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Abstract: This paper studies constrained optical signal-to-noise ratio (OSNR) problem via a
distributed optimization approach. In multi-channel optical systems, the signal over an optical
link can be regarded as an interfering noise for others, which leads to OSNR degradation.
Regulating the input optical power at the Source (transmitter) aims to achieve satisfactory
OSNR level at the Destination (receiver) for each channel. Moreover, because all wavelength-
multiplexed channels in a link share the same optical fiber, the total input power in a link
has to be below the nonlinearity threshold, which corresponds to a link capacity constraint. We
formulate the OSNR optimization problem as one of utility maximization with the objectives of
achieving an OSNR target level for each channel while minimizing the interference and also
satisfying the link capacity constraint. We derive conditions for the existence of a unique
optimal solution, leading to a basis for an admission control scheme. By using a Lagrangian
relaxation approach we propose two distributed update algorithms: a primal algorithm and a

dual algorithm, and study their convergence properties both theoretically and numerically.

1. INTRODUCTION

In optical networks, multi-channel optical systems are re-
alized by wavelength division multiplexing (WDM), which
consists of several sources multiplexed in wavelength do-
main and transmitted over the same optical fiber. Control
of optical networks via an optimization-based approach
arises in the context of evolution of optical communica-
tions from statically designed point-to-point links, to re-
configurable WDM networks. A reconfigurable optical net-
work operates dynamically, with existing channels being
continuously served while network reconfiguration (e.g.,
channel added/dropped) is being performed. Essential re-
search topics in this area include optimization of channel
performance with general topologies and online reconfigu-
ration, Mukherjee [2000].

At the physical transmission level, channel performance
(quality of service, QoS) is directly determined by the
bit-error rate (BER), which in turn, depends on OSNR,
dispersion and nonlinear effects, Agrawal [2002]. OSNR
is considered as the dominant performance parameter in
link optimization, with dispersion and nonlinearity being
limited with proper link design, Forghieri et al. [1998].

In multi-channel optical systems, a signal over the same
optical link can be regarded as an interfering noise for oth-
ers, which leads to the quality degradation in service, i.e.,
OSNR degradation. Regulating the input optical power
per channel at Source aims to achieve a satisfactory OSNR
level at Destination. Particularly in optical networks, be-
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cause all wavelength-multiplexed channels in a link share
the optical fiber, the total input power in a link has to be
below the nonlinearity threshold, which can be regarded
as the link capacity constraint. The OSNR optimization
problem with link capacity constraint has been studied
in Pan and Pavel [2007b], Pavel [2007] via a Nash game
theoretic approach, Basar and Olsder [1999]. However,
the desired OSNR target for each channel can not be
guaranteed in all of these cases.

We consider a central OSNR optimization problem in op-
tical links, formulated as one of utility maximization. Each
channel obtains at the minimum its individual fixed target
OSNR level, and beyond that optimizes its input optical
power, according to its objective performance function,
while respecting OSNR constraints (i.e., target OSNR lev-
els) of all other channels and link capacity constraint. The
individual objective performance function, which we as-
sume to be strictly convex and continuously differentiable,
can be defined, for example, as the difference between a
convex increasing cost on channel’s input optical power
and a strictly concave utility-like function representing its
willingness to increase its input optical power with the aim
of attaining better individual OSNR level.

This problem is similar to Pavel [2006], in which the
network OSNR optimization problem was formulated such
that all channels maintain a desired individual OSNR
level, while input optical power is minimized. In this
paper, the OSNR optimization problem is subject to more
physical constraints. Moreover, the objective function of
this optimization problem is more general than the one
in Pavel [2006]. A similar team optimization problem has
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been considered in Alpcan et al. [2007] for power control in
wireless networks, as well as in Kelly et al. [1998], Srikant
[2004] for congestion control. However, there are several
differences that make the OSNR optimization problem
more challenging: a more complex mathematical OSNR
model due to cascaded optical amplified spans with a
typical automatic power control (APC) operation mode
and self-generation and accumulation of optical amplified
spontaneous emission (ASE) noise in optical amplifiers, as
well as specific constraints in optical networks imposed by
dispersion and nonlinear effects.

