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Abstract: We extend linear programming performance evaluation methods to closed reentrant
queueing networks. The approach automatically generates the parameters for a surrogate of the
differential cost function and enables us to obtain bounds on the system throughput at reduced
computational cost than exact solution methodologies. A comparison study of the bounds with
the actual performance for tractable examples is conducted. The results show that the bounds
can be quite good, in particular for unbalanced networks. For the closed version of a well known
unstable network, we investigate the performance of the bounds and explore the asymptotic loss
of the system.

1. INTRODUCTION

Closed queueing networks can be used to model many
modern systems including manufacturing systems with a
fixed number of transportation units (such as lot transport
in an automated semiconductor wafer fabrication facil-
ity), internet communication protocols, the UNIX operat-
ing system and manufacturing under CONWIP (constant
work in progress) release policies. However, outside of
a limited class of queueing networks possessing the so-
called product form equilibrium probability distribution,
few networks can be analyzed explicitly.

The performance evaluation and optimization of queueing
networks is complicated by the curse of dimensionality.
As the size of the problem increases, the computational
requirements for optimization grow exponentially (see Pa-
padimitriou and Tsitsiklis [1999]). To address the diffi-
culties associated with analysis, performance bound tech-
niques such as those of Kumar and Kumar [1994] and Bert-
simas, et al. [1994] were developed. Approximate dynamic
programming methods via the construction of surrogates
for the differential cost function (de Farias and Van Roy
[2003]) strive to overcome the complexity. Further work to
extend and refine these approaches has been conducted,
see, for example, Morrison and Kumar [1999], Morrison
and Kumar [2002] and Veatch [2005].

Work along the lines of those above and directed to
closed reentrant queueing networks has been conducted
in Jin et al. [1997] and Morrison and Kumar [2001].
There, buffer priority policies and the class of all nonidling
polices were studied. Employing the results of Morrison
and Kumar [2002], we extend these previous approaches to
closed reentrant queueing networks operating under affine
index policies with throughput as the cost function of
interest. Our results demonstrate that the bounds can be

surprisingly tight or quite loose. For comparison purposes
in tractable closed networks, we also explicitly solve for
the performance.

In addition, for an example closed network (with an
unstable mode) we investigate the rate at which the
throughput converges to its limiting value. It is shown that
this rate depends upon the number of bottlenecks in the
network and that the concept of asymptotic loss (see Jin
et al. [1997]) should be generalized.

The paper is organized as follows. In Section 2, we describe
closed reentrant queueing networks and recall results rel-
evant to our subsequent development. In Section 3, the
performance bounds for closed queueing networks under
affine index policies are obtained. The character of the
bounds is studied in Section 4. Section 5 investigates
the asymptotic loss of the closed analog of an unstable
network. Concluding remarks are presented in Section 6.

2. SYSTEM DESCRIPTION

Closed reentrant queueing networks consist of E stations
and L buffers. Customers await service in the buffers,
labeled b1, . . . , bL, and receive service from the stations,
labeled σ1, . . . , σE . Only one customer may receive service
from a station at a given instant and the service is
preempt-resume, that is, a customer may be interrupted
during service and return to service with no service time
lost. The service time for a customer in buffer bi is
exponentially distributed with mean µi. All service times
are independent. Each station caters to a distinct subset of
the buffers; let σ(i) denote the server that provides service
to customers in buffer bi.

The feature that gives such a network the closed moniker
is the restriction that there are N trapped customers who
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Fig. 1. A closed reentrant queueing network

circulate within the network. No customers exit and none
enter the system. Such a restriction is a way to model
systems where each time a customer exits, another is
released into the system (or if there are a fixed number
of palates upon which customers travel). The network is
termed reentrant as we assume that the customers are
routed from one buffer to the next in deterministic fashion
following the receipt of service. A customer after receiving
service from station σ(i) while in buffer bi next moves to
buffer bi+1, unless i = L in which case the customer returns
to buffer b1. Further, assume that all processes are right-
continuous with left-limits. Such a network is depicted in
Fig. 1.

