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Abstract: We analyze the frequency contents of strain waves in an axially excited bar, where
one end of the bar is subject to a free end boundary condition. The analysis is treated in
the context of identification of viscoelastic materials. The free end boundary condition leads
to very particular constraints on the wave propagation in the bar and it is shown how this
influences the identification. Wave propagation in both elastic and viscoelastic materials is
treated, and the validity of the analysis confirmed through simulated and (in the case of
viscoelastic materials) experimental data. The analysis is then used in order to interpret the large
frequency variations in previous studies concerning the accuracy of the estimate and optimal
input signal, respectively.
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1. INTRODUCTION

Wave propagation experiments on an axially excited bar
specimen is commonly used to identify material functions
of viscoelastic materials, see for example Blanc (1993);
Hillström et al. (2000); Pintelon et al. (2004); Sogabe
and Tsuzuki (1986). In many cases, the experiment is
designed so that one end of the bar is left free. This
free end condition leads to very particular constraints on
the wave propagation in the bar, which in turn influences
the identification. In previous studies it was for example
found that the quality of the estimated material function
varies significantly with frequency, a behavior that can be
explained through the work in this paper. The aim of the
work is to examine how the boundary conditions affect
the frequency content of the waves propagating in the bar,
and to use this study in order to further understand what
influence this design aspect may have on the identification.

We here focus on the identification problem described in
Hillström et al. (2000), where nonparametric identification
of the frequency dependent complex modulus E(ω) of
a viscoelastic material is concerned. In Hillström et al.
(2000), the complex modulus of the material is identified
based on the frequency domain wave equation

∂2ε(x, ω)

∂x2
= −

ρω2

E(ω)
ε(x, ω), (1)

which describes the propagation of strain waves in an
axially excited bar, see Fig. 1. In (1), ε(x, ω) denotes the
Fourier transform at frequency ω of strain measured at
location x along the bar and ρ denotes the density of
the material. This identification problem has been further
studied in for example Mossberg et al. (2001) where the
variance of the achieved estimates was treated, and in
⋆ This research was partially supported by the Swedish Research
Council, contract 621-2004-5169.

Fig. 1. An axially excited bar

Rensfelt and Söderström (2006) where optimal excitation
of the bar was considered. In both these cases, a study of
the frequency contents of the measured signal may further
elucidate the results.

This paper treats bars made of linearly elastic as well
as viscoelastic materials. The study on elastic bars is
closely related to the eigenvalue problem for rods in axial
vibration, as described in Meirovitch (1997), and serves
as foundation for the more complex viscoelastic case. A
description of elastic and viscoelastic materials, and the
difference between them, can be found in Section 2. In
Section 3 the analysis of the frequency contents in the
measured signal is carried out. The case of elastic materials
is first addressed followed by a similar analysis in the
viscoelastic case. In Section 4, the identification problem
described in Hillström et al. (2000) is treated and it is
shown how the frequency contents of the measured signal
may influence the results of the identification. Finally,
conclusions are given in Section 5.

2. ELASTIC AND VISCOELASTIC MATERIALS

The relationship between stress (force per unit area) and
strain (elongation per unit length) in an linearly elastic
material is described by the simple Hooke’s law

σ(t) = Eε(t) (2)

where E is the Young’s modulus of linear elasticity.
Young’s modulus is a material specific constant, which
means that there is a instantaneous relationship between
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the stress and the strain in an elastic material. In other
words, as soon as the force put on to the material is
released, the material will immediately go back to its
original shape. Viscoelastic materials on the other hand
exhibit viscous, as well as elastic, effects. The viscous
effect in the material acts as a form of damping, which
means that when the stress put onto the material is re-
leased, the material will only slowly return to its original
shape. For a viscoelastic material we hence have a time
dependence between the stress and the strain, i.e. the
material response is determined not only by the current
state of stress but also by all past states. Similarly, if
the deformation is specified, the current stress depends on
the entire deformation history. For a linearly viscoelastic
material, this can be expressed as

σ(t) =

∫ t

−∞

Y (t − τ)ε̇(t)dτ, (3)

where Y (t) is called the relaxation modulus and ε̇(t) is
the time derivative of the strain ε(t). The convolution
relationship in (3) is in frequency domain translated into
a multiplication

σ(ω) = E(ω)ε(ω), (4)

where σ(ω) and ε(ω) denote the Fourier transformed
stress and strain, respectively. Note that E(ω) = iωY (ω),
where Y (ω) is the Fourier transform of the relaxation
modulus Y (t). Knowledge about the complex modulus is
very important in order to understand how a viscoelastic
material behaves when used in an environment where it is
subject to stress of various kind.

