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Abstract: New randomized algorithms for stabilization and optimal control for linear systems
are proposed. They are based on Hit-and-Run method, which allows generating random points
in convex or nonconvex domains. These domains are either stability domain in the space of
feedback controllers, or quadratic stability domain, or robust stability domain, or level set for
a performance specification. By generating random points in the prescribed domain one can
optimize some additional performance index. The approach demonstrated its high efficiency for
numerous classical examples of design problems.
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1. INTRODUCTION

Randomized algorithms are now widely used effective tools
for various analysis and design linear control problems, see
Tempo et al. (2004). Up to now they are mostly oriented
on convex structure of the problem; this is why quadratic
stability is used instead of stability, quadratic robust sta-
bility instead of robust stability etc. However it remains
a challenging problem to deal with basic notions (such as
stability) in spite of nonconvexity of the domains under
consideration. It seems that so called Hit-and-Run (HR)
method provides an useful opportunity to achieve this goal.
The method was originally proposed in Turchin (1971)
and discussed in details in Smith (1984), it is a version of
Monte-Carlo method to generate points which are approx-
imately uniformly distributed in a given set. The method
found numerous applications in numerical analysis, for
instance in convex optimization, Bertsimas and Vempala
(2004). Surprisingly, up to our knowledge it has not been
exploited in control applications. We guess that HR is
the promising tool for stabilization and optimization of
linear systems. It allows generating random points inside
the stability domain or inside performance specification
domain in the space of gain matrices for feedback. Thus
we can, for instance, generate stabilizing controllers of
the fixed structure and optimize some performance index.
The only assumption is that one admissible controller is
available.

The structure of the paper is as follows. In Section 2 we
describe HR method and boundary oracle which is needed
for its implementation. Boundary oracle can be found
either in explicit form (e.g. for stability domain of SISO
systems) or it can be constructed numerically. Section 3
contains the general scheme of HR method applied to
control problems. Next Sections address various classes
of such problems. Section 4 treats stabilization of SISO

or MIMO systems. HR method allows solving such hard
problems as stabilization via static output feedback (pro-
vided that one stabilizing controller is given). Next Section
5 is devoted mostly to convex case (robust quadratic stabi-
lization problems). Uncertainty in the system can be given
in various forms, including interval matrix uncertainty. All
Sections contain examples, borrowed from the literature.
We demonstrate the efficiency of the proposed approach if
compared with known results.

2. HIT-AND-RUN AND BOUNDARY ORACLE

We start with presenting the idea and results relating to
HR method in general setting. Suppose there is a bounded
set K ⊂ R

n and a point k0 ∈ K. In every step we choose a
random vector d uniformly distributed on the unit sphere
in R

n. Such vectors can be easily generated by command
d = s/||s||, s = randn(n,1) in Matlab. We call boundary
oracle an algorithm which provides L = {t ∈ R : k0 +
td ∈ K}. In the simplest case, when K is convex, this
set is the interval (−t, t) where t = sup{t : k0 + td ∈
K}, t = sup{t : k0 − td ∈ K. In more general situations
boundary oracle provides all intersections of the straight
line k0 + td,−∞ < t < +∞ with K.

HR method generates points in K as follows:

k1 = k0 + t1d, t1 is uniformly distributed on L.

Then k0 is replaced with k1, L is updated with respect to
k1 and so on.

The simplest theoretical result on the behavior of HR
method states that if K does not contain lower dimensional
parts, then the method achieves the neighborhood of any
point of K with nonzero probability and asymptotically
the distribution of points ki tends to uniform one.

Theorem 1. (compare Smith (1984), Theorem 3). Suppose
K is open or coincides with the closure of interior points
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of K. Then for any measurable set A ⊂ K probability
Pi(A) = P (ki ∈ A|k0) can be estimated as |Pi(A) −
P (A)| ≤ qi, where P (A) = V ol(A)/V ol(K) and q < 1
does not depend on k0.

Unfortunately q strongly depends on geometry of K and
dimension n and can be close enough to 1. Tighter bounds
for the rate of convergence can be found in Lovasz (1999)
for convex K. For some problems boundary oracle is hard
to calculate, and we will use simplified version of it, where
the first intersection of the line with K is found:

t = sup{t : k0 + τd ∈ K, ∀τ ∈ [0, t]},

t = sup{t : k0 − τd ∈ K, ∀τ ∈ [0, t]}

Thus we take the segment [−t, t] instead of L. For this
version Theorem 1 is false for disjoint K. However for
simply connected sets with some additional properties an
analog of the result is true.