Let xi(t) denote the number of customers in buffer bi

(including any receiving service from that buffer) at time
t and let x(t) := (x1(t), . . . , xL(t))T be the vector of
buffer lengths. Define wi(t) = 1 if a customer from
buffer bi is receiving service at time t and wi(t) = 0,
otherwise. Let w(t) := (w1(t), . . . , wL(t))T . A station may
only provide service to one customer at a time so that
∑

{i:σ(i)=σ} wi(t) ≤ 1, for all σ ∈ {σ1, . . . , σE}. Let us

further assume that the control policy dictating w(t) is
dependent only upon the customer locations x(t).

Employing uniformization, that is, sampling time at the
instants τn when either a virtual or real service completion
occurs (see, Lippman [1975]), x(n) := x(τn) is a discrete-
time time-homogeneous Markov chain with finite state
space. Let px,y denote the one-step transition probability
from state x to state y. The chain is aperiodic since it
can remain in any given state for an arbitrary length of
time (by firing only virtual transitions). When considering
steady-state performance, we can suppress the dependence
upon n and simply denote the state as x ∈ ZL

+. We
thus hereafter write w(x) to denote the control action in
state x. We let S ⊆ ZL

+ denote the state space. Including

possibly transient states S = {x ∈ ZL
+ : eT x = N}, where

e = (1, . . . , 1)T is the L-length vector of ones.

To assess the performance of the system, it behooves us to
choose a performance criterion. The common performance
objective for a closed queueing network is throughput
(which one expects to increase with the number of trapped
customers N). Let us define the throughput under a
scheduling policy u (prescribing the control actions w(x))
with initial condition x(0) as

αu
N := lim inf

T→+∞

Dj(T )

T
,

where Dj(T ) is the number of customers to have received
service while in buffer bj in the time interval [0, T ).
More precisely, as the policy may depend upon N , one
must specify a sequence of scheduling policies and initial
conditions. In steady state, the rate at which customers
exit each buffer must be the same so that it does not

matter which Dj(T ) we investigate – they all yield the
same throughput. As such, we define the following cost
function c(x) on the state space

c(x) :=
1

L

L
∑

i=1

µiwi(x). (1)

The cost function merely calculates the total rate at which
customers depart from all buffers and takes the arithmetic
average. The maximum achievable throughput for a closed
reentrant queueing network α∗ is given as

α∗ = min
σ

{ 1
∑

{j:σ(j)=σ}
1
µj

}

.

This value is dictated by the station (or stations) which
require the longest to work on a customer and we have
αu

N ≤ α∗, for all policies u and populations N . A station
is termed a bottleneck if it achieves the minimum in the
definition of α∗. A network is termed balanced if all
stations are bottlenecks.

While the fact that the state space is finite ensures that
one could find an equilibrium probability distribution
(and hence measures of performance), the computational
complexity of this activity grows dramatically with L or
N . Further, one cannot analytically deduce the limiting
infinite population throughput by this approach. Hence,
we turn our attention to performance bounds and restrict
attention to affine index policies as defined in Morrison
and Kumar [2002].

Definition: Affine Index Policies. Assign to each buffer
bi an index ηi such that ηi := ki +

∑

j mi
jxj , where ki and

mi
j are given constants. The buffer bi with highest index

ηi, from among those non-empty buffers at a station, is
given preempt-resume service at that station. Ties may be
broken arbitrarily.

The subsequent lemma is well known and provides the
framework for the bounds.

Lemma 1: Average cost inequality bounds. Consider
a Markov chain with countable state space S as above,
deterministic initial condition x(0) and cost function c(x)
such that E|c(x(k))| < +∞ for every k. If the function
W : S → R and the constant J ∈ R satisfy

J + W (x) ≤ c(x) +
∑

y∈S

px,yW (y), ∀x ∈ S, (2)

and limN→∞[EW (x(N))/N ] ≤ 0 then

J ≤ lim inf
N→∞

1

N

N−1
∑

k=0

E[c(x(k))]. (3)

Similarly for an upper bound.