The complex modulus can be identified through strain
waves propagating in an axially excited bar. This is a
convenient technique for estimating E(ω) in the frequency
band 102 − 104 Hz. The wave propagation is then be
described by the frequency domain wave equation (1). The
general solution to this equation is given by

ε(x, ω) = P (ω)e−γ(ω)x + N(ω)eγ(ω)x (5)

where P (ω) and N(ω) are complex valued functions of ω,
and can be interpreted as amplitudes of waves traveling in
positive and negative x direction respectively. The complex
valued, frequency dependent function γ(ω) in (5) is called
the wave propagation function and is in the viscoelastic
case given by

γ(ω) =

√

−
ρω2

E(ω)
. (6)

If γ(ω) is expressed in terms of its real and imaginary
parts, i.e.

γ(ω) = α(ω) + ik(ω), (7)

it is clearly seen from (5) that the real part of the wave
propagation function, α(ω), acts as a damping factor for
waves at frequency ω, while the imaginary part, k(ω), is
the corresponding wave number. The wave number k(ω)
is an odd function, positive for ω > 0, and the damping
factor α(ω) a positive even function, Hunter (1960). By
definition, the wavelength for waves at frequency ω can be
obtained through the wave number as

λ(ω) = 2π/|k(ω)|. (8)

The frequency domain wave equation (1) also describes
wave propagation in an elastic bar. The complex modulus
E(ω) is then replaced by the constant Young’s modulus

E in (2) and the wave propagation function γ(ω) in (5) is
given by

γ(ω) =

√

−
ρω2

E
, (9)

which is a purely imaginary function of ω. Hence, in the
elastic case

γ(ω) = ik(ω), k(ω) =
√

ρ/E(ω)ω (10)

and the damping factor α(ω) = 0. This implies that if
the material is excited initially and then allowed to vi-
brate freely, the vibrations will continue eternally without
ever damping out, i.e. the system is conservative. This,
however, is a mathematical idealization, and ideally elastic
materials do not exist in practice. Elastic theory is never-
theless useful when the damping is very low, and many
materials such as most metals follow Hooke’s law with
high accuracy. Examples of materials where the damping
is not negligible, and has to be considered in a viscoelastic
framework, include many types of plastics.

3. ANALYSIS OF FREQUENCY CONTENTS

When an experiment is designed so that an end of the
bar is left free, the strain at that end will be identically
equal to zero. If we for example have a free end at x =
0, then ε(0, t) = 0 for all t. Consequently, the Fourier
transformed strain at that end will also equal zero, i.e.
ε(0, ω) = 0. In the following two subsections we will
examine the frequency contents of the measured strain
signal in bars made of elastic and viscoelastic material,
respectively, where one end of the bar is free. The bar is
excited (strained) at the end opposite to the free end, and
it is here assumed that the only influence at this end is
that of the excitation. The frequency domain strain at the
excited end is therefore the same as the Fourier transform
of the strain excitation. This assumption can, however, be
relaxed and the analysis modified to cover all cases where
the power of the strain at the excited end is limited for all
frequencies.

3.1 Elastic materials

Consider a bar as in Fig. 1 made of an elastic material with
ends in x = 0 and x = L. The bar is suspended in such a
way that there is a free end at x = 0 and then excited at
x = L. This gives the following boundary conditions

ε(0, ω) = 0 (11)

ε(L, ω) = u(ω), (12)

where u(ω) denotes the Fourier transform of the strain
excitation. As the wave propagation function of an elastic
material is purely imaginary, see (10), the solution to the
frequency domain wave equation (5) can be written as

ε(x, ω) = A(ω) cos
(

k(ω)x
)

+ B(ω) sin
(

k(ω)x
)

. (13)

The complex valued amplitudes A(ω) and B(ω) are given
by

A(ω) = N(ω) + P (ω) (14)

and
B(ω) = i(N(ω) − P (ω)). (15)

By applying boundary condition (11) to (13) we may
conclude that A(ω) = 0, and equation (13) hence simplifies
to

ε(x, ω) = B(ω) sin
(

k(ω)x
)

. (16)
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Fig. 2. Frequency domain strains |ε(x, ω)| for simulated
aluminium bar (solid line), and frequency response of
the simulated input signal in Fig. 3 (dashed). Frequen-
cies fulfilling (18) marked with (∗), and frequencies
fulfilling (19) marked with (o).

