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Abstract: Hybrid system identification is composed of two subproblems: estimate the discrete
state or mode for each data point, and estimate the submodel governing the dynamics of the
continuous state for each mode. For linear hybrid systems, the paper proposes to tackle these
problems in a single step by simultaneously approximating each submodel while associating
data points to each of these. The method borrows ideas from bounded-error approaches and
Support Vector Regression to extend the algebraic procedure. The algorithm can easily deal
with noise by fixing a predefined accuracy threshold. This bound on the error can be different
for each mode when the noise level is considered to switch with the system. An extension of the
algorithm to automatically tune itself in accordance with the noise level of each mode is also
provided. The method can be seen as an an extension of the algebraic approach, but also as an
alternative to the bounded error approach when a predefined or preferred model structure is
given or when the noise level is unknown. An extension of the method to nonlinear submodels
is provided in the companion paper (Lauer and Bloch, 2008).
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1. INTRODUCTION

Context. A hybrid system is usually described by both
a continuous state and a discrete state, where the vector
field defining the evolution of the continuous state depends
on the discrete state. In this framework, a system can be
seen as switching between different subsystems, which are
usually modeled by linear AutoRegressive with eXogenous
inputs (ARX) models in the discrete-time case. Two types
of identification problems may arise in this setting depend-
ing on whether the discrete state sequence that generated
the data is known or not. If it is, then the problem can
be simply recast as n common identification problems,
each one using only the data for a given discrete state.
However, in most cases this sequence is unknown and the
problem becomes nontrivial as it amounts to both estimate
the regions or the boundaries in the continuous state space
(or regressor space) that define the discrete state and the
parameters of the linear models in these regions.

Related work. Five main approaches have been devised
for this problem: the clustering-based approach (Ferrari-
Trecate et al., 2003), the mixed integer programming based
approach (Roll et al., 2004), the Bayesian approach (Ju-
loski et al., 2005a), the bounded error approach (Bempo-
rad et al., 2005) and the algebraic approach (Vidal et al.,
2003). The first four focus on the problem of PieceWise
Affine (PWA) system identification, where the discrete
state depends on the continuous state. However, both the
bounded error and Bayesian approaches can also be used
to identify a broader class of systems, known as switched
linear systems, where the discrete state evolves indepen-
dently of the continuous state. The algebraic approach (Vi-

dal et al., 2003) focuses on this latter problem, but without
taking the noise into account in its development. This leads
to an algorithm very sensitive to noise, compared to the
clustering-based or bounded error methods, as shown by
Juloski et al. (2005b). Besides, the bounded error method
provides a convenient way of dealing with noisy data by
looking for a model with a predefined accuracy. However,
the hyperparameters of the method, such as the model
accuracy that determines the number of modes, may be
difficult to tune to get a prescribed structure, e.g. if prior
knowledge on the number of modes is available (Juloski
et al., 2005b).

Tools and proposed method. The paper focuses on
linear hybrid system identification 1 from noisy data
with Switched ARX (SARX) models. PieceWise ARX
(PWARX) models are considered as a special case of this
problem. In this context, the paper proposes a bounded
error approach to satisfy the hybrid decoupling constraint
when working with noisy data in the algebraic identifica-
tion framework. The new method uses tools and ideas from
the fields of machine learning and optimization. In machine
learning, Support Vector Machines (SVM) (Vapnik, 1995)
can be used both for regression and system identification
(Drezet and Harrison, 1998; Mattera and Haykin, 1999).
In hybrid system identification, SVM classifiers are al-
ready used to estimate the switching boundaries between
the modes (Ferrari-Trecate et al., 2003; Bemporad et al.,
2005). For regression, this learning algorithm, known as
Support Vector Regression (SVR), uses an ε-insensitive

1 Nonlinear hybrid system identification is discussed in the compan-
ion paper (Lauer and Bloch, 2008).
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loss function which does not take into account errors that
are less than ε (Smola and Schölkopf, 2004). This loss
function allowing for errors below a predefined threshold is
close in spirit to the bounded error approach. However, the
origin is different. In learning theory, this effect is justified
in order to minimize the generalization error of the model,
whereas the bounded error approach was developed to
allow the automatic determination of the number of linear
submodels required to approximate a nonlinear function
with a given accuracy.

