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Abstract: This paper deals with the visibility problems occurring during the execution of a
visual servoing task by a robotic scrub nurse. To deliver the instrument to the surgeon and
to retrieve that instrument when the surgeon is finished using it, are the vision guide tasks to
be performed by the robot. One of the main problems of a vision guide robotic scrub nurse
is the lose of some image features during the control process. This problem can be produced
by a temporal occlusion or an out-coming of one or more image features. When this problem
appears, the common solution is simply stopped the visual servoing control task and started an
initialization process. The solution proposed by the authors is to extend the image plane and
compute the image features projected on it by a new prediction algorithm based on a sugeno
type fuzzy system since computer vision methods can not be used because of the features are
not visible. Experimental results demonstrate the improvements that can be obtained in the
performance of the vision-based control task when the visual servoing in the extended image
plane is used.

1. INTRODUCTION

With the rapid changes in medical robotics it is clear
that the place where surgical procedures will be performed
must change. New technologies require a new approach.
Until now, the operating room has been an empty space
filled with supplies, furniture, anesthesia machines, lights,
etc and the surgical team (surgeon, assistant surgeon,
scrub and circulating nurse, anesthesiologist, etc). During
the surgery, the scrub nurse assists the surgeon and the
physician assistant in the operating room (OR) by passing
instruments, suctioning blood and maintaining the sterile
field. Michael Treat of Columbia University has designed a
robotic scrub nurse with responds appropriately to verbal
requests, handing the needed instrument to the surgeon
and picking up and returning the used instrument to the
surgical tray [1]. The system already has performed in
an actual surgery at the NewYork-Presbyterian Hospital.
This robotic scrub nurse developed by Robotic Surgical
Tech Inc. retrieves the instrument from a ”transfer zone”
or ”drop zone” and not from the surgeon’s hand. On the
other hand, the robotic system proposed by us retrieves
them from the surgeon’s hand by visual servoing tech-
niques. All this systems controlled by visual servoing have
a common drawback related with the robustness issue and
in short with the problem of visibility in image features.

In the recent past, the robustness issue has been widely
investigated: integration of multiple visual cues to achieve
robustness [7, 8]; visual control law that is robust to a
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general class of image processing errors [10, 11]; different
approaches that constraint camera movements [12, 13, 14,
15, 16] or use the zoom [17] or move the camera backwards
along its optical axis [18] to keep all points in the camera
field of view during the control task .

In this paper, the problem of visibility in image features
during 2D visual control task execution is presented. Most
of the solutions in the literature to address this problem
are based on keeping all the features in the field of view
during the whole control task as it was commented before.

Contrary to these solutions, we proposed the novel concept
of allowing changes of visibility in image features during
the control task presented in [19, 20] for the first time.
They key idea of this concept consists on allowing some
features to appear in or disappear from the image through
its border. In this paper, this idea is extended to the whole
image space.

In [27], we described the continuity problems of the control
law due to the changes of visibility in image features during
a visual servoing task and also a solution to this problem
when features appear/disappear through the border of the
image was proposed. This solution is based on weighting
image features depending on the position of them in the
image plane Φuv. The weights are used in order to antic-
ipate in some way the possible discontinuities produced
in the control law by the temporary disappearance of
image features through the border. Due to the definition
of weight function, the image plane can be divided in two
zones: Zone 1 where the weights are greater than 0 and
Zone 2 where the weights are equal to 0. Between this
two zones, there is a smooth transition between 1 near the
center of the image and 0 in the border of Zone 1. In this
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case, the visual servoing task uses in the control law only
the information of image features inside Zone 1 since the
weight computed for the features in Zone 2 is equal to 0.
In some way, we are using a reduce image plane and that
reduction of image space depends on the weight function
parameters used (Fig. 1).