We provide boundary oracle for several sets, arising in
control applications.

1. Stability set for polynomials. Consider the affine family
of polynomials

P (s, k) = P0(s) +
n

∑

i=1

kiPi(s), (1)

where Pi(s) are m-th degree polynomials, and define the
set K in the space of parameters k = (k1, . . . , kn) which
correspond to stable polynomials:

K = {k : P (s, k) is Hurwitz} (2)

The geometry of such sets and of their boundaries is well
studied, see Gryazina and Polyak (2006). HR method looks
as follows. We assume that a stable polynomial P (s, k0)
is given. Then we generate random d ∈ R

n uniformly dis-
tributed on the unit sphere and take P (s, k0+td) = A(s)+
tB(s), A(s) = P (s, k0), B(s) =

∑n

i=1 diPi(s). The explicit
algorithm for finding L = {t : A(s) + tB(s) is Hurwitz}
is available, see Theorem 2 and Algorithm 1 in Gryazina
and Polyak (2006). In general L consists of not more than
m/2 + 1 intervals.

2. Stability set for matrices. For a family of matrices
A + BKC, where A ∈ R

n×n, B ∈ R
n×m, C ∈ R

l×n are
given and K ∈ R

m×l is a variable (which represents either
uncertainty or control gain) we can distinguish the set of
stabilizing gains:

K = {K : A + BKC is Hurwitz} (3)

The structure of this set is analyzed in Gryazina and
Polyak (2006). It can be nonconvex and can consist of
many disjoint domains. To construct the boundary oracle
we generate matrix D = Y/||Y ||, Y = randn(m,l) which
is uniformly distributed on the unit sphere in the space
of matrices equipped with Frobenius norm. Then we get
straight line A + B(K0 + tD)C = F + tG, F = A +
BK0C,G = BDC for a matrix K0 ∈ K. Then L =
{t : F + tG is Hurwitz}. L consists of finite number of
intervals, the algorithm for calculating their end points
is presented in Gryazina and Polyak (2006), Section 4.
However sometimes “brute force” approach is more simple.
Introduce f(t) = maxℜ eig(F + tG), then the end points
of the intervals are solutions of the equation f(t) = 0 and

can be found by use of standard 1D equation solvers (such
as command fsolve in Matlab).

3. Robust stability set. For the affine family of polynomials
with uncertain parameters q ∈ Q this set is defined as

K = {k : P0(s, q) +
n

∑

i=1

kiPi(s, q) is Hurwitz for all q ∈ Q}

(4)

If Q is a finite set {q1, . . . , qm} and m is small, the set
K is the intersection of m sets corresponding to m un-
certainties qi, thus the boundary oracle is the intersection
of corresponding boundary oracles: L =

⋂

Li. There are
also some other cases, when L can be calculated explicitly,
for instance pi(s, q) being interval polynomials. However in
more general situations we apply different approach work-
ing with robust stability problems (see Section 5 below).

4. Quadratic stability set. This set is defined as solution
of some LMIs, see S. Boyd and Balakrishnan (1994). The
typical example is the set of symmetric matrices P defined
by Lyapunov inequality:

K = {P > 0 : AP + PAT ≤ H} (5)

where A is a stable matrix and H < 0. This set is always
convex, and boundary oracle can be found explicitly.
Indeed, take P0 ∈ K, generate D = DT , ||D||F = 1
— a matrix, uniformly distributed on the unit sphere in
Frobenius norm. Then A(P0+tD)+(P0+tD)AT ≤ H ⇐⇒
F + tR < 0, F = AP0 + P0A

T − H, R = AD + DAT .
Then (see Polyak and Scherbakov (2006)) L = (−t, t) and
t = min λi, t = min µi, λi are positive real eigenvalues
of matrix pencil F,−R, µi are positive real eigenvalues of
matrix pencil F, R.

We do not discuss all other versions of boundary oracles
for different sets; they can be constructed in similar way.

3. GENERAL SCHEME OF HR METHOD

Now, when boundary oracle is specified, we can apply HR
method. The general setup for use of the method in control
design is as follows.