Contribution. The paper proposes a new method for
linear hybrid system identification from noisy data. This
method allows to consider a noise model that also switches
with the system by choosing different bounds on the error
for different modes. To our knowledge, this problem has
not yet been explored in the literature, though being
realistic (most sensors have a constant relative precision
rather than a constant absolute one). An extension of the
algorithm to automatically tune itself in accordance with
the noise level of each mode is also provided. In comparison
to the the bounded error method (Bemporad et al., 2005),
which determines the number of modes for a fixed bound
on the error, this alternative approach to the tuning of
parameters may be useful when a predefined or preferred
model structure is given. In this case, instead of testing
various thresholds on the accuracy until a good model
structure is found, a minimal bound on the error can be
automatically determined for a given number of modes.

Paper organization. Starting from the setting of the prob-
lem in the algebraic framework (sect. 2.1), the paper
then describes how to deal with noise in a bounded error
approach (sect. 2.2). Then, the bounded error with soft
constraints is discussed with the use of the ε-insensitive
loss function (sect. 2.3) before exposing the algorithm itself
(sect. 2.4). This alorithm is then extended to automatically
tune the bounds on the error (sect. 2.5). Finally, two
numerical examples are given (sect. 3) to show both the
automatic tuning and the application to hybrid system
identification.

Notations: all vectors are column vectors written in bold-
face and lowercase letters whereas matrices are written in
boldface and uppercase.

2. HYBRID SYSTEM IDENTIFICATION

Consider modeling a linear hybrid system of output yi

from N input-output samples (xi, yi) by a model f ,

yi = f(xi) + ei = fλi
(xi) + ei, (1)

composed of n ARX affine 2 submodels fj of the form

fj(xi) = w
T
j xi + bj , (2)

where wj ∈ R
p and bj ∈ R are the p + 1 parameters, the

regression vector xi = [yi−1 . . . yi−na
, ui−1 . . . ui−nc

]T

contains the delayed na outputs yi−k and nc inputs ui−k

of the system, while the discrete state λi ∈ {1, 2, . . . , n}
determines which mode (or which ARX submodel) is used
to compute f(xi). In a Switched ARX (SARX) model, the
discrete state λi evolves independently of xi, whereas in a

2 Affine models are more general than linear ones and allow the
piecewise function f to be continuous in PWARX models.

PieceWise ARX (PWARX) model, the discrete state is a
function of xi. This function is defined as

λi = j, if xi ∈ Sj = {x : Hj

[

xi

1

]

≤ 0}, j = 1, . . . , n,

(3)
in which the matrices Hj define the regions Sj partitioning

the regressor space X ⊆ R
(na+nc).

2.1 Noiseless case: the algebraic approach

Vidal et al. (2003) proposed an algebraic approach to
simultaneously estimate the discrete and the continuous
parts of a SARX model. It basically amounts to consider
that the vector zi = [xT

i , −yi]
T lies at least on one of

the hyperplanes defined by 3 [wT
j 1]zi + bj = 0, i.e. that

the product,
∏n

j=1[w
T
j 1]zi + bj , of these terms, known

as the hybrid ”decoupling” polynomial, equals zero. The
solution is then obtained by writing this constraint for
all the N available data points (xi, yi) and developing
the polynomials to recover a linear system of equations
involving new parameters hj built from products of the
original parameters wj , bj.

This method can be seen as forcing at least one submodel
fj to approximate the point (xi, yi) with zero error. Defin-
ing the submodel errors eij = yi−fj(xi) = yi−w

T
j xi−bj,

and imposing this condition for the N points allows to
write the hybrid ”decoupling” polynomial constraints as

n
∏

j=1

eij = 0, i = 1, . . . , N. (4)

However, in the case of noisy data, these constraints can-
not be satisfied. In practice, Vidal et al. (2003) proposes
to solve the linear system involving the products hj of
the parameters in a least squares sense to approximate
the solution. As detailed by Ma and Vidal (2005), this
corresponds to the minimization of a sub-optimal approx-
imation, suitable for a low noise level, of the objective

function
∑N

i=1 e2
i :

min
hj

N
∑

i=1

n
∏

j=1

(eij)
2. (5)

One drawback of this method is that the original param-
eters wj and bj are estimated through their products and
not directly, which may lead to additional errors on their
estimates.