The following lemma has been extracted from Morrison
and Kumar [2002] and will serve in our extension of the
bounds to our system (it is a key element employed in the
proof of their Theorem 2.2).

Lemma 2: Constraints on Polyhedra. Consider a
non-empty polyhedron P in RL

+ given as P = {x :
Ax ≥ b, x ≥ 0}. Let h denote the number of linear
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constraints characterizing the polyhedron (not including
the nonnegativity constraints). The real numbers J and c
and the vector r ∈ RL satisfy the inequality

J ≤ c + rT x, for all x ∈ P

if and only if there is a vector y ∈ Rh
+ such that

AT y ≤ r componentwise, and bT y ≥ J − c.

These lemmas are employed in the subsequent section.

3. PERFORMANCE BOUNDS

Here we extend the work of Morrison and Kumar [2002]
to allow for the form of our cost function. Following their
development, we first partition the state space into points
contained in polyhedra characterized by the absence or
presence of customers in the buffers. Let Φ = {0, 1}L

denote the set of L-length vectors with each element either
a 0 or a 1. Let φ = (φ1, . . . , φL)T ∈ Φ denote such a vector.
Let Sφ denote the subset of the state space S such that
x ∈ Sφ if and only if xi = 0 for φi = 0 and xi ≥ 1 for
φi = 1. Clearly, Sφ ⊆ S ⊆ ZL

+ and ∪φSφ = S.

We further partition each Sφ into points contained in
polyhedra essentially characterized by which of the non-
empty buffers are receiving service. Let Ω denote the set
of all E-length vectors ω = (ω1, . . . , ωE)T with values
ωj ∈ {0} ∪ {i : σ(i) = σj}. We interpret the vector ω
as a list of the buffers receiving service at each station,
with idle stations indicated by ωj = 0. (Note that our
non-idling control policy ensures that if a station has at
least one customer in any of its constituent buffers, it will
provide service.) Let ψ = (φ, ω) be a composite index and
Sψ = S(φ,ω) denote the set of points

Sψ := {x ∈ Sφ : ηωj
(x) ≥ ηℓ(x),∀ℓ ∈ σj with φℓ = 1,

∀j with ωj 6= 0}.
Let Ψ denote the set of ψ for which Sψ is non-empty. Note
that because we did not specify how ties were to be broken,
the Sψ may not be disjoint (some states may be in common
on the boundary of such regions), however, ∪ψSψ = S.
It is straightforward to demonstrate the following lemma
by noting that the affine index policy imposes linear
constraints on the buffer levels when particular buffers
receive service.

Lemma 3: The states in Sψ are contained in a
polyhedron. For ψ ∈ Ψ, the states in Sψ are contained
in a polyhedron, call it Pψ. The polyhedron is given as
Pψ = {x ∈ RL

+ : Aψx ≥ bψ} where Aψ and bψ characterize
the linear constraints

xi ≥ 1 if φi = 1,

xi = 0 if φi = 0,
L

∑

i=1

(m
ωj

i − mℓ
i)xi ≥ kℓ − kωj

,

∀ℓ ∈ σj with φℓ = 1,

∀j with ωj 6= 0,

eT x = N.

Recall that e is the L-length vector of ones, so that the
last is the restriction that the customer population is fixed.
Further, S ⊂ ∪ψSψ.

Hereafter we extend the development of Morrison and
Kumar [2002] to enable bounds for our cost function. The
distinction is that the cost function is not linear in the state
x, but rather is essentially a constant on the polyhedra of
Lemma 3 (also, the polyhedra are restricted to a simplex
by the population constraint). Let the set I(ω) denote the
set of the values of the nonzero elements of ω, that is, the
set of working buffers.

