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Abstract: Whereas stable linear systems with inputs have a unique steady-state solution,
which is independent on the initial conditions and only depends on the input signals, nonlinear
systems in general do not possess this property. Due to the lack of this property it is often hard
to evaluate the exact behavior of the system, and thus to evaluate the ‘exact’ performance.
In this article we present the results of three experiments performed on a simple nonlinear
system, i.e. an anti-windup system consisting of a PI controlled integrator plant with input
saturation and linear anti-windup controller. These results, which are validated by simulation
and substantiated by theoretical results, clearly show the problems that prevent such an exact
performance evaluation of the system. Based on these experimental results we come up with
another definition of performance-based anti-windup design, based on the notion of convergent
systems.
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1. INTRODUCTION

Stable linear systems with inputs have the property that
every solution of such a system, independent of the initial
condition, converges after some transient time to a unique
steady-state solution (not necessarily constant), which is
independent on the initial conditions and only depends
on the input signal(s). Nonlinear systems with inputs on
the other hand, do in general not possess this property:
several steady-state solutions may exist, and it depends
on the initial conditions or system disturbances to which
of these steady-state solutions the system converges. Due
to this nonlinear behavior, it is often hard to predict
the ‘exact’ performance of nonlinear systems. Although
various Lp gains are often used as a performance measure
for nonlinear systems, these measures generally do not
describe the exact performance of the system: they provide
a bound on the worst-case time-average behavior of the
system.

In order to further investigate this nonlinear behavior, we
focus in this article on an anti-windup system, since this
is a relatively simple nonlinear system with inputs, and
has many practical applications. The type of anti-windup
system that we consider here is a PI controlled integrator
plant with input saturation and linear anti-windup control.
The presence of input saturation in the otherwise linear
closed-loop system can cause a severe performance degra-
dation, and may even have disastrous consequences such
as the fighter crashes in April 1992 (see Dornheim [1992])
and August 1993 (see Shifrin [1993]). This performance
degradation is caused by the so-called ‘controller windup’,
and may be counteracted by adding an anti-windup con-
troller to the system. In the past decades, the study on

anti-windup controllers received a lot of attention and has
resulted in many proposals for both linear and nonlinear
anti-windup design, see e.g. Kothare et al. [1994], Teel
and Kapoor [1997], Fromion and Scorletti [2000], Grimm
et al. [2003], Galeani et al. [2004], Galeani and Teel [2006].
Most of these anti-windup designs, however, are based on
minimizing an (incremental) L2 gain, and do not pursue
the exact performance of the system.

In this paper we show the results of a series of experi-
ments which we performed on the mentioned anti-windup
system. These results, which we validate by simulation and
substantiate by theoretical results, clearly indicate some of
the problems in the nonlinear behavior of this system that
prevent an exact performance evaluation. Based on these
experiments we come up with another definition of anti-
windup design, which is based on the notion of convergent
systems, see Demidovich [1961], Yakubovich [1964], Pliss
[1966], Demidovich [1967]. This definition follows the point
of view originated in Fromion and Scorletti [2000] and later
in van den Berg et al. [2006]. Using this definition for anti-
windup design, a unique steady-state solution of the anti-
windup is guaranteed and therefore the exact performance
of the system can be found and optimized.

The outline of this paper is as follows. Section 2 describes
the experimental setup and discusses the simulation and
experimental results that have been obtained. The ob-
tained results are theoretically substantiated in Section 3
and based on these results a new perspective on anti-
windup design is given. Section 4 concludes the paper.
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Fig. 1. Schematic representation of the experimental setup

2. EXPERIMENTS

In this section, first the experimental setup is described
that we used during our experiments. Then, the exper-
iments that we performed are described and the corre-
sponding results are presented. Besides the experimental
results, also numerical results are presented, which were
obtained by computer simulations. The section is con-
cluded with a discussion on the obtained results.

2.1 Experimental Setup

In order to investigate some typical nonlinear behavior, we
considered a relatively simple nonlinear system, which is
shown schematically in Fig. 1. This system consists of a
PI controlled integrator plant with input saturation and
a static anti-windup (AW) gain. As indicated in Fig. 1,
the hardware of this setup (see Fig. 2) consists of an
actuator (brushless DC motor) an integrator plant and a
sensor (incremental encoder, 8192 counts/revolution). The
hardware is connected (sample rate: 1kHz) to a computer
with a Matlab Simulink model (Real Time Workshop),
which contains the software elements described in Fig. 1;
both the reference and disturbance signal, and the con-
troller parameters are defined in this model. The actuator
is driven by a velocity controller (not shown in Fig. 1),
which receives its reference value v from the Simulink
model. The actuator rotates a mass at the given speed,
and the rotation angle of the mass is measured by the
incremental encoder and fed back to the Simulink model.
This transition from angular velocity to rotation angle
forms the integrator plant.

