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Abstract: This paper considers the efficacy of disturbance models for ensuring offset free
tracking and optimum steady-state target selection within linear model predictive control
(MPC). Previously published methods for steady-state target determination can address model
error, disturbances, and output target changes when the desired steady state is unconstrained,
but may fail when there are active constraints. This paper focuses on scenarios where the most
desirable target is unreachable, thus some constraints are active in steady state. Examples are
given showing that the resulting ’feasible steady-state target’ can converge to a point which is
not as close as possible to the true target. These failures have not been widely discussed in the
literature. From the closed-loop behavior, hypotheses are put forward as necessary conditions
for offset-free control. These hypotheses are then investigated through the use of Karush-Kuhn-
Tucker (KKT) conditions of optimality.
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1. INTRODUCTION

Model predictive control (MPC) refers to a control tech-
nique that makes use of the predicted evolution of a
plant in determining an open-loop optimal set of future
control trajectories. Usually the control law is computed
using an optimization program which is solved on-line
at every time-step. MPC has been employed widely in
the process control industry, its popularity being largely
attributed to its ability to consider both current and future
input/state/output constraints in the problem formulation
and to handle multi-variable systems systematically.

There have been a number of theoretical advancements in
MPC over the last few decades and thus a typical MPC
formulation now incorporates the following aspects:

(1) A state-space model;
(2) An optimal disturbance/state estimator;
(3) A steady-state target optimizer (SSTO) for manag-

ing unachievable setpoints, controlled variable (CV)
prioritizing and non-square systems;

(4) The dual-mode paradigm, with infinite horizons and
invariant set membership for recursive feasibility and
nominal stability guarantees;

(5) The closed-loop paradigm for good numerical condi-
tioning in predictions.

1.1 Integral action and offset free control in MPC

One important aspect within MPC is the incorporation
of integral action to facilitate offset-free control of con-
trolled variables despite the effects of measured and un-
measured disturbances and model uncertainty. Offset-free
linear MPC can be achieved by incorporating an appropri-

Fig. 1. Architecture diagram.

ate disturbance model into the MPC formulation, and the
disturbance estimate can be used to adjust steady-state
input/state targets appropriately; this is a standard lin-
ear optimal control arrangement (Kwakernaak and Sivan
[1972]). At the next level in the control hierarchy, a SSTO
is used to determine the optimum feasible steady-state tar-
gets for the MPC dynamic optimizer; the SSTO will also
incorporate the disturbance estimate into its calculation.
Thus, the general MPC arrangement is shown in figure 1.

The estimator that is present for state-feedback to the
optimizer (aspect (2)) is augmented with a number of
state and/or output disturbances that represent both un-
modeled disturbances and parametric uncertainty. The
nature of the estimator/dynamic controller/SSTO system
as a whole is to drive the plant output to the desired
setpoint. In Meadows et al. [1994] and later in more detail
in Muske and Badgwell [2002] (Theorem 4) conditions were
derived for this MPC/estimator/SSTO arrangement to
guarantee offset-free control at steady state. The following
conditions for offset-free control are presented by Muske
and Badgwell [2002] for a structured disturbance model,
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and Pannocchia and Rawlings [2003] for an unstructured
disturbance model:

CONDITIONS

(1) the closed-loop system reaches a steady state;
(2) the closed-loop system is asymptotically stable;
(3) the process model is stabilizable and detectable;
(4) the number of disturbance states is equal to the

number of outputs;
(5) the augmented system is detectable;
(6) no inequality constraints are active at steady state.

1.2 Does integral action always imply offset free control?

The main focus of this paper is to investigate the relax-
ation of condition 6, as for many processes the optimal
steady state is at the border of one or more constraints. For
instance, active steady-state constraints were considered
in Rao and Rawlings [1999] where it was shown that
constraints can become active at steady state as a result
of choosing an infeasible target. It was also shown how the
action of a disturbance with active steady-state constraints
can cause offset in the controlled variables.