Lemma 4: The average cost inequality on polyhe-
dra characterized by the working buffers. Consider
a simple quadratic surrogate for the differential cost func-
tion, that is let W (x) = pT x + (1/2)xT Qx, and recall
the form of our cost function (1). For x ∈ Sψ, excepting
possibly those x for which a tie in the affine index occurs,
the average cost inequality of (2) has the form

J ≤ dψ + rψT
x,

where

dψ :=
∑

i∈I(ω)

{

µi[p
T +

1

2
(ei+1 − ei)

T Q](ei+1 − ei) +
µi

L

}

rψ :=
∑

i∈I(ω)

µiQ(ei+1 − ei).

Here, ei is the L-length vector of zeros with a 1 in the i-th
position. eL+1 is to be interpreted as e1.

We thus arrive at the following theorem for throughput
bounds in a closed reentrant queueing network under an
affine index policy.

Theorem 1: Linear programming performance
bound. Consider a closed reentrant queueing network
under an affine index policy with deterministic initial
condition x(0) and the cost function as in (1). Let (α, p,Q,
and vectors yψ) denote the decision variables in the linear
program T given as

Max α

subject to

AψT
yψ ≤ rψ,

bψT
yψ ≥ α − dψ,

yψ ≥ 0,

for all ψ ∈ Ψ. The value of the linear program V T is a
lower bound on the throughput as in (3). Similarly for an
upper bound.

Proof: Ensuring that the average cost inequality holds
in each Sψ will ensure that it holds on x ∈ S, since
S ⊂ ∪ψSψ. (Note that the polyhedra Pψ are subsets of
RL

+ rather than ZL
+, so that we will thus ensure (2) on

more than just the points x ∈ S.) Since the average cost
inequality has a bilinear form by Lemma 4, we can use
Lemma 2 to reduce it to a linear program as stated in
the Theorem. The only concern is that Lemma 4 excludes
states for which a tie in the affine index may occur. This
is accounted for since, by considering all ψ ∈ Ψ, we are
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Fig. 2. Performance bounds for the network of Example 2.

in fact requiring the average cost inequality to hold for all
possible ways in which ties may be settled (so long as they
are stationary). 2

4. PERFORMANCE BOUND EXAMPLES

In this section we consider several networks and control
policies to serve as examples upon which to test our
bounds. We find that the bounds are of varying quality.
In the throughput examples, the upper horizontal line
depicts the maximum possible throughput α∗ (defined in
Section 2). The lower horizontal line depicts the least
possible throughput (obtained when N = 1 with the same
value αu

1 = (
∑

i(1/µi))
−1 for any non-idling policy u).

Example 1: A single-station network. In this case,
there is always a customer available to work on and so
for any customer population N and non-idling policy u,
αu

N = α∗. For single-station example networks studied, the
upper and lower bounds of Theorem 1 coincide (except at
a few values of N where numerics may be to blame). 2

Example 2: A two-station network under an affine
index policy. Consider the network of Figure 1. Let
µ1 = 1/3, µ2 = 1/6, µ3 = 1/3 and µ4 = 1/6. This network
is balanced with α∗ = 1/9. Consider the affine index policy
η1(x) = 10 + 3x1, η2(x) = 5 + x2, η3(x) = 10 + 3x3 and
η4(x) = 5 + x4. The performance bounds are depicted in
Figure 2. Recall that the upper horizontal line depicts α∗,
while the lower horizontal line depicts the least possible
throughput (for N = 1). The bounds lie between these
lines. Note that they are fairly tight and that the lower
bound is non-monotonic. 2

Example 3: The same two-station network under
the LBFS policy. Consider the balanced network of
Example 2, with affine index policy η1(x) = 4, η2(x) = 2,
η3(x) = 3 and η4(x) = 1. This policy is a closed variant
of the static priority last buffer first served (LBFS) policy.
This policy imposes the restriction that buffers b1 and b3

can never have more than one customer in steady state.
The performance bounds are depicted in Figure 3 and
are to be interpreted as in Example 2. The bounds are
very tight. Interestingly, the upper bounds for Examples 2
and 3 are almost identical, though the lower bounds for
Example 3 are superior. Thus, though this does not prove
superiority of the LBFS policy in this case, it is guaranteed
to have performance in a much tighter region. Note also

Fig. 3. Performance bounds for the network of Example 3.
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Fig. 4. The three-station network of Example 4.

