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Abstract: This paper presents a complete trajectory tracking controller design for an Unmanned Air 

Vehicle using Linear Parameter Varying design methods. The longitudinal and lateral controllers are 

designed using an inner loop – outer loop structure with the inner loop LPV controller designed using µ-

synthesis.  The inner-loop is then approximated with a reference model and the outer loop is designed 

using loop-shaping techniques. Full scale nonlinear simulations are used to test the efficiency of the 

designed controller and of the proposed design approach. 

 

1. INTRODUCTION 

The design of trajectory tracking controllers for autonomous 

vehicles has been an active area of research in the past few 

decades. Typically, such controllers use a two loop structure, 

where the outer loop generates reference signals based on 

tracking errors and the inner loop uses the reference signals 

to improve the dynamics (Silvestre et al, 2002). As the 

vehicle dynamics is nonlinear in nature, linear controllers are 

usually designed at distinct operating points and scheduled 

through interpolation (Kaminer et al, 1998 and references 

therein) or nonlinear controllers are designed that satisfy 

design requirements through entire operating region (see for 

example Aguiar et al, 2003 and Frazzoli et al, 2000). The 

main disadvantage of the above methods is that gain-

scheduled controllers lack rigorous stability and performance 

guarantees over the operating region and nonlinear 

controllers are difficult to implement due to their complex 

structure. Linear Parameter Varying (LPV) controllers can 

overcome these drawbacks by systematically incorporating 

information about variation of vehicle dynamics with 

scheduling variables. 

 Over the years several schemes have been employed 

to achieve closed loop stability and performance for systems 

that can be expressed in LPV form. Methods that use Linear 

Matrix Inequalities (LMI) have by far been the most effective 

in designing LPV controllers. Small-gain theorem is used to 

exploit the Linear Fractional Transformation (LFT) form of 

LPV plants to guarantee stability in (Packard, 1994, Apkarian 

and Gahinet, 1995). Stability and performance is guaranteed 

in an L2 sense by using single Lyapunov function in (Packard 

and Becker, 1992) for all possible plant variations. The 

technique is extended in (Packard et al, 1995) using Bounded 

Real Lemma formulation for H∞ performance. The controller 

is then computed through the solution of a set of LMI. LMIs 

are reduced to a finite number through the assumption that 

the plant dynamics depends on the time-varying parameter in 

an affine fashion.  The scheduling variable is also assumed to 

vary over a convex polytope. Unstructured scaling matrices 

are used to express existence conditions of LPV controllers 

through LMIs (Wang and Balakrishnan, 2002). Full-block 

multipliers are used to express LPV controllers through the 

solution of a finite number of LMIs in (Wu and Dong, 2006). 

While the LMI approaches can be effectively used in 

synthesis of LPV controllers, their main drawback is the 

computational time required to find a solution. An alternate 

approach using µ-synthesis is presented in (Shamma and 

Coutier, 1993) for the design of a missile autopilot using a 

quasi-LPV approach. The method results in a single 

controller that exhibits acceptable performance over the 

entire operating region. A mixed ‘LPV-µ’ approach is 

presented in (Biannic et al, 1997) to incorporate performance 

robustness to structured uncertainty in controller design. 

Though the robustness of the closed loop system to structured 

uncertainties is enhanced, the synthesis process remains 

complicated.  The LPV controller design methodology 

presented in this paper exploits the polytopic structure of the 

inner loop controller to reformulate the gain-scheduling 

problem into a µ-synthesis problem. The objective of the 

inner loop is to control an approximated LPV dynamics to 

match a reference model that remains invariant under 

different operating conditions. The outer loop is then 

designed using loop shaping technique which results in a 

constant controller in this case. 

 This paper is organised as follows. Section 2 

describes the flight control system and explains the controller 

architecture. Section 3 presents the design of trajectory 

tracking controller. Section 4 presents full-scale nonlinear 

simulation results. Finally, Section 5 concludes the paper 

with main points reemphasised. 

 

2. FLIGHT CONTROL SYSTEM DESCRIPTION AND 

CONTROLLER CONFIGURATION 

2.1  Flight Control System(FCS) 
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The FCS envisaged for the autonomous Unmanned Air 

Vehicle (UAV) is shown in Fig. 1. The function of the 

Mission Management System is the computation of flight 

path and generation of waypoints and reference signals for 

autonomous missions. Such waypoints could either be 

computed from pre-programmed co-ordinated control 

algorithms or read off from ground to air communication 

from the Ground Control System through a radio modem. 

The Guidance and Control block incorporates the control 

strategy and generates required control signals for the 

actuators. The Navigation System provides the necessary 

aircraft navigation states, kinematic parameters and air data 

for feedback. 

