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Abstract: This paper deals with reachability under unknown disturbances and incomplete
information on the state space variables. The unknown disturbances are described by a special
type of vector-valued stochastic Brownian input noise which depends on the values of vector-
valued control. The control may be either unbounded or bounded by hard bounds. The
reachabilty sets introduced here are deterministic. They consist of all points whose mean-square
deviations from a tube of given controlled trajectories are small. The “reach” sets are presented
in terms of level sets to solutions of appropriate types of Hamilton-Jacobi-Bellman equation,
which depend on the presence or absence of additional hard bounds on the controls. These allow
explicit representation of the reach sets when the controls are unbounded and are presented
in terms of solutions to some dual optimization problems when the controls are bounded.
Accordingly, the reach sets are either ellipsoids or convex compact sets of more complicated
structure. The last fact introduces significant changes with transition from scalar to vector-
valued control-dependent noise. Finally the notions of reachability and control under incomplete
feedback are introduced.

Keywords: Stochastic optimal control problems, Nonlinear observer and filter design, Output
feedback control.

1. INTRODUCTION

This paper deals with the problem of reachability — one of
the central topics of modern control theory. Its motivation
comes from problems in control design, verification of algo-
rithms and other problems in automation, navigation and
related areas. Of recent interest are problems of reachabil-
ity under disturbances and resets. In the case of unknown
but bounded disturbances the problem was treated by
Kurzhanski and Varaiya [2000, 2002], while reachability
for hybrid systems was dealt with by Kurzhanski and
Varaiya [2002], Lygeros et al. [1999].

The present report deals with the problem of reachability
under stochastic disturbances. In contrast with previous
investigations, considered is a continuous-time linear sys-
tem subjected to perturbations generated by vector-valued
Brownian noise with parameters dependent on the values
of the vector-valued control (see Digailova and Kurzhanski
[2005]). Two cases are considered, namely, those, when the
controls are unbounded and those when they are bounded
by hard bounds.

⋆ This work is supported by AFOSR PRET grant FA9550-06-1-0267
and also by Russian Foundation for Basic Research (grant 06-01-
00332). It has been realized within the programs “State Support of
the Leading Scientific Schools” (NS-5344.2006.1) and “Development
of Scientific Potential of the Higher School” (RNP 2.1.1.1714).

The reachability sets introduced here are deterministic.
They are presented in terms of level sets to solutions
of certain types of the Hamilton-Jacobi-Bellman (HJB)
equation. The respective value functions are given by ex-
plicit expressions in the domains where the controls are
unbounded and are given in terms of solutions to some dual
optimization problems where the controls are bounded. Fi-
nally the notion of reachability under incomplete feedback
and stochastic noise is introduced.

Other settings of the problem of stochastic reachability
are considered by Lygeros and Watkins [2003], Blom and
Lygeros [2006].

Throughout this paper, A′ denotes the matrix transpose
of A, tr(A) — the trace of the matrix A, Is

q is an s × s
matrix with all zero elements except one iq,q = 1, I is an
identity matrix of appropriate dimension. The notation
A > 0 means that the matrix A is positive definite. We
denote by E{x|·} the conditional expectation of random
vector x. We denote by (x, y) the scalar product and
‖x‖2

S = (x, Sx). For vector b and set A consider the
distance d2

L(b,A) = mina{‖b − a‖2
L|a ∈ A}. We denote

d2(b,A) = d2
I(b,A). Also consider distance between sets

A and B as dL(B,A) = minb{dL(b,A) | b ∈ B}. Finally
denote by E(a,A) an ellipsoid with center a and shape
matrix A: E(a,A) = {a : (a,Aa) ≤ 1} and by B1 = E(0, I)
the closed unit ball.
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2. THE SYSTEM AND THE REACHABILITY
PROBLEM

Given is a continuous-time stochastic control system (see
Astrom [1970], Fleming and Rishel [1975], Fleming and
Soner [1993], Liptser and Shiryayev [1977], Kurzhanski
[1965])

dx = A(t)xdt + B(t)udt + R(t)J(u)dω, (1)

with state vector x ∈ IRn, control u ∈ IRm, dω ∈ IRm

stands for the normalized vector-valued Brownian motion
(see Doob [1953]), with pairwise independent components.
Continuous matrix A(t), B(t) and R(t) of appropriate
dimensions are given. Also suppose that R′(t)R(t) > 0
∀ t ∈ [α, β], [τ, ϑ] ⊂ [α, β]. Matrix J(u) =

∑m
k=1 Im

k u.