Fig. 5. Performance bounds for the network of Example 4.

that since this policy is a static priority policy, the bounds
are the same as those of previous work for that class. 2

Example 4: A three-station network under an
affine index policy. Consider the network of Figure 4.
Let µ1 = 1/12, µ2 = 1/12, µ3 = 1/12, µ4 = 1/6, µ5 = 1/4
and µ6 = 1/3 so that α∗ = 1/18. Station σ1 is the
bottleneck (but it is not very dominant). Consider the
affine index policy η1(x) = 14x1, η2(x) = 7x2, η3(x) =
2.5x3, η4(x) = x4, η5(x) = 3.5x5 and η6(x) = 1.5x4. The
performance bounds are depicted in Figure 5. The quality
of the bounds is poor. Note the dip in the lower bound (we
assume this is due to numerical issues). 2

Example 5: A heavily unbalanced three-station
network under an affine index policy. Consider the
network and control policy of Example 4. Let µ1 =
1/14, µ2 = 1/7, µ3 = 2/7, µ4 = 1/14, µ5 = 1/7
and µ6 = 2/7 so that α∗ = 1/28. Station σ1 is the
very dominant bottleneck. The performance bounds are
depicted in Figure 6. The quality of the bounds is much
better, however there are a few spikes that we attribute to
numerical issues. 2
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Fig. 6. Performance bounds for the network of Example 5.

5. PERFORMANCE EVALUATION OF THE CLOSED
ANALOG OF AN UNSTABLE NETWORK

We next consider the performance evaluation of the net-
work depicted in Figure 1 operating under the static pri-
ority (buffer priority) policy with η1(x) = 1, η2(x) = 3,
η3(x) = 2 and η4(x) = 4. Under this policy, the network
may not achieve the bottleneck throughput, since after
some finite time both b2 and b4 cannot have customers
simultaneously. As a consequence, buffers b2 and b4 cannot
be in service simultaneously. For this reason, these two
buffers behave as if they are served by a single virtual
station. The throughput is thus restricted as

αu
N ≤ min

{ 1
1

µ1

+ 1
µ4

,
1

1
µ2

+ 1
µ3

,
1

1
µ2

+ 1
µ4

}

.

Results leading to the conclusion above were obtained in
Dai and Vande Vate [2000] and Dai et al. [2004] for open
reentrant queueing networks and subsequently in Morrison
and Kumar [1998] for closed reentrant queueing networks.

Here we study the performance of this network for various
values of the process rates. The bounds (which are equiv-
alent to those of Morrison and Kumar [2001] since the
policy is a static priority) are compared with the exact
performance (calculated via the solution of the equilib-
rium probability equations). In addition, we numerically
explore the rate at which the throughput converges to the
bottleneck rate α∗. That is, we study the asymptotic loss
ν, typically defined as

ν := lim
N→∞

N
(

1 − αu
N

α∗

)

.

If the asymptotic loss ν is finite, then one may consider
that αu

N ≈ α∗(1−ν/N). If the asymptotic loss ν = 0, then
the throughput converges at a faster rate to α∗. For a single
bottleneck, we expect that αu

N ≈ α∗(1−βN ), where β is a
constant. If the asymptotic loss converges to infinity rather
than a finite constant, then the throughput converges
more slowly. We conjecture that this is possible when
there are more bottlenecks than actual stations, that is,
when a virtual station has the same throughput restriction
as the real stations. The form for the throughput we
conjecture is αu

N = α∗(1 − γ/
√

N). This is analogous to
a form proposed in Humes et al. [1997] for open queueing
networks in which the mean number of customers has the
form K/(1 − ρ)2, where ρ is the system loading. To our
knowledge, no queueing networks of the type studied here

Fig. 7. Performance of the network of Example 6.

have been discovered that possess such forms. However,
our numerical studies suggest just such a behavior for the
system of Figure 1 with three bottlenecks (two real and
one virtual).