If the second boundary condition, (12), is applied to this
equation, we get the following expression for the amplitude
B(ω)

B(ω) =
u(ω)

sin
(

k(ω)L
) . (17)

Under the assumption that the power of the input signal
is finite for each frequency, a condition that is fulfilled
in most practical applications, we see from (17) that
|B(ω)| approaches infinity for those frequencies where
| sin

(

k(ω)L
)

| = 0. This is fulfilled when k(ω)L = nπ or
equivalently when

k(ω) =
nπ

L
. (18)

The frequency domain strains will hence be amplified
for frequencies where the wave number fulfills (18). This
corresponds to the eigenmodes of a bar in axial vibration
where the free end condition is fulfilled at both ends of
the bar, see Meirovitch (1997). On the other hand, from
(16) we can expect the frequency domain strain measured
at position x to vanish when sin

(

k(ω)x
)

= 0, i.e. when
k(ω)x = nπ or equivalently when

k(ω) =
nπ

x
. (19)

Note that from (8), this corresponds to measuring the
signal at integral multiples of half a wavelength from the
free end at x = 0, i.e. at the nodes of the sine wave in (16).

In Fig. 2, simulated frequency domain strains from a wave
propagation experiment on an elastic bar is shown. The
bar is axially excited at x = L by the pulse shown in
Fig. 3, and then left to vibrate freely. The length of the
bar is L = 2 m and the strains are simulated through
(5) and (9). The amplitudes P (ω) and N(ω) are given
by (11) and (12), where u(ω) is the Fourier transform of
the exciting pulse in Fig. 3. In the simulations, Young’s
modulus was set to E = 71 GPa which corresponds well
to the elastic behavior of aluminum (Al). The simulated
strain is measured at position x = 1.6 m. As can be seen
from Fig. 2, the frequencies that fulfills (18) corresponds
well with the peaks of the measured frequency domain

0 200 400 600
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−0.1

0

t [µs]

u
(t

) 
[m

m
/m

]

Fig. 3. The excitation pulse.

strain signal. Furthermore, the frequencies for which the
wave number fulfills (19) corresponds well with the dips
in the strain signal. At f = 9.7 kHz, the two conditions
coincide and the peak is counteracted by the dip.

3.2 Viscoelastic materials

The same type of analysis as for the elastic case can also be
performed for a viscoelastic material. Now instead consider
a viscoelastic bar with a free end in x = 0. The bar is
excited at x = L, which gives the same set of boundary
conditions as in the elastic case, see (11) and (12). If
boundary condition (11) is applied to (5) this expression
simplifies to

ε(x, ω) = C(ω) sinh
(

γ(ω)x
)

, (20)

where C(ω) is given by

C(ω) = 2N(ω). (21)

By applying the second boundary condition, (12), to (20)
we get the following expression for the amplitude C(ω)

C(ω) =
u(ω)

sinh
(

γ(ω)L
) . (22)

As in the elastic case, we may conclude that |C(ω)| is big
when | sinh

(

γ(ω)L
)

| is small, and hence that we should
expect the frequency domain strains to be amplified for
frequencies where this is fulfilled. On closer inspection,
| sinh

(

γ(ω)L
)

| can be written as

| sinh
(

γ(ω)L
)

| =
(

F
(

α(ω), k(ω)
)

)1/2

, (23)

where

F
(

α(ω), k(ω)
)

= cosh2
(

α(ω)L
)

sin2
(

k(ω)L
)

+ sinh2
(

α(ω)L
)

cos2
(

k(ω)L
)

.
(24)

From (24) we see that in order for | sinh
(

γ(ω)L
)

| to be

small, then sin2
(

k(ω)L
)

must be small since cosh(y) ≥ 1
for all y. This gives the approximate condition

k(ω) ≈
nπ

L
, (25)

which corresponds to (18) in the elastic case. Secondly, if
(25) is fulfilled we also need sinh2

(

α(ω)L
)

to be small.
This corresponds to α(ω) being sufficiently close to zero.
We can hence expect the frequency domain strains to
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Fig. 4. Frequency domain strains |ε(x, ω)| for simulated
PMMA bar (solid line), and frequency response of the
simulated input signal in Fig 3 (dashed). Frequencies
fulfilling (25) marked with (∗), and frequencies fulfill-
ing (26) marked with (o).
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Fig. 5. Damping factor α(ω) of PMMA (simulated).

be amplified for frequencies for which the wave number
fulfills (25), and for which the damping factor α(ω) is
low enough. To determine what value of α(ω) can be
considered as sufficiently low, or to determine the exact
minima of | sinh

(

γ(ω)L
)

|, further analysis is needed, which
is beyond the scope of this paper.