  

Fig. 1 FCS Architecture 

2.2 Controller Architecture 

The aim of the flight control system is to track waypoints 

generated by the Mission Management System. The 

controller architecture for longitudinal and lateral dynamics 

shown in Fig. 2 and 3 respectively consist of two loops. The 

inner loop controller is a two-degree-of-freedom LPV 

controller, designed using µ-synthesis in a model matching 

approach. The reference model to which the inner loop is 

matched is then used to design a single outer loop controller. 

The reference signals for outer loop are height and heading 

angle for longitudinal dynamics and lateral dynamics, 

respectively in this study. The outer loop generates reference 

signals – flight path angle and total velocity for longitudinal 

mode, and roll angle and side-slip angle for lateral mode – for 

the inner loops.  

 

Fig. 2 Longitudinal Controller Architecture 

 

Fig. 3 Lateral Controller Architecture 

3. CONTROLLER DESIGN 

3.1 Inner Loop Design 

The autonomous UAV considered in this paper is 

representative of the class of vehicles that operate at low 

Reynold’s number. Longitudinal and lateral LPV models 

(Natesan et al, 2006) are derived from local linearization of 

the 6-degree of freedom nonlinear dynamic model and 

represented as follows: 
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The perturbed states in Eq. (1) for longitudinal dynamics are 

velocity (u) along the x-axis of the body-axes coordinate 

system, velocity (w) along the z-axis of the body-axes 

coordinate system, pitch attitude (θ) and pitch rate (q). δe is 

the elevator input and δt is the throttle input. The perturbed 

states in Eq. (2) for the lateral dynamics are velocity (v) along 

the y axis, roll rate (p), yaw rate (r) and roll angle(φ). δa is the 

perturbed aileron input and δr is the rudder input. The 

stability and control derivatives in Eqs. (1) and (2) are 

functions of total velocity and height. However, for UAVs 

the variation in air density due to change in height is 

negligible and therefore the only varying parameter is the 

total velocity V that varies from 22 m/sec to 72 m/sec. The 

dependence of the dimensional derivatives in Eqs. (1) and (2) 

on velocity is found by using the method of least-squares 

curve fit. While the derivatives vary in both linear and 

quadratic fashions as functions of velocity, only the linear 

dependence is used to make the problem simple and tractable. 

The coefficients that most influence the dynamics of the 

UAV are found by fixing all other coefficients in Eqs. (1) and 

(2) at their average values, while in turn varying each 

coefficient over its entire range. It is thus determined that the 

coefficients Xq, Zθ, Zq, Mu, Zδe and Mδe are the most 

significant derivatives for longitudinal dynamics and Yp, Yr, 

Lv, Np, Nr,   in the sense that any variation in these 

UAV 

Dynamics 

 

Kinner 
Kouter 

Roll Angle (φ) 

Roll Rate (p) 

Yaw Rate (r) 

Side-slip Angle (β) 

 

Ail (δa) 

Rud (δr) 

+ 
φdem 

βdem 

Heading Angle 

(ψ) 

ψdem 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12207



 

 

     

 

coefficients would introduce large changes in the model 

response for lateral dynamics (See Natesan et al, 2006 for 

more details on LPV modelling). 

The closed loop interconnection for longitudinal/lateral inner 

loop controller design is shown in Fig. 4.  

 

Fig. 4 Interconnection for Inner Loop Control 

P is the augmented nominal model obtained for the varying 

parameter V = 0 in the LPV model in Eqs. (1) and (2). 

Sensors and actuators are added at the outputs and inputs of 

the plant in order to make all variations in the plant model 

occur in the ‘A’ matrix of the plant P. The state-space 

realization of P can then be written as: 


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

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=

0C

BA(V)
P           (3) 

In order to formulate the problem in a µ synthesis 

framework, the uncertainty parameter V is transformed into 

the uncertainty parameter α satisfying the condition 1≤α . 

Since the LPV system considered in this paper is polytopic, 

the LPV controller can also be chosen as a polytopic 

controller of the form: 

( ) 2211 KαKαθK +=           (4) 

where K1 and K2 are the controllers designed at the vertices 

of the velocity polytope, i.e., at 22 and 72 m/sec. α1 and α2 

are the solutions of the convex decomposition problem: 

72α22αV 21 +=  

Or in the present case, ( ) ( ) 2221 Kαα1KVK +−= . Note 

that the uncertainty parameter α is now given as 

12αα 2 −= . As V varies from 22 to 72 m/sec, α varies 

from –1 to 1. The feedback system in Fig. 4 can be recast in 

the form of Fig. 5, where ( )111 ∆,αIdiag∆ = . Thus, in 

effect the scheduling parameter α has been ‘collected’ into 

the uncertainties that affect the closed loop system and any 

variation in the plant model also results in variation in the 

controller. Controller K obtained through µ synthesis yields a 

single controller K=[K1 K2], with the constituent controllers, 

K1 and K2 obtained by making α = -1 and α = 1 respectively.  

