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1. INTRODUCTION

The problem of the absolute stability of single-variable
Lur’e systems with sector-restricted, time-varying non-
linearities has been extensively investigated (Boyd et al.
[1994]). In light of the work of Pyatnitskii (Pyatnitskii
[1970]) the problem may be viewed as a special case of the
stability problem for hybrid dynamical systems (Liberzon
& Morse [1999]). Although numerous results are available,
few are independent of the co-ordinates or the order and
the majority deploy some numerical procedures. The ap-
plication of Lyapunov methods to this problem most com-
monly leads to an LMI in a certain standard form. Applica-
tion of the K-Y-P lemma (Rantzer [1996]) transforms these
standard LMIs to frequency-domain inequalities. The cir-
cle criterion (Boyd et al. [1994]) is, without doubt, the
most useful and general absolute stability criterion which
can be thus obtained. Moreover, this criterion comprises
a necessary and sufficient condition for the existence of a
common quadratic Lyapunov function for a single-variable
Lur’e system with sector-restricted nonlinearity.

Johansson & Rantzer [1998] have considered the prob-
lem of determining the existence of common, piecewise-
quadratic Lyapunov functions for Lur’e systems and
present the solution in the form of LMIs which contain
many free parameters. The sheer number of free parame-
ters is certainly a problem in using this technique. Some
work (Brockett [1965], Molchanov & Pyatnitskii [1986],
Wulff et al. [2002], Duignan & Curran [2006]) has sug-
gested that there may be merit in considering far more spe-
cialized common, piecewise-quadratic Lyapunov functions.
In the present note necessary and sufficient conditions are
sought for the existence of common Lyapunov functions
of this specialized form. Conditions for the existence of
such functions lead to two simultaneous LMIs, with each
individual LMI in standard form.

In his proof of the K-Y-P lemma Rantzer [1996] introduced
a novel approach to the treatment of a single, standard-
form LMI. The purpose of the present paper is to show
that this approach can be adapted to the study of two
simultaneous, standard-form LMIs. Whereas in the case
of a single, standard-form LMI Rantzer is able to present
the necessary and sufficient conditions for the existence of

a solution in the simplest possible form, this cannot be
achieved in the case of two simultaneous, standard-form
LMIs. Nonetheless we contest that in the latter case neces-
sary and sufficient conditions for the existence of a solution
can be presented in the second simplest possible form. The
formal meaning of simplicity in this context is outlined
below. The proof of this claim presented below is unfortu-
nately subject to a simplifying assumption concerning the
simultaneous LMIs. We feel that this assumption can be
eliminated, but have yet to successfully do so.

Notation: Given any matrix M , M∗ denotes the transpose
conjugate, tr(M) denotes the trace and λi(M) denotes an
eigenvalue of M .

2. A GENERALIZATION OF THE K-Y-P LEMMA

The LMI considered by Rantzer [1996] takes the following
form: [

ATP + PA PB
BTP 0

]
+N < 0. (1)

We will call this a standard-form LMI. We seek necessary
and sufficient conditions for the existence of a symmetric
solution P to the two simultaneous, standard-form LMIs:[

ATP + PA PB
BTP 0

]
+N ±M < 0. (2)

Although it is a constraint that we conjecture may be un-
necessary and one which we will seek to eliminate in future
work, for the present we must assume that rank(M) ≤ 2.
This is the unfortunate assumption referred to at the end
of the introduction. The K-Y-P lemma provides necessary
and sufficient conditions for the existence of a symmetric
solution P to this LMI in the special case where M = 0
and under certain relatively mild assumptions concerning
matrices A and B. Rantzer [1996] provides a proof of the
K-Y-P lemma. Logically his method divides the proof into
two parts. The first part comprises a translation of the
problem into a question of whether the intersection of
two convex sets is null. This same translation can be em-
ployed in a wide variety of alternative but related problems
and in particular will be employed below in treating the
simultaneous LMI (2) of the present paper. The second
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part of Rantzer’s method comprises a useful insight into
the intersection of these convex sets, namely that if there
exist points in the intersection then there exist very special
points (i.e. points having a special, simple structure) in this
intersection. We will establish that a corresponding, if not
quite so simple, property holds for the intersection points
of the convex sets arising in the context of the simultaneous
LMI (2) of the present paper. We state the main result as
follows:
Theorem 1. GivenN = NT andM = MT ∈R(n+m)×(n+m),
A ∈ Rn×n, B ∈ Rn×m, there exists P = PT ∈ Rn×n such
that [

