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Abstract: Considered is the problem of optimal rejection of persistent exogenous disturbances
in dynamic systems. A robust formulation is given for the case where the matrix coefficients
are subjected to norm-bounded uncertainties; the solution technique based on the invariant
ellipsoids concept is developed. The approach is exemplified through a well-known benchmark
control problem for a mechanical two-mass-spring system.

1. INTRODUCTION

Description and control of real-life physical systems sug-
gests accounting for exogenous disturbances and uncer-
tainties in the system coefficients. In the control literature,
there exist various models for both; in this paper we adopt
the unknown-but-bounded model, Schweppe (1973), due
to its adequacy to many mechanical, electric and other
systems encountered in practice and minimum a priory
requirements imposed. Namely, no statistical properties,
rates of variation, etc., are involved; the uncertainties
are assumed to be arbitrary, and only bounds for their
admissible values are known.

This viewpoint leads to the so-called guaranteed set-
membership approach to various problems in control and
system theory, and the invariant sets ideology Blanchini
(1999). This ideology has got diverse applications in es-
timation, filtering, minimax control in the presence of
uncertainty, etc., because it provides simple yet somewhat
accurate outer approximation of reachable sets of dynamic
systems by the sets of a “similar” nature.

In many cases, of the most adequate models of exogenous
disturbances are the so-called persistent disturbances,
which are the subject of l1-optimization theory Dahleh
and Pearson (1987). However, l1-optimization technique
often leads to high-dimensional controllers and is very hard
to implement in the continuous-time case. Also, precise
description of reachable sets for systems subjected to per-
sistent disturbances is extremely cumbersome.

A natural way to overcome these difficulties is to appeal to
the invariant sets ideology in order to reduce complexity
and attain the control objectives. Among various possible
“shapes” of invariant sets utilized in the research areas
above, ellipsoids should be distinguished because of their
simple structure and direct connection to the quadratic
Lyapunov functions approach. On top of that, in the
framework of the ellipsoidal description, a powerful appa-
ratus of linear matrix inequalities (LMI) and semidefinite
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programming (SDP) Boyd et al. (1994) can be used as
a technical solution tool. Among the first papers in this
direction is Abedor et al. (1996), also see Polyak et al.
(2006).

In this paper we propose an approach to such kind of
problems, which is based on the method of invariant
ellipsoids. The main contribution is extension of the results
in Abedor et al. (1996), Polyak et al. (2006) to the presence
of uncertainty in the model.

2. INVARIANT ELLIPSOIDS. THE ROBUST
ANALYSIS PROBLEM

In this section, we give a precise general description of
the uncertain dynamical system, formulate the analysis
problem, and provide its solution using the invariant
ellipsoids technique.

Consider the continuous-time dynamic system given by

ẋ =
(
A + ∆A(t)

)
x +

(
D + ∆D(t)

)
w, x(0) = 0,

y = Cx,
(1)

where A ∈ R
n×n, D ∈ R

n×m, C ∈ R
l×n, are fixed known

matrices, x(t) ∈ R
n is the state vector, y(t) ∈ R

l is
the output, and w(t) ∈ R

m is the persistence exogenous
disturbance satisfying the Euclidean norm constraint

wT(t)w(t) ≤ 1, ∀ t ≥ 0. (2)

Next, the model uncertainty is specified in the form

∆A(t) = FA∆A(t)HA, ∆D(t) = FD∆D(t)HD, (3)

where FA, FD,HA,HD are known “frame” matrices of ap-
propriate dimensions, and the matrix uncertainties ∆A(t)
and ∆D(t) satisfy the condition

‖∆A(t)‖ ≤ 1, ‖∆D(t)‖ ≤ 1 ∀t ≥ 0, (4)

where ‖ · ‖ denotes the spectral matrix norm. Matrix un-
certainty of the form (3), (4) has been first introduced and
studied in Petersen (1987) (as applied to the disturbance-
free LQR problem). Throughout the exposition, it is as-
sumed that the nominal system (1) (i.e., the one without
uncertainty) is stable (the matrix A is Hurwitz), the pair
(A,D) is controllable, and C is a full-rank matrix.
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Note that the system is subjected to both matrix uncer-
tainty and exogenous disturbances. These two sources of
uncertainty give rise to the reachable set of the system,
which is by definition the set of all states of (1)–(4)
attainable by the system at any time under any admissible
uncertainty and disturbance. This set can be thought of as
a characterization of the accumulated uncertainty in the
system’s state as time evolves.