However, the main problem highlighted in Rao and Rawl-
ings [1999] and Pannocchia et al. [2003] was that the
Maximal Controlled Admissible Set (MCAS) may not be
finitely determined when the origin is on the boundary
of the feasible region. Consequently the MCAS was not
known and recursive feasibility could not be guaranteed.
This paper is concerned with a different aspect of the
MPC configuration given in figure 1. In this paper, we
are interested in the case when the solution of the SSTO
is at one or more active constraints. The conditions for
offset-free control presented previously no longer hold and
the target determined by the SSTO may not be optimal
in a least squares sense.

Model accuracy requirements for MPC with disturbance
correction are discussed in Forbes and Marlin [1994],
considering each expected plant operating point separately
for a band of possible parameter values. This paper,
however, pursues a more general, analytic approach.

Robustification of an LP based SSTO has been considered
in Kassmann et al. [2000]. In this work the SSTO was
modified by contracting constraints due to ellipsoidal
bounded uncertainty such that the computed steady-state
target is feasible for the real plant. Backing away from
constraints may be conservative, and not allow attainment
of the true optimum, so this paper considers the situations
where deterministic MPC gives acceptable performance.

Remark 1. Another important consideration is the impact
of the violation of conditions (2) and (6) simultaneously for
systems with input constraints. The inequality constraints
can actually stabilize the controller such that the closed-
loop system settles at a steady state on the perimeter of
the feasible region. A proper understanding of this scenario
may determine the situations where the plant actually
settles at the desired constrained operating point, and thus
enlarge the set of plant models that result in the steady
state attained being as close as possible to the target in a
least-squares sense.

This paper considers the case of linear systems with input
constraints. Section 2 gives the mathematical description
of a state-space MPC algorithm necessary for discussing
further its properties. Section 3 introduces a simple exam-
ple to show steady-state offset from the ideal constrained
solution is easily encountered with unreachable setpoints.
Section 4 takes the principles of section 3 as inspiration
for determining conditions for offset-free tracking with ac-
tive constraints. The problem is tackled systematically, by
firstly considering single-input-single-output (SISO) sys-
tems, and then multiple-input-multiple output (MIMO)
systems. Section 5 concludes with a summary of what has
been achieved, and the future research direction.

2. BACKGROUND

This section gives the MPC mathematical background
necessary to discuss the main issues in this paper.

2.1 Modeling, feedback and predictions

Consider the following discrete time system with unstruc-
tured disturbance model:

xk+1 = Axk + Buk + Bddk + wk (1)

yk = Cxk + Cddk + vk, zk = Hyk (2)

where u ∈ R
m, x ∈ R

n, y ∈ R
l, z ∈ R

p , and dk is a
disturbance vector, d ∈ R

nd . Following the guidelines of
Pannocchia and Rawlings [2003] for the particular distur-
bance model displayed in (1), an estimator is designed
(through choice of Bd, Cd and noise weighting matrices
Rv and Qw) based on the system model augmented by
disturbance states:

[
x̃k+1

d̃k+1

]

=

[
A Bd

0 I

] [
x̃k

d̃k

]

+

[
B
0

]

uk (3)

If (HC, A) is detectable, and Bd and Cd are chosen such
that the augmented system (3) is detectable, then a stable
linear estimator exists. System (3) is detectable if:

rank

[
I − A −Bd

C Cd

]

= n + nd (4)

Use of estimates x̃, d̃ are assumed henceforth.

Let the ‘predicted’ control law (Rossiter et al. [1998]) for
sample times k be:

(uk − us) =

{
−K(x̃k − xs) + ck k ∈ [0, nc − 1]
−K(x̃k − xs) k ≥ nc

(5)

where ck are the d.o.f. (or control perturbations) available
for constraint handling and us, xs are the expected steady
state input/state required to give offset-free tracking in
the steady state. In order to determine xs, us, a separate
SSTO is usually performed, such as that in Muske and
Rawlings [1993]:

Js(xs, us, ys) = ‖r − ys‖
2
Qs

+ ‖ûs − us‖
2
Rs

(6)

J∗
s (x∗

s , u
∗
s, y

∗
s) = min

xs,us

Js

s. t.