ATP + PA PB
BTP 0

]
+N ±M < 0 (3)

if and only if
2∑
k=1

(z∗kNzk + |z∗kMzk|) < 0

for all z1, z2 ∈ C n+m not both zero s.t.
2∑
k=1

[ In 0 ] zk ([A B ] zk)∗ + [A B ] zk ([ In 0 ] zk)∗ = 0.(4)

Proof. To commence we closely follow the proof of
Rantzer [1996]. Let Hn denote the set of n × n Hermi-
tian matrices, let ‖ ‖2 denote the 2-norm and let conv(S)
denote the convex hull of set S. Define sets

Θ = {(r,H) ∈ R×Hn : r = z∗Nz + |z∗Mz| ,
H = ([ In 0 ] z) ([A B ] z)∗ + ([A B ] z) ([ In 0 ] z)∗ ,

z ∈ Cn+m s.t. ‖ z ‖2= 1
}

and
P = {(r,H) ∈ R×Hn : r ≥ 0 , H = 0} . (5)

It is clear that P is convex. For any given real number p
and real, symmetric n × n matrix P define an associated
real linear functional (p, P ) on R×Hn by

(p, P ) : (r,H) 7→ pr + tr(PH). (6)

Following the reasoning of Rantzer it is clear that if
P is a solution of the simultaneous LMI (2) then the
functional (1, P ) is positive on P \ {(0, 0)} and negative
on Θ. Accordingly there exists a symmetric solution P to
LMI (2) only if

conv(Θ) ∩ P = ∅. (7)

We contend that necessary condition (7) is also sufficient
for simultaneous LMI (2) to possess a symmetric solution
P . In justifying this contention we depart somewhat from
Rantzer’s proof and, moreover, postpone the details to the
appendix. Note that P is a closed convex cone with vertex
(0, 0) (Lay [1982]) satisfying P ∩ (−P) = {(0, 0)}. Note
also that since Θ is compact (being a continuous image of
a compact set), conv(Θ) is convex and compact. It follows
from lemma 2 of the appendix that if (7) holds then there
exists a real linear functional on R×Hn which is negative
on conv(Θ) and positive on P \{(0, 0)}. Accordingly there
exists a symmetric solution P to LMI (2) if and only if
condition (7) holds. This completes the first part of the

proof of the theorem 1 by Rantzer’s method where the
question of the existence of solutions to an LMI problem
has been translated into the question of whether the
intersection of two convex sets is null.

Any element of conv(Θ) may be written as a convex com-
bination of elements of Θ. Hence, after some manipulation,
the condition (7) can be reduced to the more explicit form:
for all z1, . . . , zK ∈ C n+m for which

‖ zk ‖2≤ 1 for all k ,

K∑
k=1

‖ zk ‖2 = 1 and

K∑
k=1

([ In 0 ] zk) ([A B ] zk)∗ + ([A B ] zk) ([ In 0 ] zk)∗ = 0

one has
K∑
k=1

(z∗kNzk + |z∗kMzk|) < 0. (8)

Caratheodary’s theorem (Lay [1982]) assures that K need
not exceed n2 + 2. Although there are ways of viewing
condition (8) which render it a little less intimidating
there remains a fundamental problem that this condition
is not simple. The number K is a good measure of the
complexity of the condition, with smaller K yielding a
simpler condition. K is the formal measure of simplicity re-
ferred to in the introduction. The second part of Rantzer’s
method in the special case where M = 0 justifies setting
K = 1 in general. This renders condition (8) as simple as
possible and in fact the condition reduces to a standard
frequency domain inequality in this case. Unfortunately
for the simultaneous LMI (2) one cannot in general set
K = 1. However, we will go on to show that it is possible
in certain cases (and in particular when rank(M) ≤ 2) to
do the next best thing, namely to set K = 2. It is in this
sense that we can claim, as we did in the introduction,
that the condition is reduced to the second simplest form.
The completion of the proof therefore relies on establishing
that if condition (8) holds for K = 2 then it holds for any
K not exceeding n2 + 2.