We now introduce the notion of invariant ellipsoids. The
ellipsoid

Ex =
{
x ∈ R

n : xTP−1x ≤ 1
}
, P > 0, (5)

centered at the origin and specified by the matrix P is
said to be invariant with respect to the variable x (state-
invariant) for the dynamic system (1)–(4), if the condition
x(0) ∈ Ex implies x(t) ∈ Ex for all t ≥ 0. In other words,
starting at any point in Ex, the state of the system is
guaranteed to remain confined within Ex for all admissible
disturbances (2) and uncertainties (3), (4).

It is important to note that every invariant ellipsoid con-
tains the reachable set of the system (which can be shown
to represent the “smallest” possible invariant ellipsoid),
and our first goal in this section is to characterize invariant
ellipsoids for system (1)–(4).

To prove the main result of this section, a generalization of
the result in Petersen (1987) to the case of multiple matrix
uncertainties was developed in Shcherbakov and Topunov
(2008). Such a generalization (for convenience, presented
below as Lemma 1) is only possible in the form of sufficient
condition thus leading to the sufficiency of the main result.

Lemma 1. Let G be a symmetric matrix, M1, . . . ,Mr and
N1, . . . , Nr be matrices of appropriate dimensions. If

∃ ε1, . . . , εr > 0: G +
r∑

i=1

(
εiMiM

T

i +
1

εi

NT

i Ni

)
≤ 0,

then

G +
r∑

i=1

(
Mi∆iNi + (Mi∆iNi)

T
)
≤ 0, ∀∆i : ‖∆i‖ ≤ 1.

We are ready to formulate the main result of Section 2.

Theorem 2. Ellipsoid Ex (5) is state invariant for the
dynamic system (1)–(4), if its matrix P satisfies the LMIs




Ω D PHT

A 0
DT −αI 0 HT

D

HAP 0 −ε1I 0
0 HD 0 −ε2I


 ≤ 0, P > 0, (6)

for some α, ε1, ε2 > 0, where Ω = AP + PAT + αP +
ε1FAFT

A + ε2FDFT

D .

Sketch of Proof. Let us consider the quadratic Lyapunov
function

V (x) = xTQx, Q = P−1 > 0

constructed on the solutions of the system (1). In order
that the trajectories x(t) of system (1) remain in the

ellipsoid Ex =
{
x : V (x) ≤ 1

}
we require that V̇ (x) ≤ 0

for x satisfying V (x) ≥ 1. Using the reasonings similar to
those in Nazin et al. (2007) based on S-theorem, this is
equivalent to the existence of α = α

(
∆A(t), ∆D(t)

)
> 0

such that

(
Ψ D + FD∆D(t)HD(

D + FD∆D(t)HD

)T
−α(∆)I

)
≤ 0, (7)

where

Ψ = P
(
A + FA∆A(t)HA

)T
+

(
A+FA∆A(t)HA

)
P+α(∆)P.

Let there exist α > 0 such that inequality (7) holds for
any appropriate values of the matrix uncertainties. Then

(
AP + PAT + αP D

DT −αI

)
+

(
FA

0

)
∆A(t) (HAP 0) +

(
PHT

A

0

)
∆T

A(t)
(
FT

A 0
)
+

(
FD

0

)
∆D(t) (0 HD) +

(
0

HT

D

)
∆T

D(t)
(
FT

D 0
)
≤ 0,

which, by Lemma 1, holds if there exist ε1, ε2 > 0 such
that(

AP + PAT + αP D

DT −αI

)
+

ε1

(
FAFT

A 0
0 0

)
+

1

ε1

(
PHT

A

0

)
(HAP 0)+

ε2

(
FDFT

D 0
0 0

)
+

1

ε2

(
0

HT

D

) (
0 HT

D

)
≤ 0.

