

]
=

[
−εΓ0

(1/ε)AoRpΓ

]
. 2

4.2 Stability margin

Let us now explore the stability margin of the open-
loop Multivariable SPDC–Filter (28). For this, let us
find the characteristic functions, `i(s), of the return-ratio
matrix, Lrr(s) (see MacFarlane and Postlethwaite (1977)
for details). The open-loop system of (28) is:

[
ż(t)
ẋ(t)

]
=

[
(1/ε)Ao 0
εKεCo −βIn

]
︸ ︷︷ ︸

AOL

[
z(t)
x(t)

]
+

[
(1/ε)Bo

0

]
︸ ︷︷ ︸

BOL

u1(t) ,

y2(t) =
[

0 In
]︸ ︷︷ ︸

COL

[
zT (t) xT (t)

]T
(44)

where y2(t) = x(t) and when closing the loop u1(t) =

u(t) − y2(t). The determinant of the return-ratio ma-
trix is: det(Lrr(s)) = det

(
COL(sI(n̂+n) −AOL)−1BOL

)
=
∏n

i=1

KκiGκi (s), where (recall (6) and (7)):
Kκi = εκi+1/β , G−1

κi
(s) = (s/β + 1)∆B,i(εs) ,

∆B,i(s) = (s + 1)
∏ (κ−1)

2
j=1

(
(s + sin θj,κi )

2 + cos2 θj,κi

) (45)

with: i ∈ [|1, n|]. Hence, the n characteristic functions are:
`i(s) = KκiGκi (s) , i ∈ [|1, n|] (46)

The stability margin is given by the fifth principal result:
Theorem 10. if in addition to conditions of Theorem 8:

β ≤ (1/ε)ρ∗ (47)
ρ∗ = 1 , for κ = 3 (48)

ρ∗ =

(√
1 +
∑(κ−3)/2

i=1

∑(κ−1)/2

j=i+1
sin θi,κ sin θj,κ

+

√∑(κ−3)/2

i=1

∑(κ−1)/2

j=i+1
sin θi,κ sin θj,κ

)−2

, for κ > 3

(49)

Then the gain margins of the characteristic functions (46)
and (45) are lower bounded by:

GM(`i(ω)) ≥ K−1
κi

∣∣∣G−1
κi

(
√
β/ε)

∣∣∣
≥ (1/ε)κ+1

√
β/ε
√

1 + (εβ) + (εβ)κ + (εβ)κ+1

where κ = min{κ1, . . . , κn} and i ∈ [|1, n|].
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Proof.

From (47), (48) and Theorem 7, we get: 0 ≤ −
/̀
i(ω) < π,

i ∈ [|1, n|], ∀ ω ∈ [0,
√
β/ε]. And thus, GM(`i(ω)) ≥ K−1

κi∣∣∣G−1
κi (

√
β/ε)

∣∣∣ = (1/ε)κi+1
√
β/ε
√

1 + (εβ) + (εβ)κi + (εβ)κi+1

≥ (1/ε)κ+1
√
β/ε
√

1 + (εβ) + (εβ)κ + (εβ)κ+1, ∀ i ∈ [|1, n|]. 2

4.3 Proper Systems Density

The following Corollary states that the set of proper sys-
tems is dense in the set of regular generalized systems.
Namely every non-proper system can be approximated
arbitrarily close (ε-near) by a proper system, moreover this
approximation can be done while keeping an exponential
convergence (β-dynamics) and insuring some relative sta-
bility (gain margin).
Corollary 11. Let the conditions of Theorems 8 and 10
hold. Let β = (1/ε)aρ∗, where a is a sufficiently small posi-
tive constant, 0 < a ≤ 1, such that the behaviour of the Mul-
tivariable SPDC–Filter (28) remains in a two-time-scale,
for all ε ∈ (0, ε̄∗). Then, for every 4 u ∈ Σc

(
C∞(R+,Rm)

)
there exists a sequence yε ∈ Σfε ◦ Σc

(
C∞(R+,Rm)

)
such that

yε converges to u in the sense of Lloc
1 (R+,Rm).