The proposed idea is to extend the image plane instead of
reducing it (Fig. 1). In this case, the image features pro-
jected on the extended image plane can not be extracted
by computer vision methods because they are not visible.
We evaluate two solutions to compute the position of the
features in the extended image plane: the first one is to
estimate their position by prediction algorithms (one of
them developed by us) and the other one is to know a
model of the environment and compute the pose of the
object and project these features on the extend image
plane assuming an acceptable camera calibration.

In this paper, visual servoing in the extended image plane
using a new prediction algorithm based on a sugeno type
fuzzy system is presented. In section 2, a short description
of vision-based control in the extended image plane is
presented. Then, the computing of the image features
based on a fuzzy filter is described on section 3. Finally,
the experimental results to show the performance of the
visual servoing in the extended image plane is presented
in section 4.
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Fig. 1. 2D Visual servoing using weighted features and
extended image plane

2. VISION-BASED CONTROL IN THE EXTENDED
IMAGE PLANE

Consider a standard vision-based positioning task. The
goal is to bring the robot end-effector back to a reference
position (ξ∗) with an eye-in-hand camera. This means that
a feature vector s(ξ), which contains the information of
the current image, has to converge to a reference feature
vector s∗(ξ∗). We use the task function approach [4] which
consists in minimizing an error vector e:

e = C(s − s∗) (1)

where C is a matrix which has to be selected such that
C L(s;Z) > 0 in order to ensure the global stability of
the control law. The optimal choice is to consider C as
the pseudo-inverse L+(s;Z) of the interaction matrix. The
matrix C thus depends on the depth Z of each target point
used in visual servoing. In order to avoid the estimation

of Z at each iteration of the control law, one can choose
C as a constant matrix equal to L+(s∗;Z∗), the pseudo-
inverse of the interaction matrix computed for s = s∗ and
Z = Z∗, where Z∗ is an approximate value of Z at the
desired camera position. In this simple case, the condition
for convergence is satisfied only in the neighborhood of the
desired position, which means that the convergence may
not be ensured if the initial camera position is too far away
from the desired one and the performed trajectory in the
image space is unpredictable and some visual features may
get out of the camera field of view during the control task
[28] (Fig. 1).

A local exponential decrease of the task function can be
imposed by choosing a proportional control law v = −λ e
where v is the velocity of the camera and λ is a positive
scalar factor which tunes the speed of convergence.

v = −λ e where e = L̂+(s − s∗) (2)

On the other hand, it is well-known that visual servoing
systems fail if the image features go outside the image
plane during the control task (Fig. 2). We proposed
in [19, 20], the first approach which allows temporary
disappearance of image features during the control task.
In this paper, we propose a new way of dealing with the
temporary disappearance based on computing the position
of the features in the extended image plane using a new
filter designed by us (Fig. 3).
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Fig. 2. 2D Visual servoing using weighted features and
extended image plane

3. COMPUTING THE IMAGE FEATURES IN THE
EXTENDED IMAGE PLANE

One of the main problems of visual servoing is the lose
of some image features during the control process. This
problem can be produced by a temporal occlusion or an
out-coming of one or more image features. When this
problem appears, several solutions can be used like: extract
these features from s, weighted image features or simply
stop the visual servoing control [19, 20, 6, 28]. As we
present in Section 1, we use a filter to predict the position /
trajectory of a feature ŝ in the extended image plane when
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Fig. 3. 2D Visual servoing using weighted features and
extended image plane

it is out of the camera FOV. The task function approach
[4] which consists in minimizing an error vector e is used.

e = C(ŝ − s∗) where ŝ = s + △s (3)

where △s is equal to zero if the feature can be computed
by computer vision techniques ŝ = s and equal to the
error produced by the computation of s by the prediction
algorithm developed. A local exponential decrease of the
task function can be imposed by choosing a proportional
control law v = −λ e where v is the velocity of the camera
and λ is a positive scalar factor which tunes the speed of
convergence.

v = −λ L̂+(ŝ − s∗) = −λ L̂+(s − s∗) − λ L̂+ △ s (4)

where −λ L̂+△s is the perturbation due to the estimation
error.