1. Given the set K of design variables (e.g. controller
parameters or uncertainties). The set K is the admissible
set with respect to some specifications (e.g. the set of
stabilizing controllers). It is given in implicit form — just
boundary oracle is available.

2.The only assumption is that we have a point k0 in
K. Starting with this point we generate the sequence
k0, k1, . . . , kN in K by use of HR method. These points are
approximately uniformly distributed in K and give good
representation of the entire K.

3. We have a performance index J(k) and some extra
specifications. They can be any engineering characteristics
— gain or phase margin, overshoot or other time-response
characteristics, robustness margin — or mathematical
objectives such as H2 or H∞ norm. First, we reject points
ki which violate these specifications. Second, we calculate
J(ki) for remaining samples and find the optimal one k∗.
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4. In the neighborhood of k∗ we can repeat the process,
taking the intersection of K with some trust region (say a
ball centered at k∗ of radius ε) as new admissible set and
k∗ as the initial point.

The first challenge, however, is establishing whether solu-
tions exist, i.e. obtaining the starting point k0. We propose
the following routine for this need. For the stabilization

problem an arbitrary k̂ should be taken and the value

σ = maxℜ(roots P (s, k̂)) (for polynomial stabilization)

or σ = maxℜ(eig A(K̂)) (for matrix stabilization) is
calculated. Then we generate HR points in the region

K̂ = {k : ℜrootsP (s, k) ≤ σ} or

K̂ = {K : ℜeig(A + BKC) ≤ σ}

instead of K and minimize σ. Since σ < 0 is obtained for
a generated point k̃ take k0 = k̃ as a starting point.

For the quadratic stabilization problem the approach is
similar. Take arbitrary P̂ > 0 and set σ = maxℜeig(AP̂ +

P̂AT − H) then P̂ is a feasible point for the region

K̂ = {P > 0 : AP + PAT ≤ H + σI}.

We generate HR points in K̂ and minimize σ. Obtaining
σ < 0 for a generated point P̃ means that P 0 = P̃ is a
feasible point for the initial K and can be treated as a
starting point. Unfortunately, we can not guarantee the
convergence of the proposed routine but it showed high
efficiency.

Further we assume starting point k0 to be known to
demonstrate the applications of the HR algorithm.

4. STABILIZATION OF SISO AND MIMO SYSTEMS

1. Consider LTI SISO plant

G(s) =
a(s)

b(s)

where a(s), b(s) are given polynomials of order m. We wish
to stabilize it with low order controller

C(s) =
f(s)

g(s)

where polynomials f(s), g(s) have fixed orders (for in-
stance, it can be PID-controller). We assume that one
stabilizing controller C0(s) = f0(s)/g0(s) is known.

The closed-loop characteristic polynomial is

P (s) = a(s)f(s) + b(s)g(s). (6)

If we treat the coefficients of the polynomials f(s), g(s)
as parameters k, we are at the setup of (1). Thus we can
apply the general scheme of HR method from Section 3.

It is of interest to compare this technique with the one
reported in Kiselev and Polyak (1999). In this paper the
case of two parameters was considered; this admits graph-
ical representation of K. Generation of points in K was
done by-hand, with no attempts to cover this set uni-
formly. Nevertheless solution of many classical examples
was improved in Kiselev and Polyak (1999). Our approach
is the extension of this technique to multi-dimensional case
with more systematical exploration of the admissible set.

Example 1. This example is taken from Demo of Robust
Control Toolbox for Matlab 5.0 and it was improved in
Kiselev and Polyak (1999). Given a SISO plant

P (s) =
9000

s3 + 30s2 + 700s + 1000
.

The objective is to find a controller that minimizes

F =

∥

∥

∥

∥

W1S
W2T

∥

∥

∥

∥

∞

,

W1 =
1.5(1 + s/30)2

0.01(1 + s)2
, W2 =

1 + s/40

3.16(1 + s/300)
.

The sixth-order controller proposed by Robust Control
Toolbox provides F = 0.998. In Kiselev and Polyak (1999)
the second-order controller

C0(s) =
0.052s2 + 1.16s + 10.41

(1.01s + 0.902)(0.011s + 1.005)
.

was found that provides F = 1.296.