The paper is organized as follows. We review an OSNR
model for links in Section 2. In Section 3, we formulate
the central OSNR optimization problem. We present a
relaxation of the original system problem and develop two
algorithms in Section 4. In Sections 5 and 6, we provide
simulation results and concluding remarks, respectively.

2. LINK OSNR MODEL

We present a link OSNR model similar to the one in Pavel
[2006]. Consider a single point-to-point optical link (Fig.1),
composed of N cascaded optical amplifiers (OAs). A total
set of channels, M = {1,...,m}, corresponding to a set
of wavelengths, are transmitted over the link from Source
(transmitter site, Tx) to Destination (receiver site, Rx).

A1 Optical Amplifier
L, / A1

o

A
Optical Fiber

R ——

Am

m

™ 0ADM
Fig. 1. A single point-to-point optical link

For the i'" channel, we denote by u;(n?) and p;(n
the optical power of the input signal (n01se) (at Tx)
and output signal (noise) (at Rx), respectively. We also

out)

denote by u = [ug,...,un,|’, the vector of input signal
powers, n® = [n9 ..., n2 1T the vector of input noise

powers for all channels and let u_i denote the vector
obtained from u by deletmg the " element, i.e., u_; =

[ul,.. s Uij—1, Uj41y - - - um] .

Cascaded OAs are used to amplify optical power of all
channels simultaneously and introduce amplified sponta-
neous emission (ASE) noise for each channel. We denote
for the i'" channel the ASE noise self-generated in the k"
OA as ASE} ;, which is wavelength-dependent. Moreover,
we assume that all cascaded optical spans have the same
length and all OAs have the same spectral shape. There-
fore each i*" channel experiences a different wavelength-
dependent gain, GG;. Each OA is operated in the automatic
power control (APC) mode, such that a constant total
power target at each span is maintained, which we assume
to be same for each span, denoted by Py, which is selected
below the threshold for nonlinear effects, Mecozzi [1998].

The OSNR for the i** channel at the output of a link
defined as OSNR; = p;/ng"" is given next, Pavel [2006].
Lemma 1. In a single optical link, the OSNR of the ‘"
channel at the output of the link is

"
OSNR; = !
n + 305 i ity

(1)

where I' = [I; ;] is the system—related matrix with

ASET i

Vi, j e M

Remark 1. Mathematlcally, the OSNR model is similar
to the wireless signal to interference ratio (SIR) model,
Alpcan et al. [2007], except that the system-related matrix
has non-zero diagonal elements, while the off-diagonal
elements are dependent on specific optical network pa-
rameters, such as optical span gains, self-generated ASE
noise, etc. Another specific feature is the fact that cross-
coupling terms in OSNR not only due to crosstalk as in the
wireless case. More precisely, even with no crosstalk (in the
single point to point link case), ASE self-generation and
accumulation in optical links lead to cross-coupling terms.

3. OSNR OPTIMIZATION PROBLEM

The OSNR optimization problem is subject to the follow-
ing specific constraints:

(C.1) The OSNR set of all channels is above a predefined
set of OSNR targets. We let 7; be the i** channel’s
target OSNR and the corresponding vector form is

= [A1,...,9m]T. Thus the target OSNR constraint
can be written as

A physical constraint is the non-negativity of input
optical power (non-negativity constraint), i.e

u; > 0,Vie M (3)
The total power constraint, or link capacity con-
straint, is imposed on input optical power as well,

ZieM u; < By
where P, is the total power target.

(4)

3.1 System problem

Let C;(u;) be the i*" channel’s individual cost function.
Typically, we make the following assumptions:

(A.1) Ci(u;) is a strictly convex and continuously differen-
tiable function with respect to u;, Vi € M.
(A2) Ci(u;) > 40 asu; — 0

The constrained system problem is formulated as the mini-
mization of the central cost function, i.e., miny ) ;. v Ci(us),
such that Vi € M, u; > 0, OSNR; > 7; and ), ui <
Py. By using the OSNR model in (1), we can rewrite the
set of conditions, OSNR; > 7;, Vi € M, as

Ui + 35 p (il )y > 07
in a vector form, Tu > b with

1-v1T11 =7l =711, m nim
~ =~ ~ o~
—v2l21 1—=7v2l22 -+ —72l2m nyY2
T = b=|"
—YmTm,1 = vmTm,2 - 1=vmDmm Ny Y

The link capacity constraint, (4) can also be written in
a vector form, 1Tu < Py, where 1 is a vector with
all elements equal to 1. Thus the constrained system
optimization problem is formulated by

m&n > ien Cilug) (6)
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such that
ucQ:={uckR™:Tu>b,17u< Py, u; >0, Vi c M}

Assumption (A.2) ensures that the solution to the system
optimization problem, (6) does not hit u; = 0, Vi € M.