2.2 Experiments and Results

In this subsection three experiments are described that
we performed on the setup described in Section 2.1. The
results of these experiments are presented and compared
to simulation results that we obtained from a Simulink
model. This simulation model has the same structure as
in Fig. 1, except for the hardware components which are
replaced by a numerical integrator block.

Fig. 2. Photo of the hardware construction

For all the experiments we used the following param-
eters for the PI controller: KP = 10 and KI = 20.
These parameters have been chosen in such a way that
the system without saturation has a satisfactory perfor-
mance. Furthermore, the saturation function is defined as
sat(x) = sign(x)min{1, |x|}. Finally, the settling time of
the actuator’s velocity controller is negligible, so that we
may assume that the motor follows the reference velocity v
exactly.

Experiment 1: dependency on initial conditions Consider
the system in Fig. 1 with reference signal r = sin(t),
disturbance signal d = 0, and KA = 0 (i.e. no anti-
windup). The experiment and simulation are performed
for two different initial conditions, i.e. the initial rotation
angle of the mass is set to respectively y(0) = 3 and y(0) =
4 revolutions, while the initial value of the integrator in
the PI controller is set to IPI(0) = 0 in both cases. The
resulting rotation angle y as a function of time is shown
for both instantiations in Fig. 3.
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Fig. 3. Experiment 1, results for KA = 0

We observe that the experimental and simulation results
match very well, from which we can conclude that the
hardware components can indeed be modeled accurately
by a numerical integrator. Furthermore, we observe that
there are two periodic steady-state solutions, and we can
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conclude that it depends on the initial conditions to which
of these solutions the system converges. One can also see
that one of the steady-state solutions follows the reference
signal r = sin(t) quite well, while the other steady-
state solution has a larger amplitude and is out of phase.
This undesired solution is the result of a ‘bang-bang’-
control signal: the control signal u changes from large
positive values to large negative values (and vice versa)
and therefore is saturated most of the time, which results
in a successive linear increase and decrease of the steady-
state solution.

If, on the other hand, we slightly change the system, that
is we apply an anti-windup gain KA = 0.5, and repeat
the experiment and simulation, then we obtain the results
visualized in Fig. 4.
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Fig. 4. Experiment 1, results for KA = 0.5

Again the experimental and simulation results match very
well, but now it seems that the undesired steady-state solu-
tion is no longer present, whereas the other steady-state so-
lution has not changed. However, to be 100% certain that
there do not exist other steady-state solutions anymore, we
would have to evaluate the solution for all possible (i.e. an
infinite amount of) initial conditions, which is practically
not realizable by experiment or simulation. In Section 3 we
will reconsider this problem. In the following experiments,
we focus further on the situation with KA = 0, where
multiple steady-state solutions coexist.

Experiment 2: effect of disturbance Consider again the
system in Fig. 1 with reference signal r = sin(t) and
KA = 0. If we now run the experiment and simulation
for one initial condition (IPI(0) = 0 and y(0) = 0), and
apply a disturbance that is described by

d(t) =

{

1 if t ∈ [21, 21.4] ∨ [73, 75]
0 otherwise

then we obtain the result in Fig. 5.

This result shows that even a relatively small disturbance
can cause the system to switch from one steady-state
solution to the other. The disturbance at t = 21 causes the
system to move from the desirable steady-state solution to
the undesirable steady-state solution, whereas the slightly
larger disturbance at t = 73 forces the system back to the
initial steady-state solution. Again the experimental and
simulation results match very well.
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Fig. 5. Experiment 2, effect of disturbance

Experiment 3: ‘hysteresis’ The previous experiment
showed that the system can switch between the different
steady-state solutions as a result of a (possibly external)
disturbance. Experiment 3 elaborates on this result. For
this experiment we used again KA = 0, disturbance d = 0
and initial condition {IPI(0) = 0, y(0) = 0}. We applied
r = b(t) sin(t) with b(0) = 0.1 and slightly increased
b every 200π seconds, so that after each increase of b
steady-state is reached again. Once the amplitude was
large enough, we slightly decreased b every 200π seconds
until b = 0.1 again. Fig. 6 displays the resulting amplitude
of the controller output u as a function of the amplitude b
of the reference signal, once steady-stated is reached.