Thus the noise in the system (1) is control dependent. Such
types of noise appear in communication systems, reliability
problems and financial models. They may also turn out
equivalent to output-dependent noise.

An important problem is to describe the reachability set
(reach set) for system (1) (see Lygeros and Watkins [2003]
for other approaches).

Definition 1. The γ-reach set Zγ [ϑ] = Zγ(ϑ, τ, xτ ) of
system (1) at time ϑ, from position {τ, xτ}, is the set of
all points z ∈ IRn for which the inequality

V (τ, xτ , z) =

min
u

{

E{‖x[ϑ] − z‖2|τ, x(τ) = xτ}
∣

∣

∣
u ∈ U [τ, ϑ]

}

≤ γ2

is true.

Here x[·] = x(·, τ, xτ ), is the trajectory of system (1),
emanating from position {τ, xτ} and U [τ, ϑ] is the class
of admissible feedback controls u = u(t, x, z), for the
reachability problem (we shall consider two types of such
classes).

For Zγ [ϑ] 6= ∅ it is necessary that γ2 ≥ γ2
0 , where γ2

0 will
be indicated below.

The problem to be studied is to calculate the set Zγ [ϑ] for
the following types of controlled systems:

(a) u ∈ IRm — control is unbounded,
(b)

(

u,Q(t)u
)

≤ 1, where Q(t) = Q′(t) > 0 is continuous
∀ t ∈ [α, β], [τ, ϑ] ⊂ [α, β].

The main problem is thus to find the value function

V (τ, xτ , z) = min
u

E{‖x[ϑ] − z‖2|τ, x(τ) = xτ}

under control constrains (a) or (b).

We shall reduce this problem to an optimization proce-
dure, starting with case (a).

3. REACHABILITY UNDER UNBOUNDED
CONTROLS

Consider case (a) (vector u ∈ IRm).

Problem (a): Find value function

V (a)(τ, xτ , z) =

= min
u

{

E{‖x[ϑ] − z‖2|τ, x(τ) = xτ}
∣

∣

∣
u ∈ U (a)[τ, ϑ]

}

.

Class U (a)[τ, ϑ] in its feedback representation comprises all
continuous functions of {t, x}, t ∈ [τ, ϑ], x ∈ IRn, Lip-

schitz in x and such that allow extension of solutions x[t]
throughout the finite interval [τ, ϑ] under consideration.

Function V (a)(τ, xτ , z) satisfies the “principle of optimal-
ity” (see Bertsekas [1995], Krasovskii [1960, 1963])

V (a)(τ, xτ , z) =

= min
u

{

E
{

min
u

{

E(‖x(ϑ, t, x[t]) − z‖)2|t, x[t] = x}
∣

∣

∣

∣u ∈ U (a)[t, ϑ]
}

∣

∣

∣
τ, xτ

}∣

∣

∣
u ∈ U (a)[τ, t)

}

=

= min
u

{

E{‖x(ϑ, τ, x[τ ]) − z‖2|τ, xτ}
∣

∣

∣
u ∈ U (a)[τ, ϑ]

}

.

Taking t = τ + σ, and applying this principle along
the standard lines of Dynamic Programming Theory (see
Fleming and Soner [1993]) we obtain (assuming differen-
tiability of V (a)(τ, xτ , z), which is later proved to be true)
the following sufficient condition for optimality.

Theorem 1. Function V (a)(t, x, z) satisfies the relation

min
u

{

dV (a)(t, x, z)/dt
∣

∣

∣
u ∈ IRm

}

= 0, (2)

under boundary condition

V (a)(ϑ, x, z) = (x − z, x − z). (3)

Here
dV (a)(t, x, z)/dt =

= lim
σ→+0

σ−1
(

E{‖x(ϑ, t + σ, x[t + σ]) − z‖2|t, x}−

−V (a)(t, x, z)
)

and equation (2) is actually a backward HJB equation

V
(a)
t + min

u

{

(V (a)
x , A(t)x + B(t)u)+

+ 1
2 (u,K(a)(t)u)

∣

∣

∣
u ∈ IRm

}

= 0. (4)

Here V
(a)
t is the partial derivative of V (a)(t, x, z) in t,

V
(a)
x — its n-dimensional gradient vector and V

(a)
xx — its

matrix of second partials (the Hessian). Matrix K(a)(t) =
∑n

q=1 In
q R′(t)V

(a)
xx R(t)In

q .