Accordingly, assume condition (8) holds for K = 2 and
consider the condition for general K. Since
K∑
k=1

([ In 0 ] zk) ([A B ] zk)∗ + ([A B ] zk) ([ In 0 ] zk)∗ = 0

one has
[ In 0 ]W [A B ]∗ + [A B ]W [ In 0 ]∗ = 0 (9)

where

W =
K∑
k=1

zkz
∗
k.

Reorder {z1, . . . , zK} if necessary such that z∗kMZk ≥ 0
for k = 1, . . . , r and z∗kMZk < 0 for k = r + 1, . . . ,K,
allowing that r may be zero or K if one of the subsets is
empty. Let

W1 =
r∑

k=1

zkz
∗
k , W2 =

K∑
k=r+1

zkz
∗
k
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allowing that one of the sums may be zero. Clearly Wi is
positive, semi-definite, Hermitian for each i. Accordingly,
there exist Qi ∈ C(n+m)×(n+m) such that

Wi = QiQ
∗
i i = 1, 2 and W = W1 +W2.

It follows from (9) that

([ In 0 ] [Q1 Q2 ]) ([A B ] [Q1 Q2 ])∗

+ ([A B ] [Q1 Q2 ]) ([ In 0 ] [Q1 Q2 ])∗ = 0 (10)

Employing a lemma of Rantzer [1996] it follows that (10)
holds if and only if

[ In 0 ] [Q1 Q2 ]
(
I2(n+m) + U

)
= [A B ] [Q1 Q2 ]

(
I2(n+m) − U

)
, (11)

U ∈ C2(n+m)×2(n+m), unitary. Lemma 3 of the appendix
introduces a second-order decomposition for U . Employing
such a decomposition it follows that for all k(

I2(n+m) + U
) [ Fk

Gk

]
=
[
Fk
Gk

]
(I2 − Φk) .

Accordingly, by (11) for all k

[ In 0 ] [Q1 Q2 ]
[
Fk
Gk

]
(I2 + Φk)

= [A B ] [Q1 Q2 ]
[
Fk
Gk

]
(I2 − Φk) . (12)

For all k let Q1Fk + Q2Gk = [ŵk w̃k] ∈ C(n+m)×2, then
by (12)
[ In 0 ] [ ŵk w̃k ] (I2 + Φk) = [A B ] [ ŵk w̃k ] (I2 − Φk) .(13)

Employing the same lemma of Rantzer [1996] it follows
that

[ In 0 ] (ŵkŵ∗k + w̃kw̃
∗
k) [A B ]∗

+ [A B ] (ŵkŵ∗k + w̃kw̃
∗
k) [ In 0 ]∗ = 0. (14)

Setting z1 = ŵk and z2 = w̃k, then from (14) and the
assumed K = 2 case of condition (8), it follows that for
each k = 1, . . . , n+m

ŵ∗kNŵk + |ŵ∗kMŵk|+ w̃∗kNw̃k + |w̃∗kMw̃k| < 0

and therefore upon adding and applying the triangle
inequality

tr(NŴ1) +
∣∣∣tr(MŴ1

∣∣∣+ tr(NŴ2) +
∣∣∣tr(MŴ2

∣∣∣ < 0. (15)

Let

Ŵ1 =
n+m∑
k=1

ŵkŵ
∗
k , Ŵ2 =

n+m∑
k=1

w̃kw̃
∗
k,

then

Ŵ1 + Ŵ2 =
n+m∑
k=1

[ ŵk w̃k ] [ ŵk w̃k ]∗

=
n+m∑
k=1

[Q1 Q2 ]
[
Fk
Gk

]
[ F ∗k G∗k ] [Q1 Q2 ]∗

= [Q1 Q2 ] [Q1 Q2 ]∗ = Q1Q
∗
1 +Q2Q

∗
2 = W1 +W2 = W.