0 0.5 1 1.5

0

10

20

30

40

50

Amplitude reference signal

A
m

p
lit

u
d

e
 c

o
n

tr
o

lle
r 

o
u

tp
u

t

 

 

Experimental Results
Simulation Results

Fig. 6. Experiment 3, ‘hysteresis’

We observe in Fig. 6 that for a small amplitude b there
is only one amplitude for the controller output u, which
suggests that there is only one steady-state solution. If b
has a value between approximately 0.69 and 1.13, then u
can have two different amplitudes, and thus there are (at
least) two steady-state solutions. Finally, if b is larger then
approximately 1.13, then there is only one steady-state
solution left. We note again that we can not be 100% sure
that there are no other steady-state solutions, based on
the experiments and simulation alone. See Section 3 for
further comments on this issue.
Another observation that we can make on Fig. 6 is that by
slowly increasing b (starting from b = 0.1) the amplitude of
the controller output u also slowly increases but does not
switch to the other steady-state solution, until it makes a
large jump at b = 1.13 and then slowly increases further.
Then, if b is decreased again, the amplitude of u only
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slowly decreases and does not switch back to the other
steady-state solution until b = 0.69. This gives Fig. 6 a
hysteresis-like shape. During the experiment it was also
noted that the closer the increasing amplitude b gets to
1.13 the smaller the required effort to switch from the
desirable solution to the undesirable solution becomes
(and vice versa for decreasing b → 0.69). This suggests
that the region of attraction of the desirable steady-state
solution (small amplitude) decreases with increasing b,
while the region of attraction of the undesired steady-state
solution (large amplitude) decreases with decreasing b. In
Experiment 2 we used b = 1, which is closer to 1.13 than
to 0.69. This would imply a larger domain of attraction
for the undesirable steady-state solution. Therefore, it
makes sense that we required a larger disturbance to move
from the undesirable steady-state solution to the desirable
steady-state solution than vice versa.

2.3 Discussion

The three experiments described in Section 2.2 demon-
strate some typical properties of nonlinear systems with
inputs. Experiment 1 shows that multiple steady-state
solutions may coexist that have a totally different perfor-
mance, and that it depends on the initial conditions which
of the steady-state solutions is followed by the system. Ex-
periment 2 shows that once a certain (e.g. desired) steady-
state solution is reached even a small disturbance can
force the system to another (e.g. less desired) steady-state
solution. Finally, Experiment 3 suggests that under certain
circumstances the system can switch to another steady-
state solution due to a very small disturbance, while the
required effort to switch back to the initial steady-state
solution may be huge.
Due to the properties described above it is hard to evaluate
the performance of such a nonlinear system. Currently
the performance of such systems is often estimated by
an L2 gain. A disadvantage hereof is that this gain is an
upper bound which only depends on the ‘worst’ steady-
state solution in terms of L2 norms. The L2 gain does not
indicate that other (desirable or undesirable) steady-state
solutions may also exist. And although some anti-windup
designs (e.g. Teel and Kapoor [1997]) guarantee that the
steady-state solution for their system is unique (since it
equals the solution of the corresponding linear system),
this result only holds for external signals that eventu-
ally drive the system to the region of linear dynamics
(i.e. within saturation bounds). For other external signals,
these papers do not provide a proof that a unique steady-
state solution exists, and hence the L2 gain can only be
interpreted as an upper bound on the ‘worst’ performance.
In case the nonlinear system has a unique steady-state
solution, the problems described above do not exist and
performance can be evaluated in an exact way. As the
results in Fig. 4 and Fig. 6 already suggested, nonlinear
systems can have a unique steady-state solution under
certain conditions. In Section 3 we discuss two theories
that guarantee the existence and uniqueness of a (not nec-
essarily constant) steady-state solution for the presented
nonlinear system under certain conditions. Based on these
theorems we present a new perspective on performance-
based anti-windup design.

3. UNIQUE STEADY-STATE SOLUTION AND
PERFORMANCE OF ANTI-WINDUP SYSTEMS

The system that has been investigated during the exper-
iments presented in Section 2 can be described using the
following state-space notation:

ẋ = Ax−Bsat(u) + Fw

u = Cx+Dw

y = Hx

(1)

where x ∈ R
2 represents the state, w = [d, r]T ∈ R

2 are
the system inputs, u ∈ R is the controller output, y ∈ R is
the system output, and

A =

[

0 0
−(1 −KAKP ) −KIKA

]

, B =

[

−1
−KA

]

,

F =

[

1 0
0 1 −KAKP

]