For application of HR method in this example we generate
1000 stabilizing controllers starting with C0. The stability
domain is not bounded in R

6 space of the parameters so
we need to specify bounds for the controller parameters.
First we take 1-box neighborhood of the starting controller
parameters and it allows ≈ 1% improvement of the quality
criteria. Then for 1000 points generated in 0.1-box neigh-
borhood the local improvement is ≈ 11% for the controller

C∗(s) =
0.059s2 + 1.111s + 10.47

0.005s2 + 0.938s + 0.807
.

Example 2 Y. Fujisaki and Tempo (2007). Given a SISO
plant

P (s) =
17(s + 1)(16s + 1)(s2 − s + 1)

s(−s + 1)(−s + 90)(4s2 + s + 1)

and a fixed order controller C(s) of the form

C(s) =
k1 + k2s + k3s

2

k4 + k5s + k6s2
.

The problem is to find controller parameters that guar-

antee ||W (s)S(s)||∞ < 1 with W (s) = 55(1+3s)
1+800s

. Starting

with a controller found in Y. Fujisaki and Tempo (2007)

C0(s) =
−0.532 − 0.5407s − 2.0868s2

1 − 0.3645s − 1.2592s2
(7)

we restrict controller parameters to stay in 0.1-box neigh-
borhood of the original parameter values and generate
1000 stabilizing controllers via Hit-and-Run method. Then
for each controller we calculate ||W (s)S(s)||∞, for 217
points it appears to be less than one. Finally, we choose
the best controller

C∗(s) =
−0.5317 − 0.5686s − 2.0905s2

0.9901 − 0.2995s − 1.2008s2

that leads to ||W (s)S(s)||∞ = 0.8206 compared to 0.9822
for controller (7). So here Hit-and-Run also allows per-
forming local improvement.

2. Proceed to static output feedback stabilization for
uncertain LTI MIMO plant:

ẋ = A(q)x + B(q)u, y = C(q)x, u = Ky, (8)

the objective is to find robustly stabilizing gains K pro-
vided we know one of them.
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Fig. 1. Stabilizing controller parameters for nominal sys-
tem

Example 3.

Here A =







−0.0366 0.271 0.0188 −0.4555
0.0482 −1.01 0.0024 −4.0208
0.1002 q1 −0.707 q2

0 0 1 0






,

B =







0.4422 0.1761
q3 −7.5922

−5.52 4.49
0 0






, C = [ 0 1 0 0 ],

q ∈ Qρ = {q : |qi − q0
i | ≤ ργi}, q0 = [0.3681, 1.42, 3.5446];

γ = [0.05, 0.01, 0.04]. The original problem here is to find a
controller robustly stabilizing the closed-loop system with
ρ = 1 and a decay rate of at least α = 0.1. This problem
arises in control of helicopters: Singh and Coelho (1984)
and was studied in Bhattacharyya (1987), El Ghaoui and
AitRami (1997), Tempo et al. (2004).

We apply our technique that allows finding better con-
troller robustly stabilizing the system with a wider uncer-
tainty range and, perhaps, a larger decay rate.

The first step is to generate controllers stabilizing the
nominal system, i.e. with q = q0. The closed-loop system
matrix is Ac = A + BKC, thus we are in the frame-
work of (3) and can apply HR method tailored for this
problem. Starting with the stabilizing controller K =
[−0.4357; 9.5652] (see El Ghaoui and AitRami (1997)) we
generate 1000 points that belong to the intersection of the
stability domain and the bounding box ‖K‖∞ ≤ 100.

Then we select a controller that guarantee a decay rate
α = 0.1, there are 187 controllers among 1000 that satisfy
this requirement. Taking for the nominal matrix A0 = A+
αI and the selected controller as a starting point we
generate 1000 controllers for the required α. Fig. 1 shows
that these controllers correspond to a segment (where the
density of points is higher) among those generated in the
first step. Boundary points are naturally obtained in HR
procedure and they are also depicted.

Then we take into consideration the uncertainty with en-
larged uncertainty intervals, i.e. ρ > 1. For each controller
that guarantees a decay rate α = 0.1 we check if it
stabilizes 1000 random points uniformly generated in the
box Qρ. For ρ = 40 (i.e. 40 times larger than original in-
tervals) we still can find several suitable controllers. Their
parameters are situated in the middle of the segment.
Take, for instance, K = [7.1096; 57.6346]. Straightforward
validation shows that this controller is indeed robustly
stabilizing.