By Schur lemma the obtained matrix inequality is equiv-
alent to (6). The proof is complete.

The first point to note is that the Hurwitz property and the
controllability condition mentioned above are necessary
for the theorem to have a “nontrivial output,” i.e., for
the LMI to be feasible. Strictly speaking, these conditions
should be satisfied robustly for all admissible uncertainties,
which is not immediate to check in advance. However, if
this is not the case, solving the LMI above will result in
its infeasibility thus indicating the absence of invariant
ellipsoids.

Next, it is noted that for ∆A(t) = ∆D(t) ≡ 0 we arrive at
the uncertainty-free setup which was analyzed in Abedor
et al. (1996); Polyak et al. (2006); Nazin et al. (2007)
from the invariant ellipsoids viewpoint. Here, the robust
version of the problem is addressed in a completely similar
LMI style. The robust formulation above also extends to
cover possible uncertainty in the initial state x(0) = x0.
Within the ellipsoidal framework, it is natural to specify
this uncertainty in the form xT

0
P−1

0
x0 ≤ 1, where P0 > 0

defines the ellipsoid E0 of initial uncertainty. Then the
requirement E0 ⊂ Ex is formulated as P > P0 and
incorporated into the LMI constraints above.

Often, consistent with the control objectives and phys-
ical motivation, our primary goal is to characterize the
magnitude of the output y rather than the state x. In
that respect, it is seen that associated with the state-
invariant ellipsoid (5) is the bounding ellipsoid for the
output variable y specified by

Ey =
{
y ∈ R

m : yT
(
CPCT

)
−1

y ≤ 1
}
, (8)

where P is the matrix of the state-invariant ellipsoid.
Our goal is to distinguish the minimal bounding ellipsoid
(8), where P satisfies the LMI in Theorem 2. There exist
various meaningful criteria of minimality; here we adopt
the following trace criterion:

f(P ) = tr
[
CPCT

]
, (9)
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which characterizes the “size” (the sum of squared semi-
axes) of the corresponding ellipsoid. An important thing
to note is that for every fixed α > 0, this trace criterion
is linear in P, ε1, ε2; hence, for α fixed, the minimization
of (9) under the LMI constraints above is a semidefinite
program.

In other words, for system (1)–(4), the problem of finding
the trace-optimal bounding ellipsoid (8) in the family spec-
ified by Theorem 2 reduces to solving an α-parametrized
SDP with respect to one matrix and two scalar variables
(P = PT ∈ R

n×n and ε1, ε2 ∈ R) with subsequent one-
dimensional optimization in α. Computationally, this is
easily accomplished using any of the numerous appropriate
toolboxes that are presently available, e.g., Matlab-based
packages SeDuMi and Yalmip.

3. ROBUST OPTIMAL DESIGN PROBLEM

We now incorporate the control term into description and
consider the system

ẋ=
(
A+∆A(t)

)
x +

(
B1+∆B1(t)

)
u +

(
D+∆D(t)

)
w,

y=Cx + B2u, x(0) = 0,
(10)

where u ∈ R
p is control, B1 ∈ R

n×p, the model uncertainty
is specified in the same form as above:

∆A(t) = FA∆A(t)HA,

∆B1(t) = FB1
∆B1

(t)HB1
,

∆D(t) = FD∆D(t)HD,

(11)

with FA, FB1
, FD, HA, HB1

, HD being fixed known
matrices of compatible dimensions, and the matrix uncer-
tainties ∆A(t), ∆B1

(t) and ∆D(t) satisfy the norm-bound
constraint (4). The rest of the quantities involved have
the same meanings as in Section 2. The matrix A is not
assumed to be Hurwitz, but the pair (A,B1) is controllable
and BT

2
C = 0.

We are aimed at finding a gain matrix K for the linear
static state feedback

u = Kx (12)

which stabilizes the closed-loop system robustly against
all matrix uncertainties and minimizes the trace of the
bounding ellipsoid Ey defined above. It is this minimization
that we refer to as the optimal rejection of exogenous
disturbances w(t).