Minimizing over u, we have

u
(a)
∗ (t, x, z) = −(K(a)(t))−1B′(t)V (a)

x , (5)

where u∗ is the minimizer in (4).

Function V (a)(t, x, z) may be found in explicit form,
namely, as

V (a)(t, x, z) = (x − z, P (a)(t)(x − z))+

+2(q(a)(t), x − z) + κ(a)(t), (6)

where matrix P (a)(t) = (P (a)(t))′ > 0 and vector q(a)(t)
with scalar function κ(a)(t) are continuous.

Then
u

(a)
∗ (t, x, z) =

= −(K(a)(t))−1B′(t)
(

P (a)(t)(x − z) + q(a)(t)
)

, (7)

where now K(a)(t) =
∑n

q=1 In
q R′(t)P (a)(t)R(t)In

q .

Substituting (6) and (7) in (4) and equating terms with
multipliers (xi − zi)(xj − zj), (xi − zi), i, j = 1, . . . , n
and also the free terms, we come to the next system of
equations:

Ṗ (a)(t) + A′(t)P (a)(t) + P (a)(t)A(t)−
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−P (a)(t)B(t)(K(a)(t))−1B′(t)P (a)(t) = 0 (8)

q̇(a)(t) + (A′(t) − P (a)(t)B(t)(K(a)(t))−1B′(t))q(a)(t)+

+P (a)(t)A(t)z = 0, (9)

κ̇(a)(t) + 2(q(a)(t))′A(t)z−

−(q(a)(t))′B(t)(K(a)(t))−1B′(t)q(a)(t) = 0 (10)

with boundary conditions which follow from (3):

P (a)(ϑ) = I, q(a)(ϑ) = 0, κ(a)(ϑ) = 0. (11)

Note that since K(a)(t) depends on P (a)(t), equation (8)
is not a Riccati equation.

Nevertheless, system (8)–(11) is solvable, consisting of a
linear equation in vector q(a)(t), an integral equality for
κ(a)(t) and a well-posed matrix equation (8) in P (a)(t).
The proof follows the lines of (Kurzhanski [1965]) wherein
it is shown that equation (8) with initial condition (11) has
a unique solution, extendable throughout the whole inter-
val. This fact indicates that V (a)(t, x, z) is differentiable.

As follows from Definition 1, the desired reach set Zγ [ϑ] =

Z
(a)
γ [ϑ] may now be described within the next statement.

Theorem 2. The following representation is true

Z(a)
γ [ϑ] = {z : V (a)(τ, xτ , z) ≤ γ2}.

Note that q(a)(t) and κ(a)(t) may be represented as

q(a)(t) = F (a)(t, ϑ)z, κ(a)(t) = (z,H(a)(t, ϑ)z),

where

F (a)(t, ϑ) =

∫ ϑ

t

XM(a)(t, s)P (a)(s)A(s)ds,

M (a)(t) = A′(t) − P (a)(t)B(t)(K(a)(t))−1B′(t),

ẊM(a)(t, s) = −M (a)(t)XM(a)(t, s), XM(a)(s, s) = I,

H(a)(t, ϑ) =

∫ ϑ

t

(

2A′(s)F (a)(s, ϑ)−

−(F (a)(s, ϑ))′B(s)(K(a)(s))−1B′(s)F (a)(s, ϑ)
)

ds.

Therefore

V (a)(t, x, z) = (x − z, P (a)(t)(x − z))+

+2(z, (F (a)(t, ϑ))′(x − z)) + (z,H(a)(t, ϑ)z) =

= (z − x,P(a)(t, ϑ)(z − x)) − 2(x,N (a)(t, ϑ)(z − x)−

−(x,H(a)(t, ϑ)x).

Here

P(a)(t, ϑ) = P (a)(t) − 2(F (a)(t, ϑ))′ + H(a)(t, ϑ),

N (a)(t, ϑ) = (F (a)(t, ϑ))′ − H(a)(t, ϑ).