[
(I − A) −B

HC 0

] [
xs

us

]

=

[

Bdd̃
ys − HCd

]

[
0 Au

Ax 0
AyHC 0

] [
xs

us

]

−





bu

bx

by − AyHCdd̃



 ≤ 0

(7)
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For non-square systems, the degrees of freedom within the
choice of steady state can be concisely re-parameterized in
terms of a variable t (Shead and Rossiter [2007]), which
spans the space of all (xs, us) fulfilling:

[
(I − A) − B

]

︸ ︷︷ ︸

E

[
xs

us

]

= Bdd̃,

[
xs

us

]

= E†Bdd̃ + Nt (8)

where N = null(E), t ∈ R
nt . Substituting in for xs, us

from (8) into (5), the control law can be expressed as
follows:

uk =

{
−Kxk + Lttk + Ldd̃k + ck, k ∈ [0, nc]

−Kxk + Lttk + Ldd̃k, k ≥ nc

(9)

Finally, the vectors of predictions x
−→

, y
−→

, u
−→

corresponding

to simulating (1,9) can be written in concise form, e.g.:

x−→ = Pxxk + Pttk + Pddk + Pc c−→k (10)

for suitable Px, Pt, Pd, Pc, Lt, Ld.

2.2 Constraint handling and target optimization

Let the constraints be linearly time-invariant, i.e.

diag(Ax) x−→ <= col(bx); diag(Au) u−→ <= col(bu);

diag(AzH) y
−→

<= col(bz)
(11)

Consequently the MCAS can be defined by substituting
the predictions into (11) and takes the form:

MCAS = {x : ∃
{

c
−→

or ( c
−→

, t)
}

s. t.: Mxx + Mc c−→ + Mtt + Mdd̃ ≤ p}
(12)

Remark 2. Many MPC algorithms (e.g. Rao and Rawl-
ings [1999]) exclude the MCAS in the SSTO, and soft
constraints may then be necessary in the dynamic MPC
optimization for abrupt setpoint changes. Alternatively,
the same objective in (xs, us, ys) in (6, 7) can be re-
parameterized in terms of a weighted distance in the
variable t, and included as part of the MPC optimization
rather than through a separate SSTO. As a consequence
of integrating both optimizations, the implicit outcome of
the SSTO, that is the (xs, us, ys) to be used, will allow a
lower predicted performance cost where this possible.

A typical dynamic optimization is the following QP, where
the steady-state constraints in (7) are adequately repre-
sented by the MCAS defined in (12):

J∗
c

(
c−→

∗, (t∗)
)

= min
c
−→

,t
‖ c−→‖2

WD
+

(
λ‖t − t̂‖2

S

)

s.t. (x, c−→, t, d) ∈ MCAS
(13)

Definitions of WD, S and t̂ have been omitted to save space
(see Shead and Rossiter [2007] for details).

Remark 3. In practice there may be a number of related
issues connected to the recursive feasibility of (13). Clearly
the method used here does have a guarantee of recursive
feasibility in the nominal case; for the uncertain case
modifications in the target alone may be insufficient and
one may have to resort to conventional techniques such as
constraint softening but that is not a topic of this paper.

Hereafter we focus on the issue of whether the SSTO, em-
bedded within the MPC optimization or taken separately
(without the MCAS incorporated), is able to determine
the true minimum least-squares distance to the steady-
state target (based on weights in the SSTO) when nested
within the feedback configuration of figure 1.

Fig. 2. Motivating example, with setpoint of (-10, 50),
showing discrepancy between resulting simulated
steady state and setpoint.