We have the following result.

Theorem 3. Let P̂ > 0 and Ŷ be solutions to the mini-
mization problem

tr
[
CPCT + B2ZBT

2

]
−→ min (13)

under constraints


Ω D PHT

A Y THT

B1
0

DT −αI 0 0 HT

D

HAP 0 −ε1I 0 0
HB1

Y 0 0 −ε2I 0
0 HD 0 0 −ε3I


 ≤ 0, (14)

Ω = AP + PAT + B1Y + Y TBT

1
+ αP+

ε1FAFT

A + ε2FB1
FT

B1
+ ε3FDFT

D , (15)
(

Z Y

Y T P

)
≥ 0, (16)

with respect to the scalar variables α, ε1, ε2, ε3 ∈ R, and
matrix variables P = PT ∈ R

n×n, Y ∈ R
p×n, Z = ZT ∈

R
p×p.

Then the state-feedback controller with matrix

K̂ = Ŷ P̂−1

robustly stabilizes system (10), (2), (11), (4), and the

matrix P̂ defines the invariant ellipsoid for the closed-
loop system such that the trace of the minimal bounding
ellipsoid does not exceed γ∗ defined as the optimal value
in (13).

Proof. With control (12), the closed-loop system (10) takes
the form

ẋ =
(
A + B1K + FA∆A(t)HA + FB1

∆B1
(t)HB1

K
)
x+(

D + FD∆D(t)HD

)
w(t),

y = (C + B2K)x.

(17)

As was shown in the proof of Theorem 2, we arrive at the
minimization

tr
[
(C + B2K)P (C + B2K)

T
]
−→ min (18)

under constraint(
Ψ(t) D + FD∆D(t)HD(

D + FD∆D(t)HD

)T
−αI

)
≤ 0, (19)

where

Ψ(t) = P
(
A + B1K + Ξ(t)

)T
+

(
A + B1K + Ξ(t)

)
P + αP,

Ξ(t) = FA∆A(t)HA + FB1
∆B1

(t)HB1
K.

We rewrite the matrix inequality (19) in the form
(

P (A + B1K)
T

+ (A + B1K)P + αP D

DT −αI

)
+

(
FA

0

)
∆A(t) (HAP 0) +

(
(HAP )

T

0

)
∆T

A(t)
(
FT

A 0
)
+

(
FB1

0

)
∆B1

(t) (HB1
KP 0) +

(
(HB1

KP )
T

0

)
∆T

B1
(t)

(
FT

B1
0
)
+

(
FD

0

)
∆D(t) (HD 0) +

(
0

HT

D

)
∆T

D(t)
(
FT

D 0
)
≤ 0.

By Lemma 1, it holds if there exist ε1, ε2, ε3 > 0 such that
(

P (A + B1K)
T

+ (A + B1K)P + αP D

DT −αI

)
+

ε1

(
FAFT

A 0
0 0

)
+ ε2

(
FB1

FT

B1
0

0 0

)
+

ε3

(
FDFT

D 0
0 0

)
+

1

ε1

(
(HAP )

T

0

)
(HAP 0)+

1

ε2

(
(HB1

KP )
T

0

)
(HB1

KP 0) +
1

ε3

(
0

HT

D

)
(0 HD) ≤ 0,

or by Schur lemma



Ω D PHT

A (HB1
KP )

T
0

DT −αI 0 0 HT

D

HAP 0 −εI1 0 0
HB1

KP 0 0 −ε2I 0
0 HD 0 0 −ε3I


 ≤ 0, (20)
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where

Ω = (A + B1K)P + P (A + B1K)
T
+

αP + ε1FAFT

A + ε2FB1
FT

B1
+ ε3FDFT

D . (21)

Introducing the new matrix variable Y = KP , relations
(20) and (21) take the linear form (14) and (15).

Respectively, the minimized function in (18) takes the form

f(P, Y ) = tr
[
CPCT + B2Y P−1Y TBT

2

]
.

In order to rewrite it in the linear form, we introduce the
auxiliary matrix

S =

(
Z Y

Y T P

)
, Z = ZT.