We may also expect a decrease in signal power when
| sinh

(

γ(ω)x
)

| is small, see (20). Following the analysis
above we get the approximate condition

k(ω) ≈
nπ

x
, (26)

and that the damping factor α(ω) is sufficiently low.
Similarly to the elastic case, the condition (26) corresponds
to the signal being measured at integral multiples of half
a wavelength from the free end at x = 0, see (8).

In Fig. 4, simulated frequency domain strains from a wave
propagation experiment on an viscoelastic bar is shown.
The bar is axially excited at x = L by the pulse shown

in Fig. 3, and then left to vibrate freely. The length of
the bar is L = 2 m and the strains are simulated through
(5) and (6). The amplitudes P (ω) and N(ω) are given by
(11) and (12), where u(ω) is the Fourier transform of the
exciting pulse in Fig. 3. Data for the complex modulus of
the specimen was generated from the standard linear solid
model Zener (1948),

E(ω) =
E2(E1 + iωη)

E1 + E2 + iωη)
, (27)

with model parameters E1 = 56 GPa, E2 = 5.6 GPa and
η = 2 kPa·s. This choice of parameters applies of the dy-
namic behavior of the weakly damped PMMA (plexiglass).
The corresponding damping factor α(ω) is shown in Fig. 5.
The simulated strain is measured at position x = 1.6 m.
As can be seen from Fig. 4, the frequencies for which the
wave number fulfills (25) corresponds well with the peaks
in the measured frequency domain strain signal. As the
damping α(ω) grows higher with increasing ω, the peaks
become less prominent and starts to deviate slightly from
the frequencies given by (25). Furthermore, the frequencies
for which the wave number fulfills (26) corresponds well
with the dips in the measured frequency domain strain
signal. These two conditions coincide at f = 2.6 kHz and
f = 5.3 kHz, where the peak is accordingly counteracted
by the dip.

3.3 Experiment on a viscoelastic bar

In Hillström et al. (2000), experiments were made on a
viscoelastic PMMA bar in order to identify the complex
modulus of the material. The ends of the bar were located
at x = 0 and x = L, where L = 2 m is the length
of the bar. The bar was suspended in such a way that
the end at x = 0 was free, and then axially excited at
x = L through a strain pulse generated by the use of a
steel hammer. The resulting strain data was collected at
sensor locations x = {0, 0.290, 0.646, 1.078, 1.600} m for
N = 4096 discrete time instances with a sampling interval
of T = 20 µs, and then transformed into the frequency
domain using the discrete Fourier transform (DFT). In
Mossberg et al. (2001), the time domain measurement
noise was found to be very close to white with variance
σ2

t ≈ 3.6 · 10−14 for the frequency band of interest. The
Fourier transformed noise will then also be approximately
white with variance σ2

f = N ·σ2
t , see the analysis in Mahata

et al. (2003).

In Fig. 6, the frequency domain strain signal measured at
sensor location x = 1.6 m is shown. As in the simulated
data case we see that the frequencies for which the wave
number fulfills (25) corresponds well with the peaks in
the strain signal and that the frequencies for which the
wave number fulfills (26) corresponds well with the dips.
At f = 2.7 kHz and f = 5.4 kH, these two conditions
coincide, and accordingly no prominent peak or dip can
be detected.

4. IDENTIFICATION OF VISCOELASTIC
MATERIALS

In this section, we investigate how the frequency con-
tents in the measured signal influences the identification
problem described in Hillström et al. (2000). In Hillström
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Fig. 6. Frequency domain strains |ε(x, ω)| from experiment
on a PMMA bar (solid line). Frequencies fulfilling
(25) marked with (∗), and frequencies fulfilling (26)
marked with (o).

et al. (2000), the experimental data in the previous sub-
section were used to identify the complex modulus of the
viscoelastic material through the frequency domain wave
equation (1). Using (1), the strain at each of the sections
x = {xi}

n
i=1 form the system of equations

ε(ω) = A(ω)z(ω), (28)

where

ε(ω) = [ε(x1, ω) · · · ε(xn, ω)]
T

, (29)

A(ω) =







e−γ(ω)x1 eγ(ω)x1

...
...

e−γ(ω)xn eγ(ω)xn






, (30)

z(ω) = [P (ω) N(ω)]
T

. (31)

At each section xi a pair of strain gauges are mounted and
connected to a bridge amplifier to extract the contribution
from the extensional waves, Hillström et al. (2000). An
estimate of the wave propagation function γ(ω), and
through (6) the complex modulus E(ω), can be found by
minimizing the loss function

U
(

γ(ω), z(ω)
)

= ‖εM(ω) − A(ω)z(ω)‖
2

(32)

with respect to γ(ω) and z(ω). In (32), the vector εM(ω)
contains the DFTs of the actual strain measurements
which are assumed to be corrupted by measurement noise.
The unknown amplitudes P (ω) and N(ω) act as nuisance
parameters, giving a total of three unknowns, and the
number of sensors needed for identification must thus be
n ≥ 3.