3. MOTIVATING EXAMPLE

The consequences of removing condition (6) given in sec-
tion 1 are illustrated in this section. In this case, the
SSTO can converge to a steady-state target that is sub-
optimal even when the other five conditions in section
1 hold. Although the process achieves the steady-state
target determined by the SSTO through the integral action
in MPC, the presence of active constraints can lead to
constrained offset between the steady-state target deter-
mined by the SSTO and the optimal target with minimal
deviation from the unattainable desired operating point.
The conditions under which the closed-loop configuration
in figure 1 converges to a suboptimal target that is in
fact not as close to the infeasible desired steady state as
possible are illustrated using a simple numerical example.

3.1 Numerical example

For ease of presentation, a simple two-state plant is chosen;
later sections then consider higher dimensional systems.
The notation (·)p refers to the true process and (·)m the
process model; hence an amount of parameter uncertainty
is assumed throughout. Here the case of input constraints
only (i.e. no state/output constraints) is adequate for
demonstrating the problem.

Ap =

[
0.7 −0.2
−0.2 0.7

]

, Gp =

[
6 −4
−4 6

]

Bp = Cp = I, dk = 0 ∀k
(14)

Am = Ap + ∆A, ∆A =

[
0.2 −0.1
0.3 −0.2

]

Am =

[
0.9 −0.3
0.1 0.5

]

, Gm =

[
12.5 −7.5
2.5 2.5

]

Bm = B, Cm = 2C, ‖u‖∞ ≤ 3, H = I (i.e. z = y)

(15)

where Gp, Gm are the steady-state gain matrices. Con-
troller weightings/parameters were as follows:

Q = R = Qs = I, Rs = 0, nc = 5, Bd = Cd = I

Qw = Rv = 0.02I, λ = 1, d̃ = 0, x̃ = 0
(16)

The MCAS in this case was finitely determined according
to the procedure in Gilbert and Tan [1991].
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Fig. 3. Simulation depicting constrained offset even with
small modeling errors.

A setpoint has been chosen that is not actually achiev-
able 1 , a common situation in industrial MPC. Simulation
of the MPC controller (comprising combined dynamic and
steady-state optimizer and estimator) designed for the
system model, but applied to the true plant, reveals (in
figure 2) a typical problem with active constraints.

Figure 2 focuses only on the achievable steady-state target
regions, which is not the same as an MCAS(see Georgakis
et al. [2003] for systematic analysis methodology). The
reachable targets are computed by mapping the input
constraints into the state space through the plant and
model steady-state gains Gp, Gm. In this case it is clear
that the parameter uncertainty dictates very different
regions are reachable and admittedly there is substantial
modeling error in this case as that facilitates a much
clearer demonstration of the issue. The same problem will
arise with much smaller modeling errors, as shown in figure
3, which depicts simulation results with the following
changes to the previous example:

∆A =

[
−0.1 −0.1

0 0

]

, C = I (17)

Figure 2 also displays four key points: (i) the actual desired
target (denoted by r) is clearly infeasible; (ii) the target
y∗

sm arising from the SSTO is optimally close to r in a least-
squares sense (i.e. the line between the solution and r is
perpendicular to the u2max constraint for the model), (iii)
the stable estimator has converged such that y∞ = y∗

sm,
and (iv) there is therefore offset between y∞ and the
constrained true optimum, y∗

sp, computed using an SSTO
with the true plant model. The reader may note here that
the specific problem is that the SSTO will see no benefit
in moving the planned steady-state value for u1 because as
far as the model is concerned, that would be further from
the target. A change in the value of u1 will clearly move
the plant output closer to the desired infeasible target,
however, u1 has an opposite effect on the plant than on
the model in this case. Since the SSTO is based on the
model, it will not result in the constrained true optimum.