2.2 Considering noise with a bounded error approach

The bounded error approach developed by Bemporad et al.
(2005) aims at finding the minimal number n of submodels
that allows the error ei on all the training points (xi, yi)
to be bounded by

|yi − f(xi)| = |ei| ≤ δ, i = 1, . . . , N. (6)

Considering this approach in the setting of section 2.1
results in rewriting the ”decoupling” polynomials (4) as

n
∏

j=1

[|eij | ≥ δ] = 0, i = 1, . . . , N, (7)

3 In Vidal et al. (2003), only linear submodels without the term bj

are considered.
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where [·] = 1, if the bracketed expression is true, and 0
otherwise. If the discrete state is estimated by

λ̂i = arg min
j∈{1,...,n}

|eij |, (8)

then the absolute value of the error of the hybrid model,
|ei| = minj |eij |, is bounded by the threshold δ, for all
i for which constraint (7) holds. However, the problem
thus posed is not easy to solve. The following proposes a
relaxation of the bounded error constraint through the use
of a particular loss function.

2.3 Bounded error with soft constraints

The ε-insensitive loss function, defined by Vapnik (1995)
for Support Vector Regression (SVR) as

l(eij) =

{

0 if |eij | ≤ ε,

|eij | − ε otherwise,
(9)

builds a tube of insensitivity, in which the errors are mean-
ingless. Absolute errors larger than the width of the tube ε
are penalized linearly, which ensures a certain robustness
to outliers compared to a quadratic loss function.

The bounded error constraints (7) can thus be approxi-
mated efficiently by the minimization of this loss function.
In this setting, the problem becomes

min
wj ,bj

N
∑

i=1

n
∏

j=1

l(eij). (10)

Remark 1: Compared to the approach of Bemporad et al.
(2005), solving (10) does not ensure that the error is
truly bounded for all points. However, this softening of the
constraints can be desirable to deal with outliers.

Remark 2: Compared to the approach of Vidal et al.
(2003), the objective function in (10) is minimized directly
with respect to the model parameters wj and bj instead of
their products. This may prevent additional errors on the
parameter estimates.

An issue that has not been studied in the literature so far is
the identification of hybrid systems under the assumption
of a switching noise model. This framework extends the
standard models in order to consider that the different
submodels are corrupted by noise of different levels and or
distributions.

An advantage of the proposed approach is the possibility
to deal easily with a different noise level for each mode by
using different bounds on the errors. Simply define n loss
functions lj as

lj(eij) =

{

0 if |eij | ≤ εj ,

|eij | − εj otherwise,
(11)

where εj can be set to different values for each j. Then
these loss functions can be used in (10) to accomodate
each mode. An example of application where this is useful
is provided in section 3.

2.4 Algorithm

The minimization of the ε-insensitive loss function (9)
can be implemented through the minimization of n × N

positive slack variables ξij and n × N soft constraints of
the type

−ξij − ε ≤ yi − fj(xi) ≤ ε + ξij , (12)

j = 1, . . . , n, i = 1, . . . , N,

where ξij ≥ 0. To deal with the switching noise variance
assumption, multiple loss functions (11) with different
thresholds ε set to δj , j = 1, . . . , n, are implemented via
the set of constraints

−ξij − δj ≤ yi −w
T
j xi − bj ≤ δj + ξij , (13)

j = 1, . . . , n, i = 1, . . . , N,

where the submodels fj have been replaced by (2).

In addition, by following the SVR approach, the submodels
fj are trained by minimizing the norms of the parameter
vectors ‖wj‖2. Minimizing these norms, which are also
measures of the model complexity, is known to yield
models with better generalization performance (Smola and
Schölkopf, 2004). The problem of training n models under
the decoupling constraints with bounded error (7) is thus
approximated by the optimization program involving n(p+
1 + N) variables:

min
wj ,bj ,ξij≥0

n
∑

j=1

‖wj‖
2
2 + C

N
∑

i=1

n
∏

j=1

ξij (14)

−ξij − δj ≤ yi −w
T
j xi − bj ≤ δj + ξij ,

j = 1, . . . , n, i = 1, . . . , N.