Accordingly (15) can be rewritten

tr(NW1) +
∣∣∣tr(MŴ1

∣∣∣+ tr(NW2) +
∣∣∣tr(MŴ2

∣∣∣ < 0. (16)

As (16) must hold for every unitary matrix U or alter-
natively for every matrix T̂1 related to matrix U after the
manner of lemma 4 it follows that it must also hold for that
special choice of T̂1 such that the upper bound in lemma 5
is attained. In this special case it is readily shown that (16)
becomes:

tr(NW1) + tr(NW2) +
∑
i

|λi(MW1 +MW2)| < 0. (17)

Finally, by lemma 6, the only lemma which requires the
unfortunate assumption that rankM ≤ 2, one obtains:

tr(NW1) + tr(NW2) + |tr(MW1)|+ |tr(MW2)| < 0 (18)

which is readily seen to be equivalent to condition (8).
Accordingly we obtain the required result, that the K = 2
case of condition (8) implies the general case.

3. ABSOLUTE STABILITY

Towards an application of theorem 1 consider the single-
variable Lur’e system (Boyd et al. [1994])

ẋ = Ax− bf(cTx, t) (19)

where x ∈ Rn, A ∈ Rn×n, b, c ∈ Rn×1, such that
bT b = 1, cT b = 1, {b, c} linearly independent and f
is a sector [0,∞), time-varying nonlinearity. We seek
a common piecewise-quadratic Lyapunov function of a
highly specialized form:

V (x) =
{
xTP1x if (bTx)(cTx) > 0
xTP2x if (bTx)(cTx) < 0

(20)

where the matching condition

xTP1x = xTP2x if (bTx)(cTx) = 0

is imposed. Let P = (P1 + P2)/2 and, for convenience, let
S = bcT + cbT , then the matching condition is equivalent
to

P1 = P + p0S , P2 = P − p0S (21)

for arbitrary scalar p0 . Applying the S-procedure yields
the following conditions for the derivative of V to be
negative-definite for any sector [0,∞) nonlinearity f :

Pb = (γ − p0)c+ (τ − p0)b (22)

γ ≥ 2p0 ≥ 0, 2p0 ≥ τ ≥ 0.

ATP + PA+ p0(ATS + SA) + q1S < 0, q1 ≥ 0

ATP + PA− p0(ATS + SA)− q2S < 0, q2 ≥ 0

The latter may be combined to yield:

ATP + PA+ ((q1 − q2)/2)S (23)

±
(
p0(ATS + SA) + ((q1 + q2)/2)S

)
< 0

Hence

ATP + PA+N ±M ≤ 0 (24)
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where

N =
[

((q1 − q2)/2)S −(γ − p0)c− (τ − p0)b
−(γ − p0)cT − (τ − p0)bT 0

]
and

M =
[
p0(ATS + SA) + ((q1 + q2)/2)S 0

0T 0

]
.

Accordingly the question of the existence of a common
Lyapunov function of this specialized form reduces to
two simultaneous, standard form, albeit non-strict LMIs
of the form (2). We note that in this example matrix
M has rank 4 in general. The non-strict nature of the
LMIs and the rank of M exceeding 2 imply that the
generalized K-Y-P lemma as presented cannot be applied.
The purpose of the example, rather, is to indicate how
simultaneous, standard-form LMIs can arise in a natural
way in absolute stability problems. Furthermore if, as con-
jectured, the critical lemma 6 can be proven without the
unfortunate rank assumption, then the generalized K-Y-P
lemma can also be established without this assumption.
In this event the excessive rank of M proves no hindrance.
Rantzer’s method certainly applies to non-strict, standard-
form LMIs. Whether it can be adjusted to apply to the
LMIs of the form (22)/(23) remains uncertain. The author
could perhaps construct an example of a stability problem
which leads to simultaneous, standard form LMIs satisfy-
ing the required rank condition, but this would surely be
disingenuous and any such example would surely appear
contrived. The author prefers to openly state the need to
prove lemma 6 (and hence the generalized K-Y-P lemma)
ideally for matrices M of any rank and at a minimum for
matrices M of rank not exceeding 4.

4. CONCLUSION

It is possible to extend the K-Y-P lemma to two simultane-
ous LMIs. Whereas the extension no longer leads to criteria
for the existence of a solution in the simplest possible form,
according to a certain strict sense of simplicity, it does lead
to criteria in the second simplest possible form.