Remark 4. From studying the behavior of the closed-loop
system in this example, if r lies on a single constraint
1 A setpoint could be chosen that is feasible with respect to the
model, but not with respect to the plant, which would amount to an
equivalent scenario.

of the true plant, then from the integral action of the
controller r = y∗

sm = y∗
sp = y∞, but if r is unreachable

with respect to the true plant, then y∞ may deviate from
the true optimum. The existence of offset between y∞
and y∗

sp seems to depend on the gradient information of
the active constraint(s). In this particular example, if the
gradient of the mapped constraint corresponding to u2max

is exactly known (i.e. the rotation effect of Gm equals that
of Gp), then there is zero constrained offset. Theory needs
to be developed to prove that this behavior will exist in
all possible scenarios.

Remark 5. In section 2 it was pointed out that a pseudo-
setpoint representing the (xs, us) combination (i.e. t) can
be made a decision variable in the dynamic optimization,
subject to the MCAS 2 . This avoids a sharp desired
setpoint change resulting in infeasibility in the dynamic
optimization (that would then require some form of con-
straint softening). Simulations revealed that the control
horizon, nc needs to be large enough to allow ”creeping”
within the feasible region towards the best value for y∗

sp. As
this issue is not central, details are not discussed further.

4. CONDITIONS FOR CONSTRAINED
OFFSET-FREE TRACKING WITH ACTIVE

CONSTRAINTS

Motivated by the previous example, this section system-
atically considers the conditions necessary for constrained
offset-free control with active constraints by incrementally
introducing more complex scenarios. A review of the model
requirements for asymptotic stability (condition (2)) in
section 1.1 is presented. A necessary and sufficient result
for constrained offset-free steady-state target determina-
tion is then demonstrated. SISO systems are first con-
sidered for simplicity and then MIMO systems are dis-
cussed. Although only the model steady-state gain matrix
is available in practice, it is necessary to consider the true
plant steady-state gain matrix in the sequel in order to
demonstrate the conditions under which constrained offset
can appear. The effect of using the model, as opposed to
the true plant, can only be determined by characterizing
the true plant behavior.

4.1 Model requirements for asymptotic stability

The conditions resulting in closed-loop instability of the
unconstrained MPC can be determined from the Nyquist
stability theorem (Skogestad and Hovd [1994]). Provided
that the controller has integral action in all channels and
the controller model is strictly proper, if:

det(Gp)/det(Gm)

{
< 0 for Pm − Pp even
> 0 for Pm − Pp odd

(18)

then the closed-loop system is unstable (where P is the
number of unstable open loop poles). Provided the correct
number of unstable open-loop poles have been identified
in the model, the requirements on the plant accuracy
for closed-loop stability require the determinant of the
steady-state gain matrix to have the correct sign. Further
limitations on plant/model mismatch to achieve the true
optimal steady-state target are presented in this section.
2 Alternatively the MCAS could be included in the SSTO, with
effectively the same results.
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4.2 SISO systems, input constraints

Theorem 1. For non-integrating SISO systems with lin-
early independent input constraints, if conditions 1-5 in
section 1.1 are fulfilled but constraints are active at steady
state, then there is zero constrained offset in the controlled
variables if and only if the steady-state model gain 3 has
the same sign as that of the plant.

Proof: Theorem 1 can be proved by establishing the SSTO
necessary and sufficient optimality conditions.

Necessary condition: Consider the following SSTO; at
steady state with active constraints, we have:

y∗
sm = y∞ = gpu∞ + dp = gmu∞ + dm

u∗
s = u∞ = umax or umin

(19)

The following optimization gives the steady-state Karush-
Kuhn-Tucker (KKT) conditions necessary and sufficient
for optimality, for either the plant or the model:

Js(u
∗
s) = min

us

(ys − r)2 = min
us

(gus + d − r)2 (20)

s. t.:

[
1

−1

]

︸ ︷︷ ︸

F

us −

[
umax

−umin

]

︸ ︷︷ ︸

f

≤ 0 (21)

L (us, λ) = u2
sg

2 + 2usg(d − r) + (d − r)2 (22)