One may further observe, after some calculations, that
function V (a)(τ, xτ , z) may be represented in following
form

V (a)(τ, xτ , z) =

= ‖z −
(

I − (P(a)(τ, ϑ))−1(N (a)(τ, ϑ))′
)

xτ‖
2
P(a)(τ,ϑ)+

+(k(a)[ϑ])2,

where

(k(a)[ϑ])2 =
(

xτ ,R(a)(τ, ϑ)xτ

)

,

R(a)(τ, ϑ) =

= N (a)(τ, ϑ)(P(a)(τ, ϑ))−1(N (a)(τ, ϑ))′ + H(a)(t, ϑ).

Therefore, the following theorem is true.

Theorem 3. The γ-reach set of system (1) Z
(a)
γ [ϑ] may be

represented as an ellipsoid

Z(a)
γ [ϑ] = E

(

z(a)[ϑ],
(

γ2 − (k(a)[ϑ])2
)(

Z(a)[ϑ]
)−1

)

=

=
{

z :
(

z − z(a)[ϑ], Z(a)[ϑ](z − z(a)[ϑ])
)

≤ γ2 − (k(a)[ϑ])2
}

with center

z(a)[ϑ] =
(

I + (P(a)(τ, ϑ))−1(N (a)(τ, ϑ))′
)

xτ

and shape matrix
(

Z(a)[ϑ]
)−1

= P(a)(τ, ϑ). This ellipsoid

is nonempty iff γ2 ≥ γ2
0 = (k(a)[ϑ])2.

4. REACHABILITY UNDER HARD BOUNDS ON
THE CONTROLS

Let G(t, ϑ) be the fundamental transition matrix of the
homogeneous part of system (1). Applying the transfor-
mation z = G−1(t, ϑ)x to equation (1) and retaining the
original notations we come to

dx = B(t)udt + R(t)J(u)dω. (12)

Consider first the system (12) with J(u) = I. Then the
term R(t)dω will be independent of u, but with control
u ∈ IRm restricted by additional hard bound:

(u,Q(t)u) ≤ 1, (13)

where Q(t) = Q′(t) > 0 is continuous ∀ t ∈ [α, β],
[τ, ϑ] ⊂ [α, β]. In other words u ⊂ E(0, Q−1(t)).

Problem (b): Find value function

V (b)(τ, xτ , z) =

= min
u

{

E{‖x[ϑ] − z‖2|τ, x(τ) = xτ}
∣

∣

∣
u ∈ U (b)[τ, ϑ]

}

,

where

U (b)[τ, ϑ] =
{

u(t, x, z) : u ⊂ E(0, Q−1(t))
}

are set-valued controls with convex compact values, upper
semicontinuous in {t, x}.

With noise independent of u this problem is immediately
reduced to the next one, which is deterministic:

Problem (b-1): Find

V
(b)
1 (τ, xτ , z) =

= min
u

{

‖x[ϑ] − z‖2
∣

∣

∣
τ, x(τ) = xτ ,u ∈ U (b)[τ, ϑ]

}

.

Direct calculation through methods of convex analysis (see
Rockafellar [1970]) gives

V
(b)
1 (τ, xτ , z) = d2(z,X [ϑ]),

where X [ϑ] is the reachability set of system (12)–(13) at
time ϑ, from position {τ, xτ}, with ω ≡ 0.

Let

h2(ϑ) =

∫ ϑ

τ

tr(R′(t)R(t))dt. (14)

Lemma 1. The reachability set

Zγ [ϑ] = {z : d2(z,X [ϑ]) + h2(ϑ) ≤ γ2}.

Hence Zγ [ϑ] 6= ∅ iff γ2 ≥ h2(ϑ).

Now consider system (12) with term R(t)J(u)dω taken as
in previous section, but with control u ∈ IRm restricted
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by (13). A standard transformation allows us to assume
Q(t) ≡ I.

Here the solution follows the lines of Section 3, and the
problem is solved within the class of functions U (a)[τ, ϑ], iff
control u ∈ intB1. This property holds within the domain

D(a) = {x : (u
(a)
∗ (t, x, z), u

(a)
∗ (t, x, z)) ≤ 1},

where u
(b)
∗ (t, x, z) = u

(a)
∗ (t, x, z) is as defined above, in (7).

Beyond the domain D(a) lies domain D(b) = IRn \ D(a).
Here we will now solve Problem (b) for equation (12)–(13),
with ω 6= 0.