, C = [−KP KI ] ,

D = [0 KP ] , H = [1 0] ,

with KP = 10 and KI = 20.
In Section 2 we focussed mainly on the system with
KA = 0, i.e. the system without anti-windup control, and
we observed that this system has undesirable properties.
In the past decades, many anti-windup designs have been
proposed in literature to improve the performance of this
nonlinear system. Most of them are based on (incremental)
L2-gain approaches, and do not guarantee a unique steady-
state solution for the closed-loop system. In this section,
we discuss the theory that explains the behavior exhib-
ited during the experiments, and focus on an anti-windup
controller design that rules out the undesirable properties
mentioned above by guaranteeing a unique steady-state
solution for the closed loop system. For such closed-loop
systems with a unique steady-state solution, a numeri-
cally efficient approach to evaluate the performance exists,
which is based on harmonic linearization.
Note that for systems with an (eventually) constant ref-
erence signal and KP > 0, KI > 0, global asymptotic
stability of the system can be proven in a standard way
using for example absolute stability theory.

3.1 Theoretical substantiation of the experimental results

The results as presented in Section 2 can be substantiated
and explained using two theoretic results: the notion of
convergent systems (see e.g. Pavlov et al. [2004] and refer-
ences therein) and the theory on harmonic balance equa-
tions for harmonically forced Lur’e systems as described
in van den Berg et al. [2007]. We first give a definition of
convergent systems.

Definition 1: Uniformly convergent systems
Consider system (1) and assume input w belongs to the
class PCm of piecewise continuous inputs w(t) : R → R

m

which are bounded for all t ∈ R. Then, system (1) is said
to be uniformly convergent for a class of inputs W ⊂ PCm

if for every input w(t) ∈ W there is a solution x̄(t) =
x(t, t0, x̄0) satisfying the following conditions:

(1) x̄(t) is defined and bounded for all t ∈ (−∞,+∞),
(2) x̄(t) is globally uniformly asymptotically stable for

every input w(t) ∈ W.
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This implies that if system (1) is uniformly convergent,
then it has only one steady-state solution, i.e. x̄(t). Now
consider the following theorem (van den Berg et al. [2006]).

Theorem 1. If KAKP > 1 then system (1) is uniformly
convergent for all w(·) ∈ W, where W is defined as the
class of inputs w = [d, r]T ∈ PC2 for which |d(t)| < 1, ∀t
and r is a harmonic signal with bounded amplitude and
finite frequency.

With Theorem 1 we can explain the results from Experi-
ment 1. The system for which the results are presented in
Fig. 4 has KA = 0.5, d = 0, and r = sin(t). Therefore, all
conditions of Theorem 1 are met and thus this system
is uniformly convergent, which implies that the system
has only one steady-state solution and all other solutions
converge to this solution, as can be seen in Fig. 4. Al-
though Theorem only gives sufficient (and not necessary)
conditions for uniform convergency, there is no theoretical
proof that the system in Experiment 1 with KA = 0 is not
convergent, but Fig. 3 clearly shows multiple steady-state
solutions, which implies that the system is not convergent.
More research is required to investigate how conservative
the condition KAKP > 1 is.

To substantiate the results of Experiments 2 and 3, we
need the following theory on harmonic linearization.
Harmonic linearization (see e.g. Khalil [2002]) is often used
to study periodic solutions of a nonlinear system. To do so,
the nonlinear system is approximated by a linear system;
in our case system (1) is approximated by:

ξ̇ = Aξ −BKζ + Fw
ζ = Cξ +Dw

(2)

where the gain K is to be determined. If we suppose that
d(t) = 0 and the reference input is given by

r(t) = b sinωt, (3)

then the steady-state output ζ̄ can be described by

ζ̄(t) = a sin(ωt+ ψ), (4)

for some amplitude a > 0 and phase ψ. Gain K can now
be described as a function of the output amplitude a (see
e.g. Khalil [2002]):

K(a) =











1, a ≤ 1

2

π

(

sin−1

(

1

a

)

+
1

a

√

1 −
1

a2

)

, a > 1

Amplitude a in turn is a function of the system parameters
and amplitude b and frequency ω of the input signal,
i.e. a = a(b, ω). This relationship between a and (b, ω)
for system (1) with input (3) is given by the following
harmonic balance equation (van den Berg et al. [2007]):

|1+K(a)C(iωIn−A)−1B|2a2 = |C(iωIn−A)−1F+D|2b2.
(5)

As one can see, the right-hand side of (5) is completely
known for given values of b and ω, while on the left-hand
side of (5) amplitude a is the only unknown parameter. If
we now consider the left-hand side of (5):

π(a) = |a+K(a)aG(iω)|2

and fill in the frequency that was used during the experi-
ments in Section 2, i.e. ω = 1, then we can plot π(a) as a
function of a for the case that KA = 0, see Fig. 7.