+ λT (Fus − f)

∇us
L (u∗

s, λ) = 2g2u∗
s + 2g(d − r) + FT λ = 0

λ ≥ 0, Fu∗
s − f ≤ 0, diag(λ)(Fu∗

s − f) = 0
∇2

us
L (u∗

s, λ) = 2g2 > 0
(23)

From the dual feasibility condition in (23)

gu∗
s + (d − r) +

λ1 − λ2

2g
= 0, r = y∗

s +
λ1 − λ2

2g
(24)

From (19) we know that the true plant and the model
have converged to the same point (u∞, y∞), and both have
the same desired setpoint, r. The SSTO will have chosen
the model target y∗

sm to be optimal, so the necessary
conditions of optimality will be satisfied for the model.
However, y∗

sm(= y∞) 
= y∗
sp may be true, where y∗

sp is the
result of a hypothetical SSTO with true plant steady-state
gain data. From (24), for y∗

sm = y∗
sp

4 :

u∗
s =







umax :
λ1 > 0
λ2 = 0

}
λ1m

gm

=
λ1p

gp

⇒
gm

gp

=
λ1m

λ1p

umin :
λ1 = 0
λ2 > 0

}
λ2m

gm

=
λ2p

gp

⇒
gm

gp

=
λ2m

λ2p

(25)
For both instances of (25), sign(gm) = sign(gp) necessarily.

Sufficient condition: If sign(gm) 
= sign(gp), then satis-
faction of (25) for either constraint active would require
λ < 0, violating (23), and so y∗

sm 
= y∗
sp. ⊔⊓

4.3 MIMO systems, input constraints

The same approach can be taken with MIMO systems,
comparing the SSTO KKT necessary and sufficient con-
ditions for the true plant and model steady-state gain
3 Which only exists for systems without integrating modes.
4 λi (where i is the active constraint) > 0 and not ≥ 0 because the
constraints are linearly independent, and the set-point is taken to be
infeasible, and so there will necessarily be a cost associated with the
active constraints for optimality.

matrices. The SSTO for a square system with Rs = 0, no
integrating modes and linearly independent constraints is
as follows:

J∗
s (y∗

s) = min
ys

‖ys − r‖2
Qs

= min
ys

Js(ys) (26)

s. t.:

[
I

−I

]

︸ ︷︷ ︸

F

us −

[
umax

−umin

]

≤ 0, ys = Gus + Gdd (27)

us = G−1ys − G−1Gdd ⇒ (28)

J∗
s (y∗

s) = min
ys

Js s. t.: F̄ ys − f̄ ≤ 0 (29)

where: F̄ = FG−1, f̄ = f − FG−1Gdd (30)

L (ys, λ) = yT
s Qsys − 2yT

s Qsr + rT Qsr + λT
(
F̄ ys − f̄

)

(31)

∇ys
L (y∗

s , λ) = 2Qsy
∗
s − 2Qsr + F̄T λ = 0

λ ≥ 0, F̄ y∗
s − f ≤ 0, diag(λ)(F̄ y∗

s − f) = 0
∇2

ys
L (y∗

s , λ) = 2Qs

(32)

Whatever constraints are active at steady state, as y∞ =
Gmu∞+Gddm = Gpu∞+Gddp this must be true for both
the plant and the model: there is no uncertainty in u∞.
Due to the necessity and sufficiency 5 conditions of (32),
y∞ = y∗

sm = y∗
sp iff:

∃λp : 2Qs(r − y∗
sm) = F̄T

mλm = F̄T
p λp (33)

i.e. the vector 2Qs(r − y∗
sm) must be a member of the

tangent cone of F̄T
p λp. If the tangent cone of F̄T

mλm is a

member of the tangent cone of F̄T
p λp then (33) is satisfied.