This system problem is more general than the one in
Pavel [2006], where the individual cost function is selected
exactly as the individual optical input power. Moreover,
the total power constraint is not considered in Pavel [2006].

3.2 Solution

Theorem 1. Consider a constrained optimization problem
defined in (6). The constraint set  in (6), is non-empty,
and there exists a unique positive solution, u* if Vi € M,

1
Vi< = (7)
Zje/\/t Fm’

where I'; ; is defined in (1) and
1"-T(A) -b@A) < Py (8)
with b(7) = [n971,. .., n,Fm]” and T() = T~}(3).

Proof: We first show that the constraint set {2 in (6) is
non-empty.

The system-related matrix, I', in the OSNR model, (1), is
a positive matrix, such that if (7) is satisfied, we have

V=3l > 3D i jea Lig >0
ie.,

L=%iTii > 3252 jem | — il
such that the matrix T defined in (5) has positive main
diagonal entries. Moreover, T is strictly diagonally domi-
nant. According to Gershgorin’s Theorem, Horn and John-
son [1999], all eigenvalues of T have positive real part.
Moreover, all off-diagonal elements of T are non-positive
such that T is an M-matrix, Fiedler [1986], which has the
following properties: Tu > b > 0 implies u > 0, T is
non-singular and the inverse of T is non-negative. Thus

u>T 'b:=Tb (9)
such that 17-u>17.T b, ie,17-u>17.TH)-b(F).

Recall the total input power constraint in (6), 17 -u < P.
Then if the condition (8) is satisfied, i.e., 17 - T'(3) -
b(7) < Py, the set {u € R™ : Tu > b, 17u < Py} is non-
empty. Recall that Tu > b > 0 implies u > 0, therefore,
we prove that if 7 is selected such that the conditions of (7)
and (8) are satisfied, the constraint set, €2, is non-empty.

Moreover, the constraint set, Q, is convex, (Bertsekas
[1999], pp.689). We note that based on the link capacity
constraint and non-negativity constraint, we have 0 <
u; < Py, Vi € M, such that  is bounded. In addition,
it is also closed since it consists of intersection of half-
spaces (the simplest case is shown in Fig.2). Thus this
constrained system optimization problem is a strictly
convex optimization problem on a convex, bounded and
closed constraint set, which always admits a unique globe
minimum, u*, Bertsekas [1999]. |

We illustrate the constraint set, 2, and the conditions, (7)
and (8), with a simple example when m = 2 in Fig.2.

Fig. 2. Illustration of the constraint set, 2.

From (9), we have [;}] > {mwlq)'b}, where row;(A) is
rowz(T)-b

defined as the it row of the matrix A. From Fig.2, it’s
ready to see that the intersection point, @, lies in the set
of the total input power constraint, i.e.,

(rowl(f) b, rows(T) - b) € {ulu; + uz < Py}

if Z?zl row;(T)b < Py. Therefore § is non-empty.

Let us take a close look at the second condition, (8). In a
real network system, it is always a question how to express
the conditions under certain physical constraints.

(a). The input noise negligible: n ~ 0,V¥i € M Re-
call that n° denotes the input noise power at Tx and
can be considered to include some external noise, such
as thermal noise. If the input noise is neglected, n° in-
cludes only some other external noise, which is also neg-
ligible, Forghieri et al. [1998]. In this case, we get b =
(7991, ..., n2 A, ]7 ~ 0. Then Py > 17 -T-b ~ 0, which
means the constraint set is non-empty with only the first
condition, (7). Thus the OSNR target, 7;, can be selected
in a distributed way based on the first condition, (7).