By Schur lemma, if P > 0 then the inequality S ≥ 0 is
equivalent to Z ≥ Y P−1Y T. Then the minimization of
f(P, Y ) is equivalent to the minimization of tr

[
CPCT +

B2ZBT

2

]
under constraint (16). The proof is complete.

Important remarks analogous to those following Theo-
rem 2 are valid. Namely, due to the linearity of the trace
criterion with respect to P,Z, for any fixed value of the
parameter α, the problem above reduces to the mini-
mization of the linear function (13) subject to the LMI
constraints (14)–(16); i.e., to a well-defined semidefinite
program. The subsequent scalar optimization over the
parameter α leads to a (sub)optimal stabilizing controller,
i.e., to the one that minimizes the trace criterion for the
bounding ellipsoid of the closed-loop system. As far as
the uncertainty in the initial state is considered, it can be
specified and incorporated in the LMI constraints exactly
in the same way as it was done in the analysis problem
(see Section 2).

Another comment relates to the issue of worst-case uncer-
tainties and disturbances in the system. In proving Theo-
rem 3, we build a quadratic Lyapunov function V (x) for

the closed-loop system having the property V̇ (x) ≤ 0 for
V (x) ≥ 1 and wT(t)w(t) ≤ 1. It is natural to determine ex-

ogenous disturbances w̃(t) and matrix uncertainties ∆̃A(t),

∆̃B1
(t), ∆̃D(t), which maximize V̇ (x). These are referred

to as worst-case ones. The explicit formulae for such worst-
case uncertainties and disturbances are given by the lemma
below.

Lemma 4. For system (10), (2), (11), (4), the worst-case
exogenous disturbance w̃(t) is given by

w̃(t) =

(
D + FD∆D(t)HD

)T
P̂−1x(t)

∥∥(
D + FD∆D(t)HD

)T
P̂−1x(t)

∥∥ .

The worst-case matrix uncertainties ∆̃A(t), ∆̃B1
(t) and

∆̃D(t) are defined by

∆̃A(t) =
FT

A P̂−1x(t)xT(t)HT

A∥∥FT

A P̂−1x(t)xT(t)HT

A

∥∥ ,

∆̃B1
(t) =

FT

B1
P̂−1x(t)xT(t)K̂THT

B1∥∥FT

B1
P̂−1x(t)xT(t)K̂THT

B1

∥∥ ,

∆̃D(t) =
FT

D P̂−1x(t)wT(t)HT

D∥∥FT

D P̂−1x(t)wT(t)HT

D

∥∥ .

Finally, we note that both Theorem 3 and Lemma 4 can
be extended to the case of matrix uncertainties of a more
general form (cf. (11)):

∆A(t) =
r∑

i=1

F i
A∆i(t)H

i
A

(and same for ∆B1(t), ∆D(t)), where ∆i(t), i = 1, . . . , r,
satisfy constraints (4).

4. APPLICATION TO THE TWO-MASS-SPRING
SYSTEM

To illustrate the theoretical results of Section 3, we con-
sider the following simple mechanical system referred to
as a double oscillator or two-mass-spring system, Reinelt
(2000). It consists of the two rigid bodies having masses m1

and m2 which are linked together by a spring with elastic-
ity coefficient k and are allowed to slide without friction
along a fixed horizontal rod as shown in Fig. 1. The

• • • •

��B
BB�

��B
BB�

��B
BB�

��
��

m1 m2

k

-w1

-u
-x1

-w2

-x2

Fig. 1. The mechanical two-mass-spring system.

bodies are subjected to exogenous disturbances w1 and
w2, respectively,

w = (w1 w2)
T
∈ R

2,

for which the only available information is boundedness at
any time instant: wTw ≤ 1. The left body is governed by
the control input u ∈ R aimed at compensating the effect
of exogenous disturbances.

Letting x1, x2 and v1, v2 denote the position coordinates
and the velocities of the bodies, the state vector of the
system writes

x = (x1 x2 v1 v2)
T
∈ R

4.