Proof. From Theorem 8 we get for all v ∈ C∞(R+,Rm) and
for all t1, t2 ∈ R+, with t1 < t2:

lim
ε→0

ε∈(0, ε̄∗)

∫ t2
t1

∥∥(Σfε ◦ Σc − Σc
)
(v(t))

∥∥
2

dt = lim
ε→0

ε∈(0, ε̄∗)

∫ t2
t1
‖yε(t)−

u(t)‖2dt ≤ lim
ε→0

ε∈(0, ε̄∗)

‖x(0)‖2
∫∞

0
e−βtdt = lim

ε→0
ε∈(0, ε̄∗)

‖x(0)‖2 /β =

lim
ε→0

ε∈(0, ε̄∗)

ε‖x(0)‖2/(aρ∗) = 0. 2

5. CONCLUSION

In this paper we have extended the SISO approximation
of Méndez et al (2007) for solving Problem 1. Our propo-
sition relies on the substitution of the rudimentary filter
1/(εs + 1)κ by a Butterworth low pass filter, which allows
for a nice application of the results of (Kokotović 1999).
Our solution for designing the adequate filters nicely sep-
arates the quality of the approximation, given by the fast
subsystem, parameterized by the inverse of the positive
constant ε, from the convergence ratio, given by the slow
subsystem parameterized by the positive constant β.

The parameter ε is chosen in such a way that: (i) it
guarantees the separation of the two time scales, the slow
one and the fast one, by diagonalizing the fast and slow
subsystems, (ii) it guarantees the stability of the SPDC–
Filter (3), and (iii) it takes into account the functional
characteristics of the bounded Lipschitz continuous signal
u(t) (reflected by its L∞ norm, K0, and its Lipschitz
constant, L0) for solving the Problem 1, see Theorem 8.

We have also shown that the selection of the parameter
β is directly related with the relative stability of the
approximation, see Theorems 7 and 10.

In Corollary 11 we have proved that the proper time-
invariant linear systems are dense in the regular descriptor
4 To assume that v ∈ C∞(R+,Rm) is not restrictive since
C∞(R+,Rm) is dense in Lloc

1 (R+,Rm), see Theorem 2.4.10 of Pold-
erman and Willems (1998).

systems. This implies that every non-proper system can
be approximated arbitrarily close (ε-near) by a proper
system, moreover this closing procedure can be done
while keeping exponential convergence (β-dynamics) and
relative stability (gain margin). It has to be noted that
the proposition of this paper is not at all a high gain
approximation but a singularly perturbed approximation.
Also note that for avoiding the high tansitories due to
discontinuites (non derivable signals) one has to put the
correct initial conditions.

The following step in our research is to show that our
proposition enables to apply a certain separation property,
that is to say, when applying the proper approximation,
the obtained features reached with the PD output feed-
back, are maintained by the approximation.
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Appendix A. PROOF OF LEMMA 5

We need the following three Lemmas:
Lemma 12. Let η ∈ N \ {1}, x1, ..., xη+1 ∈ R, then:

(1)
∑σ1

i=1
(−1)i+1Cη2i−1 (xim ) + xη+1

(
1 +
∑σ2

i=1
(−1)iCη2i (xim )

)
=
∑σ3

i=1
(−1)i+1Cη+1

2i−1 (xim )

(2)
∑σ4

i=1
(−1)iCη2i (xim ) + xη+1

(∑σ5
i=1

(−1)iCη2i−1 (xim )
)

=
∑σ6

i=1
(−1)iCη+1

2i (xim )

when η is even, set: σ1 = σ2 = η/2, σ3 = (η + 2)/2, and σ4 =

σ5 = σ6 = η/2, and when η is odd, set: σ1 = σ3 = (η + 1)/2,
σ2 = (η − 1)/2, σ4 = (η − 1)/2, σ5 = σ6 = (η + 1)/2.
Lemma 13. Let η ∈ N \ {1}, α1, ..., αη ∈ R, then:

tan
(∑η

i=1
αi
)

=

(∑σn

i=1
(−1)i+1C

η

2i−1
(tan(αim ))

)(
1+
∑σd

i=1
(−1)iC

η

2i
(tan(αim ))

)
when η is even, set: σn = σd = η/2, and when η is odd, set:
σn = (η + 1)/2, and σd = (η − 1)/2.
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Lemma 14. Let η ∈ N \ {1}, x1, ..., xη ∈ R, a, b ∈ R+ ∪ {0}, and
αi = arg (b+ (axi)), then:

tan
(∑η

i=1
αi
)

=

(∑σn

i=1
(−1)i+1a2i−1bη−(2i−1)Cη

2i−1
(xim )

)(
bη+
∑σd

i=1
(−1)ia2ibη−2iC

η
2i (xim )

)
when η is even, set: σn = σd = η/2, and when η is odd, set:
σn = (η + 1)/2 and σd = (η − 1)/2.