(b). Mazimum OSNR target: Ymar  We know from the
proof of Theorem 1 that the matrix T defined in (5) is
strictly diagonally dominant, which means all eigenvalues
of T are inside the unit disk, Horn and Johnson [1999],
so that the spectral radius of T, p(T), satisfies p(T) < 1.
Moreover, T~ = (I-diag(7;)T) ' = Y32, diag((7:)*)T*
exists, where diag(a;) is a diagonal matrix whose diagonal
entries are ai,...,ay, and T~! is positive component-
wise, Pavel [2006]. We can rewrite (8) as

17+ diag((3:)")T* - diag(3:)n° < Py
k=0
such that if 7, increases (given 7;, j # 1), the left-hand
side (LHS) of (10), i.e., LHS of (8), will increase. Thus
when 7; < Ymae, Vi € M, we can find 7,4, by using the
following equation:
/’?max : ]-T : (I - ;y\maxr)_l : nO = PO (11)
It can be seen from the link OSNR model (1) that the
channel performance is interference limited. In addition,
(11) shows that the OSNR target levels significantly affect
the capacity of an optical link: the link decides the OSNR
threshold, Jq44, by using (11), and any new channel which
has a required OSNR level no more than 7,4, will be
admitted to transfer over the link. This idea can be used
for a link to develop channel admission control schemes.

(10)
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4. THE RELAXED SYSTEM PROBLEM AND
DISTRIBUTED ALGORITHMS

In this section, we use a penalty or barrier function,
Bertsekas [1999], to relax the original system optimization
problem, (6), into a an equivalent unconstrained prob-
lem, such that decentralized power update schemes can
be developed and used. We first build a relaxed system
optimization problem and study its unique solution. We
show that the solution of the relaxed system problem is
arbitrarily close to the one of the original system opti-
mization problem. After that, we study two distributed
algorithms (primal and dual) and show that they converge
to the unique solution of the relaxed system problem.

We rewrite the constraints in the system problem, (6), the
link capacity constraint and the target OSNR, constraint
in a vector form, as

Tu>b (12)
where the augmented matrix T = [ lT] and b = [ %]
Thus we rewrite the system problem in the following way:

212118 > iem Cilui) (13)
subject to Tu > b.

We have established in Theorem 1 that there exists an
optimal solution, u*, to the constrained system problem,
(13). Moreover, the cost function is strictly convex and
the constraints are linear such that there is no duality
gap and dual optimal prices (Lagrange multipliers), exist,
Bertsekas [1999]. Thus it readily follows that there exist a
Lagrange multiplier vector, A, such that u* minimizes the
following differentiable Lagrangian function,

L(w;\) = Y ic g Ci(w;) = AT(Tu - b) (14)
We let N
g; = row;(TT)A (15)
Thus we rewrite (14) as
L(w;A) = Yie g (Ci(w;) — qiug) + 2Tb (16)

The unique optimal solution, u*

Ci(ui) -

, is given by —L(u A) =
q; = 0, i.e.,

ui =GN a) (17)
where C; ~1 exists because C! is strictly monotonic, due to
the strict convexity of C;.
The dual problem of (13) is given by maxy>o D(X), where

D()) is defined as D(\) = miny>o L(u; \). Based on(15),
(16) and (17), the associated dual problem is given by

max Z (i€ @) — a:C (@) + AT (18)
where ¢; is deﬁned as in (15).
4.1 A barrier function

Basically, the penalty or barrier function method is used
to add a term to the objective function to penalize any
violation of the constraints. Here we select a continuous
barrier function, B;(-), with the following properties:

(P.1) B;(z) is non-increasing with respect to z;.

(P.2) B; ( ) attains the value 0 if z; > b;, where b; is defined
as in (12).

(P.3) The following statement is generally true for B;(-):

yi(u)
lim B;(z)dx — —o0, Vi e M
ui—oo fp

(19)

where

yi(u) = rowi('f‘)u (20)

An ideal construction of B;(+) is continuously non-negative
over the feasible region and B;(-) approaches oo as the
boundary is approached from the interior of the feasible
region.

4.2 A primal algorithm

Based a selected barrier function, A(u), which satisfies the
properties (P.1)-(P.3), we define a primal algorithm as the
set of differential equations, Vi € M,
i(t) = —ki (Ci(ui(t)) — ¢i(t))
(21)
where k; > 0 is the user-defined step-size constant and
qi(t) is defined as in (15):

6:(t) = rowi(T")A(y(w))

with a barrier function vector, A(-) = [A1(-),.
and variables, y;(u), defined 1n( 0).