REFERENCES

S.Boyd, L. El Ghaoui, E.Feron and V.Balakrishnan. Lin-
ear Matrix Inequalities in System and Control theory.
Studies in Applied Mathematics, SIAM, Philadelphia,
volume 15, 1994.

R.W. Brockett. Optimisation theory and the converse of
the circle criterion. Proceedings Nat. Electronic Conf.,
697–701, 1965.

R. Duignan and P. F. Curran. A new absolute stability cri-
terion for 2-D single variable Lur’e systems. Proceedings
IEEE Int. Symp. on Nonlinear Theory and Applications,
2006.

M. Johansson and A. Rantzer. Computation of piecewise
quadratic Lyapunov functions for hybrid systems. IEEE
Trans. Automat. Control, 43: 555–559, 1998.

V.L. Klee. Separation properties of convex cones. A.M.S.
Proceedings, 6: 313–318, 1955.

S.R. Lay. Convex sets and their application Pure &
Applied Mathematics, Wiley, New York, 1982.

D. Liberzon and A.S. Morse. Basic problems in stability
and design of switched systems. IEEE Trans. Automat.
Control, 19: 59–70, 1999.

A.P. Molchanov and E.S. Pyatnitskii. Lyapunov functions
that specify necessary and sufficient conditions of abso-
lute stabilty of nonlinear control systems I. Avtomatika
i Telemekhanika, 47: 63–73, 1986.

E.S. Pyatnitskii. Absolute stability of nonstationary non-
linear systems. Avtomatika i Telemekhanika, 31: 5–15,
1970.

A. Rantzer. On the Kalman-Yakubovich-Popov lemma.
Systems & Control Letters, 28: 7–10, 1996.

K. Wulff, R. Shorten and P. Curran. On the 45o criterion
and the uniform asymptotic stability of classes of second
order parameter-varying and switched systems. Int. J.
Control, 75: 812–823, 2002.

Appendix A

The statements of some technical details are presented.
Lemma 2. Let X be a real vector space of finite dimension.
Let C be a convex, compact set not containing the zero
vector 0. Let D be a closed convex cone with vertex 0 such
that D∩(−D) = {0}. Assume C∩D = ∅, then there exists
a continuous real linear functional h on X such that h < 0
on C, h = 0 on {0} and h > 0 on D \ {0}.

Proof. We shall base the proof on theorem 2.7 of Klee
[1955]. To this end, let

C̃ = {x ∈ X : x = λc , λ ≥ 0 , c ∈ C}

Since C is convex, it is elementary to verify that C̃ is a
convex cone with vertex 0. As 0 6∈ C and C is compact,
there exists η > 0 such that ‖ c ‖2≥ η for all c ∈
C. Selecting R > 0 arbitrary, choose λ ≥ R/η. It is
elementary to show that

C̃ ∩B(0, R) = (conv [{0} ∪ λC]) ∩B(0, R) (A.1)

where B(0, R) denotes the closure of the ball of radius
R centered at 0. From (A.1) and the compactness of C it
follows that C̃∩B(0, R) is closed [2.30, 5]. As R is arbitrary
it follows that C̃ is closed, since every Cauchy sequence is
bounded.

From the convexity of C one readily obtains that C̃ ∩
(−C̃) = {0}. Finally, since C and D are disjoint, it follows
that D ∩ C̃ = {0}.
As X is locally compact theorem 2.7 of Klee [1955] implies
that there exists a continuous real linear functional h on
X such that h < 0 on C̃ \ {0}, h = 0 on {0} and h > 0
on D \ {0}. Of course 0 6∈ C implies C ⊂ C̃ \ {0}, so that
h < 0 on C.
Lemma 3. Let U be a 2(n+m)×2(n+m) unitary matrix
then there exist 2×2 unitary matrices Φk and (n+m)×2
matrices Fk and Gk for k = 1, . . . , (n+m) such that

U =
n+m∑
k=1

[
Fk
Gk

]
Φk [ F ∗k G∗k ] (A.2)

n+m∑
k=1

[
Fk
Gk

]
[ F ∗k G∗k ] = I2(n+m)
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[ F ∗k G∗k ]
[
Fl
Gl

]
= δklI2

for all k, l.