Proof of Lemma 12 We prove the even case (recall (1)):

First item :
∑η/2

i=1
(−1)i+1Cη2i−1 (xim ) + xη+1

(
1 +
∑η/2

i=1
(−1)i

Cη2i (xim )
)

=
∑η/2

i=1
(−1)i+1 Cη2i−1 (xim ) + xη+1 +

∑η/2

i=1
(−1)i

xη+1Cη2i (xim ) =
∑η

i=1
xi +

∑η/2

i=2
(−1)i+1C

η+1

2i−1
(xim ) + xη+1 +∑η/2

i=1
(−1)iC

η+1

2i+1
(xim ) =

∑η+1

i=1
xi +

∑η/2

i=2
(−1)i+1C

η+1

2i−1
(xim )

+
∑η/2−1

i=1
(−1)iC

η+1

2i+1
(xim ) + (−1)η/2

∏η+1

i=1
xi =

∑η+1

i=1
xi +∑η/2

i=2
(−1)i+1C

η+1

2i−1
(xim ) +

∑η/2

i=2
(−1)i+1C

η+1

2i−1
(xim ) + (−1)η/2∏η+1

i=1
xi =

∑η+1

i=1
xi +

∑η/2

i=2
(−1)i+1

(
C
η+1

2i−1
(xim ) + C

η+1

2i−1
(xim )

)
+
∏η+1

i=1
xi =

∑η+1

i=1
xi +

∑η/2

i=2
(−1)i+1Cη+1

2i−1 (xim ) +
∏η+1

i=1
xi

=
∑η/2+1

i=1
(−1)i+1Cη+1

2i−1 (xim ).

Second item :
∑η/2

i=1
(−1)iCη2i (xim ) + xη+1

(∑η/2

i=1
(−1)i

Cη2i−1 (xim )
)

=
∑η/2

i=1
(−1)iCη2i (xim ) +

∑η/2

i=1
(−1)ixη+1

Cη2i−1 (xim ) =
∑η/2

i=1
(−1)iCη2i (xim ) +

∑η/2

i=1
(−1)iC

η+1

2i
(xim ) =∑η/2

i=1
(−1)iC

η+1

2i
(xim ) +

∑η/2

i=1
(−1)iC

η+1

2i
(xim ) =

∑η/2

i=1
(−1)i

Cη+1
2i (xim ).

The other case is proved in the same way. 2

Proof of Lemma 13 Let xi = tan(αi). Lemma 12 implies:

tan
(
α1 + α2

)
=

tan(α1) + tan(α2)

1− tan(α1) tan(α2)
=

∑2/2

i=1
(−1)i+1C2

2i−1
(xim )

1 +
∑2/2

i=1
(−1)iC2

2i
(xim )

tan
(
α1 + α2 + α3

)
=

tan(α1 + α2) + tan(α3)

1− tan(α1 + α2) tan(α3)

=
C2

1
(xim ) + x3

(
1− C2

2
(xim )

)
1− C2

2
(xim )− x3C2

1
(xim )

=

∑(3+1)/2

i=1
(−1)i+1C3

2i−1
(xim )

1 +
∑(3−1)/2

i=1
(−1)iC3

2i
(xim )

Let us suppose that the Lemma is true for η ∈ [|2, µ|], where
µ, is some positive even integer then for η̄ = µ+ 1, we have

from Lemma 12: tan
(∑η̄

i=1
αi
)

=
tan
(∑µ

i=1
αi

)
+tan(αµ+1)

1−tan
(∑µ

i=1
αi

)
tan(αµ+1)

=

∑µ/2

i=1
(−1)i+1Cµ

2i−1
(xim )+xµ+1

(
1+
∑µ/2

i=1
(−1)iCµ

2i
(xim )

)
1+
∑µ/2

i=1
(−1)iC

µ
2i (xim )+xµ+1

(∑µ/2

i=1
(−1)i+1C

µ
2i−1 (xim )

)
=

∑(µ+2)/2

i=1
(−1)i+1Cµ+1

2i−1
(xim )

1+
∑µ/2

i=1
(−1)iC

µ+1
2i (xim )

=

∑(η̄+1)/2

i=1
(−1)i+1Cη

2i−1
(xim )

1+
∑(η̄−1)/2

i=1
(−1)iC

η
2i (xim )

The other case is proved in the same way. 2

Proof of Lemma 14 We prove the even case. From
Lemma 13 we get (recall (1)):

tan
(∑η

i=1
αi
)

=

∑η/2

i=1
(−1)i+1C

η

2i−1
(tan(arg(b+(axim ))))

1+
∑η/2

i=1
(−1)iC

η

2i
(tan(arg(b+(axim ))))

=

η/2∑
i=1

(−1)i+1C
η

2i−1
(( a
b

)xim )