Solving this problem with a sufficiently large constant
C leads to solution functions fj in accordance with the
original constraints (7). Moreover, the discrete state λi is
readily available for all i from the variables ξij vanishing

to zero as λ̂i = j, for ξij = 0, i.e. for the model fj

approximating (xi, yi) with an error less than δ. The cases
where the bounded error constraint is not satisfied, i.e.
no ξij is zero, can be further discriminated by letting

λ̂i = argminj(ξij).

In the case of PWA systems where the modes are linearly
separable in the regressor space X , undetermined points
can be reclassified after the training of separating hyper-
planes (the boundaries between the domains Sj) based on
the determined cases only. The classification issue is not
discussed here due to size constraints and the reader is
referred to Vapnik (1995) and Mangasarian (2000) for an
introduction to state-of-the-art methods.

The hyperparameters of the method are the number n of
modes, the bounds δj , the regularization parameter C and
the number of lagged inputs and outputs (dynamic order).
They can be tuned on a subset of the data put aside
for validation. When too few data are available, cross-
validation techniques can be used. Automatic tuning of
the bounds δj is discussed in the following.

2.5 Automatic tuning

Using the ν-Support Vector Regression (ν-SVR) formu-
lation described in Schölkopf et al. (2000), one can tune
automatically the width ε of an ε-insensitive loss function.
Applying this trick to the algorithm (14) leads to
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min
wj ,bj,ξij≥0,δj≥0

n
∑

j=1

‖wj‖
2
2 + C

N
∑

i=1

n
∏

j=1

ξij + νNC

n
∑

j=1

δ2
j

(15)

−ξij − δj ≤ yi −w
T
j xi − bj ≤ δj + ξij ,

j = 1, . . . , n, i = 1, . . . , N.

Notice that, in comparison to Schölkopf et al. (2000),
actually the squares of the δj are minimized instead of
the δj directly. Minimizing the δj directly would produce
a shrinkage effect due a constant influence function equal
to one. This is not desirable when dealing with noisy data,
since the method relies on the fact that some ξij , which
satisfy ξij ≥ max(0, |eij | − δj), are zeros and thus that
eij ≤ δj for a certain number of points. On the contrary,
in the minimization of a quadratic criterion, the influence
function is known to decrease around zero, which leads to
non-zero solutions for the δj .

As one hyperparameter ν has been added, the n hyperpa-
rameters δj are now automatically tuned. The optimiza-
tion program (15) thus involves n(p + 2 + N) variables.

This algorithm can be further improved by considering
adaptive δj as above but bounded by δ, simply by intro-

ducing the constraint δ ≥ δj , for j = 1, . . . , n, in (15).

Doing so, we impose a bound δ on the error as in the
standard approach (Bemporad et al., 2005), but also allow
the algorithm to shrink this bound in order to produce
better solutions.

2.6 Optimization issues

Problems (14) and (15) are nonlinear optimization pro-
grams involving respectively n(p+1+N) and n(p+2+N)
variables, which may become a difficulty for a large number
of data N . However, the proposed method benefits from
the good properties of Support Vector Regression and is
thus well adapted for the cases where few data are avail-
able. Problems minimizing a nonlinear objective function
over a convex set, such as (14) and (15), can be solved by
general purpose solvers such as the function fmincon found
in MATLAB, but with no guarantee that the solution
is a global minimum. The non-convexity of the objective
functions is due to the product terms

∏n

j=1 ξij , which have

however a global minimum equal to zero (due to ξij ≥ 0).
For values of δj so that the bounded error constraints can
be satisfied, this optimum is feasible. Local optimization
algorithms, such as sequential quadratic programming, are
thus expected to converge towards a global minimum and
can be used to solve the problems.