Proof. As U is unitary 2(n + m) × 2(n + m) there exist
scalars θk and orthonormal vectors uk ∈ C2(n+m) such
that

U =
2(n+m)∑
k=1

ejθkuku
∗
k ,

2(n+m)∑
k=1

uku
∗
k = I2(n+m) (A.3)

Let

Φk = ejθ2k ûkû
∗
k + ejθ2k−1 ũkũ

∗
k (A.4)

where ûk and ũk are arbitrary 2 × 1 orthonormal vectors
such that ûkû∗k + ũkũ

∗
k = I2. Let Fk = [ f1k f2k ], Gk =

[ g1k g2k ] where fik, gik ∈ Cn+m. Let

uk =
[
uk1
uk2

]
where uki ∈ C(n+m). With these notations equation (A.2)
may be expanded as: u2k,1

u2k−1,1

u2k,2

u2k−1,2

 =

 ûk1I ûk2I 0 0
ũk1I ũk2I 0 0

0 0 ûk1I ûk2I
0 0 ũk1I ũk2I


 f1kf2kg1k
g2k

 (A.5)

where the identity matrices and the zero blocks are (n +
m)×(n+m). Orthonormality of ûk, ũk implies invertibility,
permitting one to express Fk, Gk in terms of uk so that
equation (A.2) holds. Moreover:

n+m∑
k=1

=
[
Fk
Gk

]
[ F ∗k G∗k ]

=
n+m∑
k=1

[
f1k f2k
g1k g2k

]
(ûkû∗k + ũkũ

∗
k)
[
f∗1k g

∗
1k

f∗2k g
∗
2k

]

=
n+m∑
k=1

(
u2ku

∗
2k + u2k−1u

∗
2k−1

)
=

2(n+m)∑
k=1

uku
∗
k = I2(n+m).

Finally: [
ûk1 ũk1
ûk2 ũk2

]∗
[ F ∗k G∗k ]

[
Fl
Gl

] [
ûl1 ũl1
ûl2 ũl2

]
=
[
u∗2k
u∗2k−1

]
[ u2l u2l−1 ] = δklI2.

From orthonormality of ûk, ũk one may deduce relatively
easily that the last equation of the lemma follows.

In the statement of the lemma δkl denotes the Kronecker
delta. We call decomposition (A.2) a second order decom-
position of the unitary matrix U . The lemma therefore
asserts that every unitary matrix of even order possesses
a second order decomposition. Uniqueness of the decom-
position is neither claimed nor required.
Lemma 4. Given any Qi ∈ C(n+m)×(n+m), i = 1, 2 and
given a second order decomposition of a unitary matrix

U , let Q1Fk + Q2Gk = [ŵk w̃k] for all k = 1, . . . , n + m
then

Ŵ1 =
n+m∑
k=1

ŵkŵ
∗
k = [Q1 Q2 ] T̂1 [Q1 Q2 ]∗ , (A.6)

for some Hermitian T̂1 ∈ C2(n+m)×2(n+m) such that n+m
eigenvalues of T̂1 are zero and n+m eigenvalues of T̂1 are
unity. Moreover, given any matrix T̂1 of this form, there
exist a unitary matrix U such that the associated matrix
Ŵ1 is given by (A.6).

Proof. With all of the same notations as in the proof of
lemma 3 we obtain:

[ u2k u2k−1 ] =
[
f1k f2k
g1k g2k

] [
ûk1 ũk1
ûk2 ũk2

]
which upon inversion yields:[

f1k
g1k

]
=
ũk2u2k − ûk2u2k−1

ûk1ũk2 − ûk2ũk1
.