For simplicity, situations will now be considered separately
for different numbers of active constraints:

With a single active constraint, i: if there are ni con-
straints in F or F̄ , λi > 0, λj = 0, j ∈ {1, . . . , ni}, j 
= i,
and Fi or F̄i denotes the ith inequality in Fi or F̄i, the
same constraint must be active for both the plant and the
model (as usm = usp):

∃λpi : F̄miλmi = F̄piλpi = 2Qs(r − y∗
s) (34)

⇒ ∃k : F̄mi = kF̄pi, k ∈ R, k > 0 (35)

Therefore, the constraint normal vectors Fmi and Fpi must
be parallel. This is illustrated in Figure 4(a). From (30),

∃k : Fi(G
−1
m ) = kFi(G

−1
p ) = Fi(Gp/k)−1 (36)

So a sufficient condition for y∗
sp = y∗

sm is ∃k : kGm =

Gp, k > 0. In fact, only the i’th column of G−1
m need

be linearly dependent of that of G−1
p , as λj = 0. For

a 2x2 matrix, this corresponds to the j’th row of Gm

being linearly dependent of Gp, but the translation to
requirements on Gm (as opposed to G−1

m ) is not obvious
or simple for higher dimensions.

With two or more active constraints: again it is suf-
ficient that if: ∃k : kGm = Gp, k > 0 ⇒ F̄m = kF̄p,
then ∃λp = kλm, satisfying (33). However, this is not
necessary, as there is flexibility in the solution: a number of
linear combinations of Fmi and Fpi will satisfy (33), i.e. the
tangent cones overlap. This situation is illustrated in figure
4(b) for two active constraints. This situation is favorable,
and should perhaps be a consideration in setpoint selection
for zero constrained offset.
5 Qs > 0, constraints form a convex region.
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Fig. 4. Scenarios with: (a) zero constrained offset for
a single active constraint, F̄mi parallel to F̄pi, (b)
flexibility in achieving constrained offset-free control
with two active constraints.
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Fig. 5. Regions of zero constrained offset for motivating
example.

Finally, to illustrate the different situations, the setpoint
in the motivating example was rotated around, outside
of the feasible region, and the simulations performed to
steady state. Plotted in figure 5 are lines from y∞ to r
for each of these setpoints. It is easy to then identify the
regions of zero constrained offset.

5. CONCLUSIONS

This paper has identified a problem that exists with
modern MPC methods whereby when a constraint is active
at steady state, there can be constrained offset in the
controlled variables. The aim of this research activity is to
determine the conditions with respect to the plant model
accuracy for constrained offset-free control. This paper has
begun this research effort by illustrating the problem with
a simple motivating example. The example illustrated that
with constraints active at steady state, the true optimal
operating point is not always achieved through integral
action, even though the closed-loop system does settle at
a point which is optimal with respect to the model used in
the SSTO. It was also noted that if a reference-governor
type approach is employed with pseudo-setpoints, the
control horizon needs to be sufficient to allow ”creeping”
to the optimal steady state.

Theoretical investigations using KKT conditions of opti-
mality determined necessary and sufficient condition for
SISO plants to attain the true constrained optimum. This
result coincides with the necessary condition for asymp-
totic stability, that the sign of the determinant of both the
plant and the model’s steady state gain must be the same.

However, for MIMO plants, for a single active constraint
it is necessary for the rows of G−1

m and G−1
p corresponding

to the active constraints to be linearly dependent, mean-
ing that a very accurate model is required. With multi-
ple active constraints, there are set-point regions where
constrained zero-offset control is possible with significant
modelling inaccuracies. A more general sufficient condition
for constrained offset-free control is that Gm differs from
Gp by only a scalar gain.

The practical implications of these results are that con-
strained offset-free control for unreachable set-points is
difficult, but is possible if uncertainty in G can be reduced
to scalar multiplicative uncertainty. As single active con-
straints are a common scenario, perhaps an alternative
adaptive arrangement to the bias update approach might
be possible for revising constraint gradients by collecting
data around an operating point with active constraints.
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