In practice, it has been observed that the optimization
rarely leads to a local minimum corresponding to a bad
solution of the initial system identification problem. More-
over, such bad solutions are easily detected, in which case
the optimization can be restarted from another initial
point and with a smaller tolerance on the termination
criteria. For instance, in the algorithm 1, used in the exper-
iments of section 3.1, bad solutions are detected from the
resulting maximum absolute error, MAE = max

i∈{1,...,N}
|yi −

f(xi)|. The optimization is restarted with a smaller toler-
ance Tol, used for the three termination tolerances (change
in the variables, change in the objective function and

constraint violation), until the MAE is lower than the

maximal error allowed and specified by δ. However, when
this overall bound is too small compared to the noise level,
this condition cannot be satisfied and the algorithm is
stopped when Tol reaches a predefined minimal value m.

Algorithm 1. Computing a solution to problem (15) that is
acceptable with respect to the maximal absolute error (MAE).

(1) Initialize Tol and its minimal value m
(2) Choose a random initial vector of n× (p + N + 2)

variables with values in the interval [0, 1]
(3) Call fmincon to solve (15)
(4) If MAE > δ,

• if Tol > m,
· Tol ← 0.1×Tol
· go to step 2

• else
· output a warning ”No solution with MAE

< δ can be found, maybe the bound δ is
too tight for this data set”

3. EXAMPLES

Two examples are provided to show the efficiency of the
method both for the automatic tuning of the bounds while
estimating two synthetic functions and for hybrid system
identification.

3.1 Switching noise variance and automatic tuning

The first example shows the approximation of a one-
dimensional PWA map y = a1x + b1, for x < −2, and
y = a2x + b2 otherwise. It also emphasizes the need for
different bounds on the errors for the different modes,
in case of a switching noise model, and demonstrates the
efficiency of the automatic tuning of these bounds.

30 points in the interval −5 ≤ x < −2 are generated for
a1 = 1 and b1 = 0.5 and are corrupted by a uniform
noise in the interval [−β1, β1]. 41 points in the interval
−2 ≤ x ≤ 2 are generated for a2 = −0.5 and b2 = 0 and
are corrupted by uniform noise in the interval [−β2, β2].
In the first set of experiments, β1 and β2 are set to 0.8
and 0.2 respectively. All optimization programs are solved
by the MATLAB function fmincon for C = 40. Figure 1
shows the approximation of the N = 71 data by algorithm
(14) for δ1 = δ2 = 0.6 (top). When using the same bound
on the error for the two models, the data are correctly
approximated within the bounds, but the bound is clearly
too large for the data corrupted by low level noise, leading

to â2 = −0.34 and b̂2 = −0.14. In this case, using different
bounds for each model, in accordance with the noise levels,
may lead to a better approximation.

Algorithm (15) is then used with an overall bound δ = 1
and ν = 1 to estimate the linear models under the
switching noise assumption. As shown at the bottom of
Figure 1, this leads to a better fit for x ≥ 2 with â2 =

−0.49 and b̂2 = −0.01, while the final bounds on the
errors estimated in accordance with the noise levels are
δ1 = 0.54 and δ2 = 0.18. As a comparison, a manual
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Fig. 1. Simultaneous estimation of 2 linear functions with
different noise levels. Top: using the same bound on
the error for the 2 models, the bound is clearly too
large for x ≥ −2. Bottom: automatic tuning of the
bounds leads to a better fit.

grid search of the optimal parameters δ1 and δ2 over 10
values in the range [0.1, 1.0] (requiring 100 runs of the
algorithm) leads to values close to these: δ1 = 0.6 and δ2 =
0.2. Table 1 summarizes the results with respect to the
parameter estimates and the Mean Square Error (MSE)

given by MSE = 1/N
∑N

i=1 (yi − f(xi))
2. The results for

the automatic tuning are identical in terms of MSE to
the ones obtained by a manual grid search of the optimal
values of δ1 and δ2. The parameter estimated in these
two settings are very close. For the three settings (fixed,
manual and automatic tuning), a bias can be observed
for the parameter b1, due to a high noise level β1 = 0.8
and a low number of data (30 points generated with the
parameters a1 and b1).