Straightforward manipulation leads to equation (A.6)
with:

T̂1 =
n+m∑
k=1

(ũk2u2k − ûk2u2k−1) (ũk2u2k − ûk2u2k−1)∗

|ûk1ũk2 − ûk2ũk1|2

Let

v̂k =
ũk2u2k − ûk2u2k−1

ûk1ũk2 − ûk2ũk1

By orthonormality of {uk} it is possible to establish or-
thonormality of {v̂k}. Accordingly, as T̂1 =

∑n+m
k=1 v̂kv̂

∗
k

it follows that (n + m) eigenvalues of T̂1 are unity and
(n + m) eigenvalues are zero. Moreover, given any T̂1 ∈
C2(n+m)×2(n+m), Hermitian with (n+m) unity eigenvalues
and (n+m) zero eigenvalues, there exist (n+m) orthonor-
mal v̂k ∈ C2(n+m) such that T̂1 =

∑n+m
k=1 v̂kv̂

∗
k. Let {uk}

be any orthonormal set in C2(n+m) such that u2k = v̂k.
Let ũk1 = 0, ũk2 = 1, ûk1 = 1 and ûk2 = 0, then

v̂k =
ũk2u2k − ûk2u2k−1

ûk1ũk2 − ûk2ũk1

and {ûk , ũk} are orthonormal. The second part of the
lemma follows from these observations.
Lemma 5. Given any Wi = QiQ

∗
i , i = 1, 2 and given

Ŵ1 = [Q1 Q2 ] T̂1 [Q1 Q2 ]∗ for some Hermitian T̂1 of the
form of lemma 4∑

i:λi≤0

λi(MW1 +MW2) ≤ tr(MŴ1)

≤
∑
i:λi≥0

λi(MW1 +MW2). (A.7)

Moreover, there exist matrices T̂1 of the form of lemma 4
such that the upper and lower bounds are attained.

Proof. By definition of Ŵ1:

tr(MŴ1) = tr

([
Q∗1
Q∗2

]
M [Q1 Q2 ] T̂1

)
.
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Let

M̂ =
[
Q∗1
Q∗2

]
M [Q1 Q2 ] .

As T̂1 and M̂ are both Hermitian it follows that M̂ =
V̂ ΣM̂ V̂

∗ and T̂1 = V̂1ΣT̂1
V̂ ∗1 , where V̂ and V̂1 are unitary,

ΣM̂ is real diagonal

ΣT̂1
=
[
I 0
0 0

]
.

Accordingly

tr(M̂T̂1) =
2(n+m)∑
i=1

λi(M̂)(Ṽ Ṽ ∗)ii

where Ṽ = V̂ ∗V̂1ΣT̂1
. It is possible to establish that

0 ≤ (Ṽ Ṽ ∗)ii ≤ 1. Hence:∑
i : λi≤0

λi(M̂) ≤ tr(M̂T̂1) ≤
∑

i : λi≥0

λi(M̂).

Moreover by selecting T̂1 = V̂ ΣV̂ ∗, Σ diagonal with
Σii = 1 for each i such that λi(M̂) > 0, Σii = 0 for
each i such that λi(M̂) < 0 and Σii = 0 or 1 for all other
i, selected such that half of the eigenvalues of Σ are unity
and half are zero, the upper bound is attained. Similarly
the lower bound is attained for suitable T̂1. Hence:∑

i : λi≤0

λi(M̂) ≤ tr(MŴ1) ≤
∑

i : λi≥0

λi(M̂)

with upper and lower bounds attained for suitable T̂1. It
is elementary to establish that n+m of the eigenvalues of
M̂ are zero and the remaining n + m eigenvalues are the
eigenvalues of MQ1Q

∗
1 + MQ2Q

∗
2 = MW1 + MW2. The

statement of the lemma follows from this observation.
Lemma 6. Given any q × q Hermitian matrix M with
rank(M) ≤ 2, let vectors vk satisfy v∗kMvk ≥ 0 for
k = 1, . . . , r, v∗kMvk < 0 for k = r+1, . . . , q and define Q1

and Q2 by:

Q1Q
∗
1 =

r∑
k=1

vkv
∗
k , Q2Q

∗
2 =

q∑
k=r+1

vkv
∗
k

then∣∣∣∣∣∑
i

λi

([
Q∗1
0

]
M [Q1 0 ]

)∣∣∣∣∣+

∣∣∣∣∣∑
i

λi

([
0
Q∗2

]
M [ 0 Q2 ]

)∣∣∣∣∣
≤
∑
i

∣∣∣∣λi([Q∗1Q∗2
]
M [Q1 Q2 ]

)∣∣∣∣ . (A.8)

The proof of this lemma is omitted at the present time
since it is hoped to eliminate the rank condition in future.
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