Observe that if amplitude b is small (and thus π(a) is
small), then there is only one solution for amplitude a. For
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Fig. 7. π(a) versus a for ω = 1 and KA = 0

larger values of b (and thus larger values of π(a)) there are
multiple solutions for amplitude a, and if b increases even
further there is again only one solution for amplitude a.
Although the fact that there is one solution (resp. multiple
solutions) for a of the harmonic balance equation does not
prove that the nonlinear system (1) has a unique steady-
state solution (resp. multiple steady-state solutions), it
does make it plausible and it supports the findings of
Experiment 3. In Experiment 2 we used amplitude b = 1,
which corresponds to π(a) = 500. Fig. (7) shows that there
are three solutions for a and thus system (1) probably
has multiple steady-state solutions. Due to a large enough
disturbance the solution can move into the domain of
attraction of another steady-state solution, which explains
the results of Experiment 2.
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Fig. 8. π(a) versus a for ω = 1 and KA = 0.5 > 1/KP

Note that for KA > 1/KP the function π(a) becomes
monotonically increasing in a for any value of ω, see
Fig. 8, from which we can conclude that there is only one
solution a for arbitrary ω and b. This is in accordance
with Theorem 1, which states that this system with KA >
1/KP is convergent.

3.2 Discussion: Performance-based anti-windup design

As stated before, most anti-windup design methods in
literature are based on minimizing an (incremental) L2

gain. Although such an (incremental) L2 gain can pro-
vide valuable information on the worst-case time-average
performance of a nonlinear system such as system (1), it
does not give insight in the actual solution of the system,
or the possibility that several steady-state solutions co-
exist. The rich dynamics, as indicated by the experiments
in Section 2, is missed if a performance evaluation based
on (incremental) L2 gain is used.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14154



Based on the experimental results, we therefore propose
a different definition for the performance-based design of
anti-windup schemes, which consists of two steps:

(i) Find conditions on the system parameters under
which system (1) is (uniformly) convergent, i.e. it has
a unique steady-state solution.
Theorem 1 shows that for this case the required
conditions are hardly restrictive.

(ii) Within the range of parameter values for which the
system is convergent, optimize the system’s perfor-
mance.
Here, performance can be defined in terms of gen-
eralized frequency response functions (e.g. sensitivity
function) as introduced by Pavlov et al. [2007], or any
other desired (steady-state) performance measure.

Note that for convergent systems, the unique steady-state
solution (and hence the exact performance) can be found
using a single simulation run, due to the independency on
initial conditions. For nonlinear systems in general this is
not possible: an infinite amount of initial conditions should
be evaluated in order to obtain a reliable analysis of the
system’s exact behavior.
Besides for performance analysis, simulation can also be
used for design: a simulation-based optimization tool may
be developed (in future work) to optimize in some sense the
performance of the steady-state solution within the bound-
aries of the conditions for which the system is conver-
gent. A disadvantage of the simulation-based performance
analysis is that the simulations may be time-consuming
under certain conditions. As a solution to this problem the
authors presented in van den Berg et al. [2007] a numeri-
cally efficient method based on harmonic linearization to
approximate the nonlinear system by a linear system and
compute the error margins of the approximated solution.
Note that in this paper we focussed on steady-state per-
formance. Transient performance, e.g. how fast the system
converges to the steady-state solution, may be investigated
as well using the notion of convergent systems, but this
topic lies outside the scope of this paper.

The anti-windup system as presented in this article is only
an example of the systems to which this performance-
based design approach can be applied. The same approach
can also be used for the performance-based design of
various other nonlinear systems (e.g. more general anti-
windup systems).

4. CONCLUSION

Nonlinear systems, such as the discussed anti-windup sys-
tem, may exhibit multiple steady-state solutions, which
causes trouble in defining the exact performance of such
systems, i.e. performance based on the actual solution of
the system, in contrast to performance which is based on
an approximated bound such as (incremental) L2 gain.
In this paper we presented a new perspective on the
anti-windup design: by first defining conditions which
make the closed-loop system convergent, and then evalu-
ating the performance of the unique steady-state solution,
gives a better insight in the true behavior of the system.
Simulation-based performance measures such as the gen-
eralized frequency response functions (see Pavlov et al.
[2007]), or the numerically more efficient approach based

on harmonic linearization (see van den Berg et al. [2007])
can be useful to optimize the performance of such systems.
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