Remark 2. The primal update algorithm leads us to imple-
ment it in a distributed way. The link as the coordinator
calculates the vector q(t) in (22) based on the received
channel input power, channel performance preference and
link constraint, then feeds this updated information back
to each channel. The channel adjustment algorithm (21)
is completely distributed and can be implemented by indi-
vidual channels using only local information. Fig.3 depicts
the information flow and the primal update algorithm is
also represented in terms of blocks in Fig.4.

%Ul(t) = gi(ui, q;) =

(22)
K /\m-‘rl(')]T

coupler /splitter
optical link A
1
| 7_%J_>J)_ - _0_>J |
N I A

feedback information

ﬁ link control

Fig. 3. The primal update algorithm: information flow

L= |
channel - link
7
B — gi(ui, q:) q ~rl._ A i(yi)

Fig. 4. The primal update algorithm: block representation

Now we establish that with the properties of the barrier
function, \;, we can construct a Lyapunov function,

yz(u)
ZC (u;) Z% dx

ieEM ieEM
for the system of differential equations, (21) to analyze its
convergence properties.

(23)
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The following theorem states that the unique equilibrium,
u*, is a stable point of the system.

Theorem 2. (asymptotically global stability) The unique

solution, u*, to the primal algorithm, (21), minimizing
Vp(u), is a stable point, to which all trajectories starting
from any initial condition converge.

Proof: Recall that the cost function, C;(u;) is strictly
convex such that ), C;(u;) is also strictly convex, thus
together with the second assumption for C;(u;), (A.2), and
the non-increasing property of the barrier function, V,(u)
defined in (23) is strictly convex, Srikant [2004], and

IVp(u)
Ou;
Solve the set of above equations we obtain
u; = C;_l(rowi('/l\‘T))\(u*)), Vie M
which is the unique solution of the primal algorithm, (21).

= C!(u;) — row; (TT)A(u) =0

We construct a modified Lyapunov function given as
V,(w) = Vp(u+u’) +C

where u* is the unique solution and C' is a constant such

that V,(u) > 0, Vu # 0 and V,(0) = 0. Moreover,

Yu # u*, we have

V) = i (2 Vp(w) i)

S S (C{(ui) - rowi(TT)A(u))Q <0
0

Since ?,,(u) = V,(u + u*), we have 7p(u) < 0, Yu # 0.
Recall the properties of the barrier function, (19), we have
V,(u) — o0,as [lul| — oo
Thus all of the conditions of Barbashin-Krasovskii theorem

(Khalil [2002], ppl124) are satisfied and the equilibrium
point u* is globally asymptotically stable. |

Based on Lyapunov function V,(u), we establish a relaxed
system problem for the original system problem, (13):

min v (u) (24)

The barrier function, A;(-), can be selected such that the
unique solution of (24) may arbitrarily closely approximate
the optimal solution of the original system problem, (13).

4.8 A dual algorithm

In the primal algorithm, the differential equations show
that u,(t) varies gradually given the barrier function A;(u).
Next, we consider another algorithm, where \;(t) varies
gradually, with u; given as the function of A;(¢), which we
refer as a dual algorithm:

d

Ailt) = Z(t) = ki (b rowl(T)u(t)) (25)

where ,
i) = C; rows(TT)A(1)) (26)
Recall the definition for ¢; in (15), ¢;(t) = owl(AT)/\(t),
We can rewrite the dual algorithm, (25) and (26), in a

distributed way:
Link: A\;(t) = k; (b rowl(T)u(t))

¢(t) = row;(TT)A(t), i € M (27)
Channel: u;(t) = 0;71(%(”)7 ieM (28)

The dual algorithm can be implemented in the distributed
way similar to the case of the primal update algorithm:
the link varies the vector q in accordance with (27) and
provides channel the value of ¢q. Each channel calculates
its individual input power based on the received g;.

Remark 3. Here ¢; is acting as a price, as in Kelly et al.
[1998], charging channel ¢ to pay for creating interference
to other channels, as well as utilizing the link source. From
this point of view, the dual problem, (18) is solved to
obtain revenue-maximizing prices for the link.

The following theorem establishes the global convergence.