Similarly to the previous section, we come to the HJB
equation with hard bound on u:

V
(b)
t + min

u∈B1

{

(V (b)
x , B(t)u) + 1

2 (u,K(b)(t)u)
}

= 0. (15)

under boundary condition

V (b)(ϑ, x, z) = (x − z, x − z). (16)

Here K(b) =
∑n

q=1 In
q R′(t)V

(b)
xx R(t)In

q .

After the minimization, we come to the equation

V
(b)
t + H(b)(t, x, V (b)

x , V (b)
xx ) = 0, (17)

Thus, having in mind equation (12), in the domain

D(a) = {x : (K(a)(t))−1B′(t)V (a)
x ∈ intB1}, (18)

we have

H(b)(t, x, V (b)
x , V (b)

xx ) ≡ H(a)(t, x, V (a)
x , V (a)

xx ) =

= − 1
2‖B

′(t)(P (a)(t)(x − z) + q(a)(t)‖2
(K(a)(t))−1 ,

with related control u
(b)
∗ (t, x, z) = u(a)(t, x, z) being as

indicated in (7). (Recall that variable z is present in
the boundary condition for V (b)(ϑ, x, z) as it was for
V (a)(t, x, z)).

The domain D(b) = IRm \D(a) consists of all points where
the minimum over u in (15) is achieved through a problem
of constrained optimization, which may be solved through
modified Lagrangian techniques (Kuhn-Tucker theorem)

H(b)(t, x, V (b)
x , V (b)

xx ) =

= min
u∈B1

{

(V (b)
x , B(t)u) + 1

2 (u,K(b)(t)u)
}

.

This gives

H(b)(t, x, V (b)
x , V (b)

xx ) = − 1
2 (V (b)

x )′B(t)(K
(b)
λ (t))−1B′(t)V (b)

x

with minimum achieved at

u
(b)
∗ (t, x, z) = −(K

(b)
λ (t))−1B′(t)V (b)

x .

Here
K

(b)
λ (t) = K(b)(t) + 2λI, λ ≥ 0.

Multiplier λ = 0 in D(a) and λ > 0 in intD(b) ensuring in

this domain that value (u
(b)
∗ (t, x, z), u

(b)
∗ (t, x, z)) ≤ 1.

Since K(b)(t) is diagonal, the matrix (K
(b)
λ (t))−1 is also

diagonal, with elements (k
(b)
ii +2λ)−1 and λ may be found

as the positive root of equation
(

(K
(b)
λ (t))−1B′(t)V (b)

x , (K
(b)
λ (t))−1B′(t)V (b)

x

)

= 1. (19)

Note that at the boundary of domain D(a) we have λ = 0
and

(u
(a)
∗ (t, x, z), u

(a)
∗ (t, x, z)) = (u

(b)
∗ (t, x, z), u

(b)
∗ (t, x, z)) = 1

with

H(a)(t, x, V (a)
x , V (a)

xx ) = H(b)(t, x, V (b)
x , V (b)

xx ).

Multiplier λ is a continuous function of the distance

d(u
(b)
∗ (t, x, z),D(a)) and K

(b)
λ (t) → K(b)(t) with λ → 0.

Function V (b)(t, x) coincides with V (a)(t, x) in D(a) with
continuous transition to D(b) over the boundary of D(a).

As indicated in Section 3, in D(a) the control u
(a)
∗ (t, x, z)

is affine. Namely,
V (a)(t, x, z) =

= (x − z, P (a)(t)(x − z)) + 2(q(a)(t), x − z) + κ(a)(t),

where matrix P (a)(t) = (P (a)(t))′ > 0 and vector q(a)(t)
with scalar function κ(a)(t) are described in (8)–(11).

Taking
V (b)(t, x, z) =

= (x − z, P (b)(t)(x − z)) + 2(q(b)(t), x − z) + k(b)(t).

and considering the equation for V (b)(t, x, z) in D(b), sub-
stitute V (b)(t, x, z) into (15), (16) and equalize the terms
with multipliers (xi − zi)(xj − zj), (xi − zi), i, j = 1, . . . , n
and also the free terms. Then we come to equations which
are formally similar to (8)–(10), namely:

Ṗ (b)(t) − P (b)(t)B(t)(K
(b)
λ (t))−1B′(t)P (b)(t) = 0, (20)

q̇(b)(t) − P (b)(t)B(t)(K
(b)
λ (t))−1B′(t))q(b)(t) = 0, (21)