Example 6: Two real bottlenecks. Consider the net-
work of Figure 1 with µ1 = 1/6, µ2 = 1/3, µ3 = 1/6 and
µ4 = 1/3 and affine index policy stated previously. Both
stations are bottlenecks and α∗ = 1/9. The throughput
bounds (solid lines) and the exact performance (dots) are
depicted in the top of Figure 7. The asymptotic loss (cal-
culated for each N) is depicted in the lower half of Figure 7
and appears to converge to about the value ν = 1.6. 2

Example 7: One real bottleneck. Consider the network
of Figure 1 with µ1 = 1/6, µ2 = 1/3, µ3 = 1/3 and µ4 =
1/6 and affine index policy stated previously. Station σ1

is the bottleneck and α∗ = 1/12. The throughput bounds
(solid lines) and the exact performance (dots) are depicted
in the top of Figure 8. The bounds are not as good in this
case (perhaps suggesting that the quadratic surrogate for
the differential cost function could be improved by terms
of another form). The asymptotic loss converges to zero,
indicating (as expected) that the throughput converges
faster than αu

N ≈ α∗(1 − ν/N). Instead we consider the
form αu

N ≈ α∗(1 − βN ) and calculate the exponential loss
β as

β := lim
N→∞

(

1 − αu
N

α∗

)1/N

.

The exponential loss (calculated for each N) as is depicted
in the lower half of Figure 8 and appears to converge to
about the value β = 0.84. 2

Example 8: One virtual and two real bottlenecks.
Consider the network of Figure 1 with µ1 = 1/4, µ2 =
1/4, µ3 = 1/4 and µ4 = 1/4 and affine index policy
stated previously. Station σ1, σ2 and the pair {b2, b4} are
bottlenecks and α∗ = 1/8. The throughput bounds (solid
lines) and the exact performance (dots) are depicted in
the top of Figure 9. The bounds are not very good. The
asymptotic loss appears to diverge, indicating that the
throughput may converge more slowly than αu

N ≈ α∗(1 −
ν/N). Instead we consider the form αu

N ≈ α∗(1 − γ/
√

N)
and calculate the square root loss γ as
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Fig. 8. Performance of the network of Example 7.

Fig. 9. Performance of the network of Example 8.

γ := lim
N→∞

√
N

(

1 − αu
N

α∗

)

.

The square root loss (calculated for each N) is depicted
in the lower half of Figure 9 and appears to converge to a
value γ < 0.70. 2

6. CONCLUDING REMARKS

For closed reentrant queueing networks operating under
affine index policies, we have extended recent work to
enable performance bounds via linear programming com-
putation. The bounds have been shown to be quite good
in some instances and quite poor in others. In addition to
exploring the quality of the bounds, we have investigated
the throughput performance of the closed analog of an
unstable open network. It was shown via computation
of the equilibrium probability distributions for fixed cus-
tomer populations that the rate at which the throughput
converges to the bottleneck throughput depends upon the
number of bottlenecks in the system. For a single bot-
tleneck, exponential convergence was observed. For two
bottlenecks, the expected behavior αu

N ≈ α∗(1−ν/N) was
observed. Finally for three bottlenecks in a two station net-
work (one additional virtual bottleneck), the throughput

appeared to have the form αu
N ≈ α∗(1 − ν/

√
N).

Further work could be conducted in several directions.
First, the surrogate for the differential cost function could
be improved. That is, is there a better prototype for the
closed network than quadratic (or piecewise quadratic)?
Can an exponential loss or square root loss formulation be
developed to bound the values of β and γ along the lines
of previous work for the traditional asymptotic loss?
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