 

Fig. 5 Representation of the Uncertain Plant under Feedback 

The reference model M is chosen to be 
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for longitudinal dynamics and lateral dynamics. A damping 

ratio of 1 and natural frequency of 10 rad/sec are chosen for 

the matching model from Military Specifications for manned 

aircraft.   

The weighting functions for longitudinal design are selected 

as:  
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The weighting functions for lateral design are: 
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The rationale behind the choice of weighting functions can be 

found in (Natesan et al, 2006). Figs. 6 and 7 show the µ 

bounds for robust performance of the longitudinal and lateral 

closed loop system. The maximum value of the µ bounds is 

less than 1, which shows that robust performance is 

guaranteed for the inner loop. This also means that the inner 

loop approximates the reference model well. Keeping this in 

mind, we now design the outer loop controller. 
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Fig. 6 µ Bounds for Robust Performance – Longitudinal 

Dynamics 
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Fig. 7 µ Bounds for Robust Performance – Lateral Dynamics 

3.2 Outer Loop Controller 

The structure of the outer loop controller is shown in Fig. 8 

for both longitudinal and lateral controllers.  

 

Fig. 8 Closed Loop Interconnection for Outer Loop 

Controller: Longitudinal (Top) and Lateral Dynamics 

(Bottom) 

 

The following approximations are used to transform flight 

path angle γ and roll angle φ into height h and heading angle 

ψ, respectively: 
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The shaped longitudinal and lateral dynamics are now given 

by  lon
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respectively, where Glon and Glat are the original longitudinal 

and lateral transfer functions. Total velocity V is used as a 

multiplicative and divisive factor to make the shaped plant 

invariant to the scheduling variable. The specifications on the 

singular values of GsLon and GsLat include high values of 

( )sLonGσ  and ( )sLatGσ  at low frequencies and low values 

of ( )sLonGσ  and ( )sLatGσ  at high frequencies. A cross-

over frequency of 10-20 rad/sec is also chosen for fast closed 

loop responses. The loop-shaping weights are then given by: 

1005.0
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Fig. 8 shows the frequency response of the shaped plant.  

The controller is then computed using standard 

state-space methods (See for example McFarlane and Glover, 

1992). 
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Fig. 8 Frequency Response of the Shaped Plant 

4. CLOSED LOOP RESPONSES 

In order to test the nonlinear time responses of the closed 

loop system, full-scale 6DoF simulation is carried out with 

both inner and outer loop controllers. The aircraft is first 

trimmed at 1000 m altitude and a ramp signal of 1 m/sec 

slope is applied to the height reference channel for 30 

seconds. The ability of the controller to reschedule itself to 

varying speed is tested by applying step signals of 5m/sec 

amplitude in the total velocity channel every 10 seconds. Fig. 

9 shows height, total velocity and elevator deflection 

responses. As can be seen, the UAV tracks the height 
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reference signal quite well, even in presence of sudden 

velocity variations. The steady state error of 6% is acceptable 

considering the fact that the simulation model contains 

nonlinearities that are not represented in the linear model. 

 

Fig. 9 Nonlinear Simulation Responses to a Ramp Height 

Reference Signal 
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Fig. 10 Nonlinear Simulation Responses to Waypoint 

Reference Signals 

The performance of the lateral controller is tested by applying 

a set of waypoints in the North-East coordinates to the 

heading channel. Again the efficiency of the gain-scheduling 

mechanism is tested by introducing step signals of 5 m/sec 

amplitude in the velocity channel every 10 seconds. Fig. 10 

shows the flight path in the North-East coordinates, roll and 

heading angles and height responses. As can be seen the 

UAV maintains a constant altitude of approximately 999 m, 

with a 1 m error, even in the presence of velocity changes. 

Such an error in the response is due to improper trimming at 

the beginning of the simulation. The heading angle and roll 

angle responses show that the aircraft response is fast with a 

settling time of 4 seconds. 

The simulation results above show that the two-loop control 

design methodology effectively deals with variations in the 

scheduling parameter, guaranteeing closed loop stability and 

performance. 

5.  CONCLUSIONS 

A two-loop trajectory tracking controller is presented in this 

paper. µ-synthesis is used to design the inner loop gain-

scheduled controller while the outer loop controller is 

designed using loop-shaping approach. Since the inner loop 

is approximated by a reference model to design the outer loop 

controller, the design procedure results in simpler 

implementation. Nonlinear simulations show that the 

controller effectively tackles variation in scheduling 

parameter, while tracking the reference trajectory with very 

little error. 
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