κ̇(b)(t) − (q(b)(t))′B(t)(K
(b)
λ (t))−1B′(t)q(b)(t) = 0 (22)

with boundary conditions

P (b)(ϑ) = I, q(b)(ϑ) = 0, κ(b)(ϑ) = 0. (23)

But K(b)(t) =
∑n

q=1 In
q R′(t)P (b)(t)R(t)In

q , so that the

multiplier λ depends on {t, x, z, P (b)} and with fixed
P (b) = P (b)(t | x, z). However, for any realization of λ(t)
that may appear throughout the interval [τ, ϑ], whatever
be the realizations of x(t) emanating from xτ under

control u
(b)
∗ (t, x, z) ∈ B1, equations (20)–(23) allow the

existence of solutions, extendable throughout [τ, ϑ]. This
justifies the made assumptions, though calculating the
exact solution V (b)(t, x, z), which is proved to exist, may
require rather subtle technique. In the case of scalar
controls the procedure is substantially simpler.

From another perspective, under the same assumptions,
the value function given by equation (15) with boundary
condition (16) may be also generated by the deterministic
control problem of finding

V
(b)

(t, x, z) = min
u

{

∫ ϑ

t

1

2
(u,K(b)(s)u)ds+

+(x(ϑ) − z, x(ϑ) − z)
∣

∣

∣
x(t) = x, u ∈ B1

}

,

so that V
(b)

(t, x, z) = V (b)(t, x, z).

Applying the techniques of convex analysis along the
lines of ( Kurzhanski and Varaiya [2002], Digailova and

Kurzhanski [2005]) we find V
(b)

(t, x, z) as follows:

V
(b)

(t, x, z) =

= max
l

min
u

{

(l, x(ϑ) − z) + 1
2

∫ ϑ

t

(u,K(b)(s)u)ds−
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− 1
4 (l, l)

∣

∣

∣
l = l(t, x, z) ∈ IRn, u ∈ B1

}

=

= max
l

{

(l, x − z) − 1
2 (l,W (t, λ)l) − 1

4 (l, l)
∣

∣

∣
l ∈ IRn

}

=

= 1
2

(

x − z, (W (t, λ∗) + 1
2I)−1(x − z)

)

(24)

Here

W (t, λ) =

∫ ϑ

t

(B(s)(K
(b)
λ (s))−1B′(s))ds,

where K
(b)
λ = K(b) + λI. With λ∗ = λ∗(t, x, z) > 0 is

uniquely obtained from equation f(λ) − 1 = 0, where

f(λ) = (u
(b)
∗ , u

(b)
∗ ), then for λ = λ∗

u
(b)
∗ (t, x, z) = −(K

(b)
λ∗

(t))−1B′(t)l∗(t, x, z),

l∗(t, x, z) = (W (t, λ∗) + 1
2I)−1(x − z).

Note that here

P
(b)

(t) = 1
2V

(b)

xx (t, x, z) = 1
2 (W (t, λ∗) + 1

2I)−1

and

Ṗ
(b)

− P
(b)

(B(s)(K
(b)
λ∗

(t))−1B′(s))P
(b)

= 0,

P
(b)

(ϑ) = I.

Here K
(b)
λ∗

(s) = (K
(b)
λ∗

(s))′ > 0 is uniformly positive and

the realization λ∗ = λ∗(t, x, z) ≥ 0 is a continuous uni-
formly bounded function, (whatever be the realizations
of x(t) emanating from xτ under control u(t, x, z) ∈ B1),

so that P
(b)

(t) =
(

P
(b)

(t)
)′

> 0 is extendable throughout
[α, ϑ] due to same considerations as for the Riccati equa-
tion.

Lemma 2. The value function V (b)(t, x, z) ≡ V
(b)

(t, x, z)

and V
(b)

(ϑ, x, z) = (x − z, x − z).

Substituting V
(b)

(t, x, z) of (24) into (15) we observe that

V (b)(t, x, z) ≡ V
(b)

(t, x, z).

Theorem 4. The synthesized control in domain D(b) is a
nonlinear function

u
(b)
∗ (t, x, z) = −(K

(b)
λ∗

(t))−1B′(t)l∗(t, x, z)

which is correctly represented in set-valued form as

u
(b)
∗ (t, x, z) =

{

u
(b)
∗ (t, x, z), B′(t)l∗(t, x, z) 6= 0,

B1, B′(t)l∗(t, x, z) = 0.