The automatic tuning is now tested with respect to the
variation of the noise level. The noise level for x < −2
is set to β1 = 0.5, while the one for x ≥ 2 varies from
β2 = 0.1 to β2 = 1. Figure 2 shows the mean and standard
deviations over 100 runs of the the estimated parameters.
During the experiments, δ1 and δ2 given by the algorithm

Table 1. Parameter estimates and Mean Square
Error (MSE) for example 1 of section 3.1 and

figure 1.

a1 b1 a2 b2 MSE

true parameters 1 0.5 -0.5 0 0.073

same bounds 0.83 -0.24 -0.34 -0.14 0.138
(δ1 = δ2 = 0.6)
automatic tuning 0.91 0.04 -0.49 -0.01 0.108
(δ1 = 0.54, δ2 = 0.18)
manual search 0.92 0.10 -0.51 -0.02 0.108
(δ1 = 0.6, δ2 = 0.1)

0 0.2 0.4 0.6 0.8 10.1 0.3 0.5 0.7 0.9

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 10.1 0.3 0.5 0.7 0.9
−0.8

−0.6

−0.4

−0.2

0

0.2

Fig. 2. Average performance of the automatic tuning with
respect to the noise level over 100 runs. Expectation
of the estimated parameters a1, b1 (top) and a2,
b2 (bottom) with their standard deviations versus
the noise level β2. The true parameters are also
represented (dash lines).

(15) evolve in accordance with the noise levels β1 and β2.
Thanks to this automatic tuning, the expectation of the
parameter estimates is mostly insensitive to the noise level,
while their standard deviations increases only slightly for
high levels of noise.

3.2 Simulated hybrid system identification

Consider the hybrid system switching between mode 1:
yt = yt−1 + ut−1 + et, and mode 2: yt = −0.905yt−1 +
0.048ut−1 + et, where et is a zero-mean Gaussian noise
of standard deviation 0.1. An output trajectory of 100
points of this system is generated with a random initial
condition y0, a random input sequence ut ∼ N (0, 1) and
random mode switches. The MATLAB function fmincon
is then used to compute the solution of problem (14) for
C = 100 and δ1 = δ2 = 0.1. The trajectory of the resulting
model ŷt = f

λ̂t
(ŷt−1, ut−1) is shown on Figure 3. The

two estimated submodels are f1(ŷt−1, ut−1) = 0.989ŷt−1 +
1.02ut−1 and f2(ŷt−1, ut−1) = −0.893ŷt−1 + 0.043ut−1,
which shows the recovering of the original parameters.

The discrete state is estimated by λ̂t = arg minj(ξtj). As
shown in Fig. 3, the algorithm recovers the true mode
without requiring a settling time and only 5 classification
errors occur on the whole trajectory. Moreover, the effect
of these classification errors is limited and their origin can
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Fig. 3. From top to bottom: (a) Trajectory of the system
(blue plain line) and of the model (red dash line) in
simulation mode (only the initial condition and the
input are given to the model); (b) Estimated discrete

state λ̂t; (c) Output error yt − ŷt; (d) Classification

error λt − λ̂t.

be explained. They occur on ambiguous points for which
f1(yt−1, ut−1) = f2(yt−1, ut−1)±(δ1+δ2). In case of a PWA
system, these ambiguities could be removed by classifying
the points with respect to a separating boundary in the
regressor space.

4. CONCLUSION

In this paper, a new method for hybrid system identi-
fication has been proposed to bridge the gap between
the bounded error approach and the algebraic procedure.
The method makes use of the ε-insensitive loss function
proposed in the machine learning community for Support
Vector Regression. Since no assumption on the discrete
sequence that generates the data is required, arbitrar-
ily switched ARX (SARX) as well as piecewise ARX
(PWARX) models can be identified. Compared to the
bounded error approach (Bemporad et al., 2005), the
resulting algorithm can deal with switching noise level
and automatically tune the error bounds accordingly. It
thus offers an alternative, which may be useful when a
predefined or preferred model structure is given. Based
on support vector regression, the proposed method is also
very efficient when few data are available for identification.

Future work will focus on missing topics such as subsytems
with different orders, estimation of the number of modes,
more experiments including real-life applications, incor-
poration of prior knowledge and in-depth study of the
optimization problems. Besides, extension of the proposed
method to nonlinear submodels has been studied by Lauer
and Bloch (2008).
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