5. ROBUST QUADRATIC STABILIZATION

The general setup has been described in Part 4 of Section
2. We illustrate how this technique works for one example.

Example 4. Here we investigate the example originated in
Barmish (1985). Consider a system with uncertainty (8)
with

A =

[

q1 1
0 q1

]

, B =

[

q2

1

]

, q ∈ Qρ = {q : |qi| ≤ ρ, ρ = 0.5}.

For the problem of quadratic robust stabilization in
Barmish (1985) a very complicated nonlinear control is
suggested. We strive to find a linear control K = [k1; k2]
solving the same problem.

The stability domain for the nominal system (qi = 0,
i = 1, 2) can be easily found: k1 < 0, k2 < 0. First we
generate controllers quadratically stabilizing the nominal
system, i.e. such K that for Ac = A + BK there exist
P > 0: AT

c P +PAc < 0. Multiplying by Q = P−1 we have
LMI in Q and Y :

Q > 0, QAT + AQ + BY + Y T BT < 0, Y = KQ.

For a starting point we take feasible solution of LMI
using Yalmip (Lofberg (2004)). HR allows generating any
number of feasible points (and correspondingly controller
parameters).

Then there are two ways to deal with uncertainty. First
is straightforward checking robust quadratic stabilization
for each controller that quadratically stabilized the nom-
inal system by generating required number of uncertain
samples. This approach can give a probabilistic solution.
Another approach is applicable when it is sufficient to
check feasibility of a certain (not very large) number of
LMIs corresponding to uncertain bounds. In this example
it is sufficient to check quadratic stabilizability of 4 vertex
samples. In this case HR is applicable taking

K =
⋂

i

{Q > 0, QAT
i + AiQ + BiY + Y T BT

i < 0},

where index i corresponds to the vertex sample. For gener-
ating quadratic robust stabilizing controllers the boundary
oracle for the set (5) is exploited taking Q = Q0 + J ,
Y = Y0 + G and F = Q0A

T
i + AiQ0 + BiY0 + Y T

0 BT
i ,

R = JAT
i +AiJ+BiG+GT BT

i , where matrix J and vector
G specify random direction in a corresponding space.

Note that this points are asymptotically uniform in the
space of Q,Y matrices but not in the space of controller
parameters K = Y Q−1. Fig. 2 depicts robust stabilizing
controllers for the original uncertain set with ρ = 0.5
(points).
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Fig. 2. Robust quadratic stabilizing controllers

Now we want to increase ρ. For ρ = 0.8 there are no
quadratic robust stabilizing controllers but for ρ = 0.7
their parameters are marked with ”o” in Fig. 2. Note that
the absolute parameter values are greater than that for
ρ = 0.5.

The controller parameters may happen to be large enough
but we can also deal with box-restrictions for controller
parameters, e.g. ||K||∞ ≤ γ with starting point K0

satisfying this condition. Another natural box-restriction
is ||K − K0||∞ ≤ γ as it was used in Examples 1,2. For
every Hit-and-Run step we solve one-dimensional problem
of boundary oracle in t, for every feasible point (t = 0)
the restriction holds. Then find the closest to zero positive
and negative t such that

||K(t)||∞ − γ = ||Y (t)Q(t)−1||∞ − γ = 0,

where Y (t) = Y0 + tG, Q(t) = Q0 + tJ . These t should be
treated as additional candidates for t and t of the boundary
oracle in HR algorithm.

6. CONCLUSIONS

Hit-and-Run is the promising tool for stabilization and op-
timization of linear systems. It allows solving high dimen-
sional problems since the boundary oracle is available. The
only requirement is the knowledge of one point belonging
to the set but an auxiliary routine for obtaining this point
is proposed. For the problems of polynomials and matrices
stabilization, robust and quadratic stabilization general
scheme of HR method is presented. Various specifications
can be considered simultaneously as well as additional box-
restriction for the controller parameters can be handled.

HR gives an opportunity to come up to hard problems. For
instance, we dare to find row-vector K : 1×500, stabilizing
the continuous-time system with matrix A : 500 × 500,
B : 500 × 1. It appears to be possible to generate 1000
stabilizing controllers less than for 30 minutes for the
system in canonical form, this system matrix is extremely
sensitive (condition number 1e+150) to perturbations. For
full matrices the procedure is much faster.

The proposed approach looks very promising for different
design problems in control.
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