The overall system may be then presented in D(b) as
a stochastic differential inclusion (see Bensoussan et al.
[2007])

dx = B(t)udt + R(t)J(u)dω(t), u ∈ u
(b)
∗ (t, x, z).

The indicated controls solve Problem b for given z. Sum-
marizing the above we come to the following conclusion.

Theorem 5. (i) The γ-reach set Zγ [ϑ] under control-
dependent noise with hard bound on the control is of
two forms. Namely, in the domain D(a) it is an ellipsoid

Z
(a)
γ [ϑ] (see Theorem 3), whose boundary may be reached

by controls u
(a)
∗ (t, x, z) which are affine in x.

In the complementary domain D(b) it is a convex compact
set

Z(b)
γ [ϑ] = {x : V (b)(t, x, z) ≤ γ2},

whose boundary may be reached by set-valued controls

u
(b)
∗ (t, x, z) which in the case of scalar controls turn out to

be of the bang-bang type.

5. REACHABILITY UNDER INCOMPLETE
MEASUREMENTS

Among the problems which may be approached through
the techniques discussed here is the one of finding reach-
ability sets for system (1) under additional information
given by on-line measurements. Here as in the previous
section, without lost of generality, we consider system (12)
instead of system (1).

dy = G(t)xdt + dξ, y ∈ IRp, (25)

where measurement noise dξ stands for the Brownian
motion with mean value 0 and covariance matrix T (t) > 0,
independent of dω and control u and the system input noise
is normalized Brownian, independent of control u. This
problem may be solved in three steps.

The first step is to solve the stochastic Problem (b)
with control-independent noise but under the additional
constraint (25). A standard procedure, similar to the
derivation of the Kalman filter, gives the following system
of differential equations

dx̄ = B(t)udt + (P (c)(t))−1G′(t)T−1(t)(dy(t) − G(t)x̄dt),
(26)

Ṗ (c) = S(t) − P (c)G′(t)T−1(t)G(t)P (c), (27)

where S(t) =
∑n

q=1 In
q R′(t)R(t)In

q . With initial conditions

x̄(τ) = xτ , P (c)(τ) = 0.

Since the conditional expectation under given measure-
ment y(·) produces

E||x(ϑ) − z||2 = E||x(ϑ) − x̄(ϑ)||2 + ||x̄(ϑ) − z||2,

this brings us to the following deterministic problem.

Problem c. Find
V (c)(τ, xτ , z) =

= min
u

{

‖x̄[ϑ] − z‖2
P (c)(ϑ)|τ, x̄(τ) = xτ ,u ∈ U (c)[τ, ϑ]

}

due to systems (26), (27). The class U (c)[τ, ϑ] is similar to
U (b)[τ, ϑ] of the previous section, but due to the certainty
principle (see Astrom [1970], Davis and Varaiya [1972])
u will now depend on {t, x̄}.

The second step is the solution of Problem c. This may be
described in terms of the dynamic programming equation
for value function V (c)(τ, xτ , z) (see Fleming and Soner
[1993] for more details).

Similarly to Problem (b-1) it can be shown, by applying
methods of convex analysis, that V (c)(τ, xτ , z) may be
represented as

V (c)(τ, xτ , z) = d2
P (c)(ϑ)(z, X̄ [ϑ]),

where X̄ [ϑ] is the reachability set of system (26) with hard
bounds (13), at time ϑ, from position {τ, xτ}. The last step

is to find the reachability set Z
(c)
γ [ϑ].

Theorem 6. The γ-reach set Z
(c)
γ [ϑ] under incomplete ob-

servation is Z
(c)
γ [ϑ] =

{

z : V (c)(τ, x̄τ , z) + h2(ϑ) ≤ γ2
}

.
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where h2(ϑ) is like in (14). The boundary of set Z
(c)
γ [ϑ]

may be reached by controls

u
(c)
∗ (t, x̄, z) =

= −
(

(V
(c)
x̄ )′B(t)Q(t)B′(t)V

(c)
x̄

)−1/2

Q(t)B′(t)V
(c)
x̄ ,

which, being dependent on x̄[ϑ], turn out to be functionals
of the measurement y(t), t ∈ [τ, ϑ]. Note that the correct

representation of the control u
(c)
∗ (t, x̄, z) in set-valued form

is

u
(c)
∗ (t, x̄, z) =

{

u
(c)
∗ (t, x̄, z), B′(t)V

(c)
x̄ (t, x̄, z) 6= 0,

B1, B′(t)V
(c)
x̄ (t, x̄, z) = 0.