In this paper, we present a new fuzzy filter to compute
the feature position in the extended image plane using
the prediction of its image trajectory. This filter is based
on existing filters that improves the prediction made
by anyone of them. This new filter use the parameter
optimization of a Sugeno type fuzzy system and it can be
referred as: Fuzzy FILTER. The robustness and feasibility
of the proposed algorithm is validated by a great number
of experiments.

The main advantage of the proposed filter with respect
to others is that adapting time is less than others and
it is useful because we can lose the image feature in any
moment (see Fig. 6 to see the adapting time).

3.1 Sugeno-type fuzzy interface

The most common fuzzy inference process used is known
as Mamdani’s fuzzy inference method. For this work,
we have used the so-called Sugeno, or Takagi-Sugeno-
Kang (TSK ), method of fuzzy inference. Introduced in
1985 [29], it is similar to the Mamdani method in many
aspects. The first two parts of the fuzzy inference process,
fuzzifying the inputs (see Figure 5) and applying the
fuzzy operator, are exactly the same. The main difference
between Mamdani and Sugeno is that the Sugeno output

Fig. 4. Sugeno operation diagram

Fig. 5. Sigmoid membership function (input)

membership functions are either linear or constant (see
Figure 4).

A typical rule in a Sugeno fuzzy model has the form: If
Input 1 IS x and Input 2 IS y and ..., then Output is
z = ax + by + c.

For a zero-order Sugeno model, the output level z is a
constant.

The output level zi of each rule is weighted by the firing
strength wi of the rule. For example, for an AND rule with
Input 1 = αβγ,Input 2 = Ka, ... the firing strength is:

wi = AndMethod
(
F1(αβγ), F2(Ka), ...

)

where F1,2,...(.) are the membership functions for Inputs
1, 2, ...

The final output of the system is the weighted average of
all rule outputs, computed as:

FinalOutput =

N∑

i=1

(wizi)

N∑

i=1

(wi)

(5)

A Sugeno rule operates as shown in Figure 4 and for
inputs, we have used the sigmoide function as we can see
in Figure 5 and in expression 6.

sigmoide(x, a, c) =
1

1 + e−a(x−c)
(6)

3.2 The fuzzy filter

We have developed a new filter that has not a constant
model of object movement, the model is estimated depend-
ing of the speed, acceleration and jerk using these simple
expressions:

vk =
xk−1 − xk

T
; ak =

vk−1 − vk

T
;Jk =

ak−1 − ak

T
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Fig. 6. 1 dof feature trajectory

Depending of these values, we apply an specific combina-
tion of filters. Filters considered are: Linear Interpolation
(LI ), Kalman filter (models of constant velocity (Kv),
constant acceleration (Ka) and constant jerk (Kj ) ) and
αβ/αβγ. In Figure 6, we can see the behavior of them
for 1 dof. In this figure, we can see that the best filters
are αβ and Kv but using them is not possible to estimate
acceleration or jerk movements. By other hand, if we use
a Kj filter to estimate a constant velocity movement, it
would not work properly. With the fuzzy filter, we can
estimate a constant velocity or a constant jerk movement
with a low adapting time.

The main idea is that for different conditions (velocity,
acceleration and jerk) of the object’s trajectory one filter
works better than the others, in other words, for specific
values of velocity and acceleration we must apply an spe-
cific filter or filters and not others depending of dispersion
values for each case.

We have adjusted initial values empirically for the filter.
Once we have these values, an optimization algorithm
(trust region algorithm, see [30] and [31]) is executed to
find the local minimum closest to empirical values selected.
This optimization technique is applied off-line and before
the prediction procedure during several experiments in
which the characteristics were always inside the image
plane.

Once the optimization algorithm is finished, characteristics
can go out to the image and the filter will predict the
trajectory properly.

The Sugeno type rules Ri [29][32][33] can be seen below:

R1: IF i ≥ 5 AND acceleration IS high AND acceleration
> 0 AND jerk IS low THEN FuzzyFilter= 0.22 ·LI +
0.23 · Kv + 0.26 · Ka + 0.29 · Kj.