Theorem 3. The dual algorithm, (27)-(28), is globally
asymptotically stable and converges to a unique solution
that solves the dual problem, (18).

Proof: The proof follows the one in Srikant [2004]. Sup-
pose u is the unique solution of the original constrained
system problem, (13). Then q is also a unique solution

since g; = C}(u;). Moreover, recall that T = [:{T} with
rank(T) = m (T is invertible), such that T7 has full row
rank. Thus A is a unique optimal solution according to
d = TTX. From Karush-Kuhn-Tucker (KKT) conditions,
Bertsekas [1999], there exists a unlque i and A satlsfylng
the following conditions: bj = rowJ(T)u or rowJ(T)ﬁ >

/l;j and Xj = 0. Next we consider the following Lyapunov

function,
M+1 R R Mg /
Valt) = Y (rowsDE -y - Y [ (@ - 6@
=1 im1 7
(29)
By using q = TT\, which leads to ¢ = TT\, we get
dVa(t) S TS
=(Tu—Db)" A
o (Tu—Db)

Using the vector form of the dual algorithm, (25), i
A= dz’ag(ki)(g - ’i‘u) we obtain

dVy(t)

dt

with @2 —  only when the condition, Bj = row; (’i‘)ﬁ,
is satisfied. It follows from the Lyapunov’s stability the-
orem, Khalil [2002], that the unique solution is globally
asymptotically stable. ]

= (Tu — b)Tdiag(k;)(b — Tu) < 0

5. SIMULATION RESULTS

The algorithms are simulated in MATLAB for a single
point-to-point optical link in Fig.1. The number of chan-
nels will not affect the performance of the algorithms. Thus
we consider that the link is with six channels and the link
capacity threshold is Py = 2.5 mW. Within the set of
channels, there are two levels of target OSNR, a 26 dB
level desired on the first three channels and a 22 dB level
on the next three channels. We note that the conditions
on the target OSNR, (7) and (8), are satisfied such that
the feasible constraint set is non-empty. The cost function
for channel 7 is defined as

Ci(u;) = aqui — Bilnwg, i=1,--+,6 (30)
where a; > 0 and §; > O. The selected cost function Ci(uq)

is obviously strictly convex and continuously differentiable
and C;(u;) — 400 as u; — 0.
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Due to space limitations, we present the simulation results
of the primal algorithm (21) only. The coefficients in (30)
is selected as o = 1073 x [3, 3, 3, 5, 5, 5|7 and B = 1073 x
[1.25, 1.5, 1.75, 0.9, 1, 1.1]7". The step-size is fixed for each
channel with k; = 0.1. The barrier function for channel i
is selected as

Xi(u) = 1000 (maX{O, b — TOwi(T)u})G

such that \;(u;) is zero when the constraints are satisfied
and there is a penalty with any violation of the constraints.
The total power and channel OSNR vs time are shown
in Fig.5 and Fig.6, respectively. By using the primal
algorithm to adjust all channel powers, the channel OSNR
levels converge to the corresponding desired values with
the total power not exceeding the link capacity constraint.

total power(mW)
26 T T

24r

23F

u

22

241

. . . .
0 1000 2000 3000 4000 5000
time

Fig. 5. The primal algorithm: Total Power vs Time

channel OSNR(dB)

28

OSNR

21
0

. . . .
1000 2000 3000 4000 5000
time

Fig. 6. The primal algorithm: Channel OSNR vs Time

6. CONCLUSION

We have studied a constrained OSNR optimization prob-
lem in optical links via a utility maximization approach.
Each channel obtains at the minimum its individual fixed
target OSNR level, and beyond that optimizes its input
optical power level, according to its objective performance
function, while respecting target OSNR levels of all other
channels and link capacity constraint. The system opti-
mization problem admits a unique solution given target
OSNR levels for all channels which satisfy certain condi-
tions. By using a barrier function, we have transformed the
original constrained problem into an unconstrained opti-
mization problem that can be solved using two algorithms,

a primal algorithm and a dual algorithm, in a decentralized
and iterative way. By using the Lyapunov function, we
have established the global asymptotical stability of these
algorithms. Extension of the results from single link case
to network case is an interesting future research direction.
One of the difficulties is that in the network case, the
constraint set is no longer automatically convex, due to
the power propagation, Pan and Pavel [2007a].
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