Using the last scheme one may define a measurement
feedback control which steers the system to a convex
compact target set M ⊂ IRn. Since dL(B,A) is a minimal
distence between sets A and B, we just have solve the
problem

V(t, x̄) = d2
P (c)(ϑ)(M, X̄ [ϑ]) =

= min
z

{V
(c)
x̄ (t, x̄, z) | z ∈ M} = V

(c)
x̄ (t, x̄, z0)

and check that along the optimal trajectory x0[s] =
x0(s, x̄, t) s ∈ [t, ϑ], the vector parameter z0 does not
change. The optimal control solution is then defined as

u0(t, x̄) = u
(c)
∗ (t, x̄, z0). With V

(c)
x̄ (t, x̄, z0) = 0 we have

x0[ϑ] ∈ M.

6. CONCLUSION

This paper introduces the notion of reachability for con-
trolled systems subjected to stochastic Brownian noise
which depends on the control parameters which may be
either unbounded or bounded by hard bounds. The em-
phasis is on systems with vector-valued noise which also
depends on vector-valued controls. This presents a sub-
stantially more different situation than the scalar case (Di-
gailova and Kurzhanski [2005]) especially when the con-
trols are bounded. The reach set of each type is described
through level sets of solutions to appropriate stochastic
HJB equations. This paper clarifies the structure of so-
lutions and indicates the routes to calculate reach sets
in both cases. Finally a scheme for calculation reacha-
bility sets under measurement feedback is indicated for
systems with bounded controls and control-independent
noise. A forthcoming group of problems which now follow
from here is to investigate reachability under incomplete
feedback and control-dependent stochastic noise as well
as the related filtering equations and other problems of
measurement feedback control.
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tems. Birkhäuser, Boston, second edition, 2007.

Bertsekas D.P. Dynamic Programming. vol. 1, vol. 2.
Athena Scientific, Boston, 1995.

Blom H.A.P. and Lygeros J. Stochastic Hybrid Systems.
In H.A.P.Blom, J.Lygeros, editors, LNCIS, volume 337,
Sringer-Verlag, 2006.

Davis M.H.A. and Varaiya P. Information states for
linear stochastic systems. J.Math.Anal.Appl., 37 384-
402, 1972.

Digailova I.A. and Kurzhanski A.B. Reachability analysis
under control-dependent stochastic noise. In Proceed-
ings of the 16-th IFAC Congress, Prague, July 2005.

Doob J.L. Stochastic Processes. Wiley, New York, 1953.
Fleming W.H. and Rishel R.W. Deterministic and

stochastic optimal control. Springer-Verlag, New York,
1975.

Fleming W.H. and Soner H.M. Controlled Markov
Processes and Viscosity Solutions. Springer-Verlag, New
York, 1993.

Krasovskii N.N. On Optimum Control in the Presence of
Random Disturbances. Prikl. Math. Mech. 24:64–79,
1960.

Krasovskii N.N. Optimal Regulation with Random Load.
Sib. Math. J. 4:3 622–631, 1963.

Kurzhanski A.B. On Analytic Construction of a Regulator
under Control-dependent Noise. Differents. Uravn., 1:2
204–213, 1965.

Kurzhanski A. B. and Varaiya P. Reachability under Per-
sistent Disturbances. Docl. Acad. Nauk., volume 372:3
446–450, 2000.

Kurzhanski A.B. and Varaiya P. On Reachability under
Uncertainty. SIAM Jour. on Contr. & Optim., 41:1 181–
216, 2002.

Liptser R.S. and Shiryayev A.N. Statistics of Random
Processes I, II. Springer-Verlag, New York, 1977.

Lygeros J., Tomlin C. and Sastry S. Controllers for Reach-
ability Specifications for Hybrid Systems. Automat.,
535:3 349–370, 1999.

Lygeros J. and Watkins O. Stochastic Reachability for
Discrete Time Systems: An Application to Aircraft
Collision Avoidance. In Proc. 42nd IEEE Conf. on
Decision and Control Maui. Hawaii, USA, pages 5314–
5319, 2003.

Rockafellar R.T. Convex Analysis. Princeton Univ.Press,
Princeton, 1970.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14341