R2: IF i ≥ 5 AND acceleration IS high AND acceleration
< 0 AND jerk IS low THEN FuzzyFilter= 0.26 ·LI +
0.74 · Kv.

R3: IF i ≥ 5 AND j < 4 AND acceleration IS low AND
jerk IS low THEN FuzzyFilter= 0.33 ·LI + 0.67 ·Kv.

R4: IF i ≥ 5 AND j ≥ 4 AND acceleration IS low AND
jerk IS low THEN FuzzyFilter= 0.21·LI+0.56·αβγ+
0.23 · Kv.

R5: IF i < 5 THEN FuzzyFilter= 0.29 ·LI + 0.62 ·αβγ +
0.09 · Kv.

R6: IF i ≥ 5 AND velocity IS low AND jerk IS low THEN
FuzzyFilter= 0.18 · LI + 0.55 · αβγ + 0.27 · Kv.
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Fig. 7. Probability function of fuzzy filter

R7: IF jerk IS high THEN FuzzyFilter= Kj.

The membership input functions are presented in Figure 5

and parameters are defined as:

{
velocity, a=1 c=2;
acceleration, a=3 c=4;

Once these rules are established, we have the new fuzzy
filter, see Figure 4.

In Figure 7, we can see the probability function of the
new filter. This function is similar to a gaussian function
or like a Mexican-Hat wavelet in 3D. This probability
function is the output of a function that uses as input the
ten last points of one characteristic and returns the next
position (Figure 7 take into account noise in input points
introduced by the camera and feature recognition). z axe
is the probability, and x, y are the predicted position.

4. EXPERIMENTAL RESULTS

Experimental results has been carried out using a 6 axis in-
dustrial manipulator (Fanuc LR Mate 200iB). The exper-
imental setup used in this work also includes one camera
(uEye) rigidly mounted in robot end effector, one electro-
magnetic device as robot gripper, an ELF force measure-
ment system, some surgical surgical instruments and a
computer with vision control system and other computer
with the robot control system. An RPC link between the
robot controller and the computer with the vision control
system for synchronization tasks and data interchange has
been implemented. The whole experimental setup can be
seen in Figure 8.

In this experiment, the interaction matrix is assumed
constant and determined during off-line step using the
desired value of the visual features and an approximation
of the points depth at the reference camera pose. The goal
of the control is to retrieve the surgical instrument from
the surgeon’s hand by visual servoing techniques (Figure
8).

One of the main problems of visual servoing is the lose of
some image features during the control process (produced
by an out-coming of one or more image features). When
this problem appears, several solutions have been tested:
extract these features from s, weighted image features or
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(a) Robotic system re-
trieving a surgical instru-
ment

(b) Robot with the surgi-
cal instrument retrieved

Fig. 8. Experimental Setup: robotic system proposed re-
trieving surgical instruments from the surgeon’s hand
by visual servoing techniques

simply stop the visual servoing control [19, 20, 6, 28]. The
system is unstable when the extract of image features is
used [19, 20]. When the weighted image features approach
is used, the system is unstable because of most of the
features is inside the Zone 2 (weights are equal to zero).

Using the 2D visual servoing approach in the extended
image plane, the system is stable although one or more
features leave the image plane (Figure 9). In Figure 9, the
rectangle with dashed-line shows the control law when the
prediction algorithm is used to compute the position of
image features.

5. CONCLUSIONS AND FUTURE WORKS

In this paper, the visibility problems in visual servoing
when a robotic scrub nurse is retrieving the surgical instru-
ments from the surgeon’s hand are presented and a review
of the different scientific works which deal this problem are
recalled. After that, our solution to this problem based on
the extended image plane is presented and compared with
other solutions proposed in the literature. To estimate the
image features in the extended image plane, a prediction
filter was developed and its estimation error is computed.
With the experimental results, it has been shown that the
visual servoing in the extended image plane is continuous
and locally stable in a neighborhood of the equilibrium
point.
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