Finally, let the output of the system be taken in the form

y = (u x2)
T
∈ R

2;

i.e., it is characterized by the control input and the
coordinate of the right body, which is not directly affected
by control.

With this description at hand, the laws of the classical
mechanics lead to the following continuous-time model of
disturbed oscillations of the system:

ẋ =




0 0 1 0
0 0 0 1

−
k

m1

k

m1

0 0

k

m2

−
k

m2

0 0




x +




0
0
1

m1

0


u +




0 0
0 0
1

m1

0

0
1

m2




w,

y =

(
0 0 0 0
0 1 0 0

)
x +

(
1
0

)
u.

Moreover, uncertainty can be incorporated in the system
description in the form of imprecise knowledge of the
masses and/or the elasticity coefficient, so that we arrive
at the general model (10)–(11). The problem is to design

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3979



a static linear state feedback to optimally reject the effect
of exogenous disturbances robustly against all admissible
uncertainties.

This two-mass-spring system often serves as a benchmark
for various control techniques (e.g., see Reinelt (2000)) due
to its real-life nature, simple formulation and reasonable
dimensions (four states, one control, two exogenous distur-
bances, one to three scalar uncertainties, and two outputs).

For simplicity (to preserve the linearity of the model), we
consider the case where the masses m1, m2 are assumed
known and both equal to unity, and the uncertainty is
concentrated in the elasticity coefficient, which is specified
in the form

k = 1 + δ∆(t), δ = const < 1.

This leads to system (10), (11) with one scalar uncertainty
∆(t), |∆(t)| ≤ 1.

Application of Theorem 2 gives the optimal controller K̂
that minimizes the trace criterion for the two-dimensional
bounding ellipse.

For the numerical solution of the SDP problem (13)–(16)
we made use of the SeDuMi and Yalmip Toolboxes in
Matlab. For the specified value δ = 0.2, the calculations
yielded the gain matrix

K̂ ≈ (−3.3443 1.6057 −2.7810 −2.1620)

and the associated bounding ellipse.

−6 −4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4

Fig. 2. The optimal bounding ellipse for the two-mass-
spring system.

Figure 2 depicts the minimal bounding ellipse for the

system with controller K̂ in the feedback loop. The figure
also shows the output trajectory y(t) corresponding to a
certain initial position inside this ellipse and the worst-

case uncertainty ∆̃(t) and exogenous disturbances w̃1(t),
w̃2(t) calculated according to Lemma 1. These worst-case
uncertainty and disturbances are depicted in Fig. 3 along
with the optimal control u(t).

From Fig. 2 it is seen that the sample output trajectory
nearly touches the boundary of the calculated invariant
ellipse; experiments show that this behavior is typical for
the system. In other words, the proposed characterization
of the reachable set by means of invariant ellipsoids is
deemed to have low degree of conservatism.

0 5 10 15 20 25 30
−3

−2

−1

0

1

2

3

4

5

w
1
(t)

w
2
(t)

∆(t)

u(t)

Fig. 3. The worst-case disturbances w̃1(t), w̃2(t) and

uncertainty ∆̃(t), and the optimal control u(t).

The case where the masses contain uncertainty reduces to
the setup mentioned at the end of Section 3 and can be
completely analyzed in a similar way using the respective
modifications of Theorem 2 and Lemma 1.

5. CONCLUSION

We have proposed a simple yet universal approach to re-
jection of unknown-but-bounded exogenous disturbances
robustly against norm-bounded matrix uncertainties by
means of linear static state feedback. This approach is
based on the method of invariant ellipsoids, by which
means the optimal control design problem reduces to
finding the minimal invariant ellipsoid for the closed-loop
system.

By using the invariant ellipsoids ideology, the original
problem can be reformulated in terms of linear matrix in-
equalities, and the control design problem directly reduces
to semidefinite programs and one-dimensional minimiza-
tion, which is straightforward to implement numerically.

The efficacy of the approach is illustrated through appli-
cation to a benchmark problem, which has a transparent
physical motivation.

Another attractive property of the approach is that it is
equally applicable to discrete-time systems. These results
are not presented here and will be addressed in the journal
version of the paper.
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