1+

η/2∑
i=1

(−1)iC
η

2i
(( a
b

)xim )

=

η/2∑
i=1

(−1)i+1a2i−1bη−(2i−1)Cη
2i−1

(xim )

bη+

η/2∑
i=1

(−1)ia2ibη−2iC
η
2i (xim )

The other case is proved in the same way. 2

Proof of Lemma 5 Doing a = 2εω, b = 1− (εω)2, and
xi = sin θi,κ, we get Lemma 5 from (14) and Lemma 14. 2

Appendix B. PROOF OF LEMMA 6

We need the following Lemma:
Lemma 15. Let η ∈ N \ {1}, Sη = {x1, . . . , xη} ⊂ R+, then for
each ` ∈ [|0, η − 2|] holds:(√

1 + Cη2 (xim ) +
√

Cη2 (xim )
)−1

≤
(√

1 + Cη`+2 (xim )
/

Cη` (xim ) +

√
Cη`+2 (xim )

/
Cη` (xim )

)−1

=

√
1 + Cη`+2 (xim )

/
Cη` (xim )−

√
Cη`+2 (xim )

/
Cη` (xim )

Proof of Lemma 15 Let us note that:

Cη`+2 (xim ) =
∑

i1<···<i`+2

∏`+2

j=1
(xim ) ≤

(∑
i1<i2

∏2

j=1
(xim )

)
·(∑

i1<···<i`

∏`

j=1
(xim )

)
= Cη2 (xim ) Cη` (xim ),

which implies the inequality. The equality follows from the
fact: 1 =

(√
1 + a +

√
a
) (√

1 + a −
√
a
)

for all a ∈ R+. 2

Proof of Lemma 6 Let us do: α = εω. From (18)
and Lemma 15, we get: α <

√
1 + Cη`+2 (xim )/Cη` (xim ) −√

Cη`+2 (xim )/Cη` (xim ), which implies: α2 + 2α
√

Cη`+2 (xim )
/√

Cη` (xim ) + Cη`+2 (xim )/Cη` (xim ) < 1 + Cη`+2 (xim )/Cη` (xim ),
namely: 0 < 2α

√
Cη`+2 (xim )/Cη` (xim ) < 1− α2. That is to say:

(2α)2Cη`+2 (xim ) <
(
1− α2

)2
Cη` (xim ). Multiplying the last in-

equality by (2α)`
(
1− α2

)η−`−2, we get (19). 2

Appendix C. PROOF OF LEMMA 9

(1) Let us first note that the Markov’s parameters of each
subsystem

{
Ai, bi, c

T
i

}
satisfy for i ∈ [|1, n|]:

If κi = 1 : hi,κi = cTi bi = 1 ,

If κi > 1 : hi,κi = cTi A
κi−1
i bi = 1 ,

If κi > 2 : hi,j+1 = cTi A
j
i bi = 0 , j ∈ [|0, κi − 2|]

(A.1)

(2) Let us next prove (40): From (39) and (25) we get:
−QpN = (ApRp +Bp)N =

[[
Aκ1
p bp1

∣∣ · · · ∣∣Apbp1

∣∣bp1

]
N1

∣∣∣ · · ·∣∣∣[Aκnp bpn

∣∣ · · · ∣∣Apbpn∣∣bpn]Nn] =

[[
Aκ1−1
p bp1

∣∣ · · · ∣∣bp1

∣∣0]∣∣∣
· · ·
∣∣∣[Aκn−1

p bpn

∣∣ · · · ∣∣bpn ∣∣0]] = Rp.

(3) Let us now show that the following statements hold:
CoA

κi−1
o b̂pi = (1/ε)χi

n
& CoA

j
ob̂pi = 0 ,

∀ κi > 2 , j ∈ [|0, κi − 2|]
(A.2)

Ajpbpi = (1/εj)

[
0
(
Ajob̂pi

)T ]T ∀ j ∈ [|0, κi − 1|] (A.3)

Indeed from (29), (30) and (35) we get: CoAjob̂pi =

(1/ε)cTi A
j
i biχ

i
n

for all j ∈ [|0, κi − 1|], which together with
(A.1) imply (A.2). By induction, we get (A.3) from
(A.2), (37.a) and (38).

(4) Let us finally prove (41) and (42): Indeed, from
(A.3) and (37.c), we get: CpA

j
pbpi = (1/εj)CoA

j
ob̂pi ,

which together with (A.2), imply (41). From (39.b)
and (41) we get: CpRpi =

[
(1/εκi )χi

n

∣∣0∣∣ . . . ∣∣0], which

implies (42). 2
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