4.1 Accuracy of estimate

In order to get accurate estimates of the complex modulus,
it is important that the measured signal is of good quality
and that the signal-to-noise ratio (SNR) is sufficiently large
for all frequencies under consideration. The quality of the
achieved estimates for the identification problem described
in this section is treated in Mossberg et al. (2001) and
Mahata et al. (2003), where it was found that the variance
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Fig. 7. Standard deviation of estimate (solid). Frequencies
fulfilling (25) marked with (∗).

of the estimate at any particular frequency is inversely
proportional to the SNR at that frequency.

In Fig. 7, the standard deviation of the estimates from the
experimental data described in Section 3.3 is shown. As
can be seen, the dips in standard deviation corresponds
well with the peaks in the measured strain signal, i.e. the
standard deviation is low for those frequencies for which
the wave number fulfills (25). The reason for this behavior
is that since there is more signal power at these frequen-
cies, the SNR will become larger with a lower variance
as a result. The dips in the strain signal does not have
an as obvious effect on the resulting standard deviations.
This is because these dips are dependent on where on the
bar the signal is measured, see (26). In the experiment
described in Section 3.3, the strain waves are measured
at five distinct points along the bar. The spacing between
the sensors are chosen so as to minimize the possibility
of condition (26) being fulfilled at all five sensors for any
particular frequency. For each frequency, we hence have
at least a few measurements with reasonable signal power
and large SNR, which in turn counteracts ensuing peaks in
the standard deviation. If instead all sensors were spaced
uniformly on the bar, so that there was a equal distance
h between any two adjacent sensors, then (26) would be
fulfilled at all sensors for some frequencies. The signal
power would then be low for all measurements, with a
low SNR as a result, and peaks in the standard deviation
could be expected, see the discussion in Hillström et al.
(2000).

4.2 Optimal input signal

In Rensfelt and Söderström (2006), optimal excitation
for the given identification problem was investigated 1 .
The basis for the investigation was that there is a linear
dependency g(x, ω) between the input signal and the
strain measured at position x, i.e. ε(x, ω) = g(x, ω)u(ω).

1 In this study the input signal was chosen as normal force rather
than strain. The relationship between the strain ε(ω) and normal
force N(ω) is ε(ω) = N(ω)/(AE(ω)), where A is the cross sectional
area of the bar and E(ω) the complex modulus. The optimal input
is to be implemented using a shaker.
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Fig. 8. Amplitude of transfer function from input to mea-
sured strain signal at x = 1.6 (solid). Frequencies ful-
filling (25) marked with (∗), and frequencies fulfilling
(26) marked with (o).

The amplitude of the transfer function g(x, ω) for x =
1.6 m is shown in Fig. 8. As may be expected, there
is good agreement between the peaks in |g(x, ω)| and
the frequencies where the strain signal is amplified, i.e.
the frequencies for which the wave propagation function
satisfies (25). The frequencies where the strain signal is
instead damped, i.e. the frequencies for which the wave
propagation function satisfies (26), also corresponds well
with the dips of |g(x, ω)|. The poles of this transfer
function can be used to estimate a parametric model for
the complex modulus, as in Pintelon et al. (2004).

In Fig. 9, the D-optimal input spectrum from Rensfelt and
Söderström (2006) is shown. As can be seen, the input
power is significantly lower for those frequencies for which
the wave propagation function satisfies (25). Since these
frequencies are amplified in the bar, it is instead preferable
to concentrate energy of the input signal to frequencies
that are not amplified or even damped out.

5. CONCLUSION

In this paper, we investigated how the frequency content
of strain waves propagating in an axially excited bar influ-
ence the identification of material functions of viscoelastic
materials. One end of the bar was assumed to be free
and it was shown how this boundary condition causes the
measured strain signal to be amplified for some frequen-
cies, while others are damped out. How this may influence
the identification was illustrated through the identifica-
tion problem described in Hillström et al. (2000), where
nonparametric identification of the complex modulus of a
viscoelastic material is concerned.

Wave propagation in bars made of elastic and viscoelastic
materials were considered, respectively. In the elastic case,
the analysis yield exact results and is closely related
to the eigenvalue problem for bars in axial vibration
described in Meirovitch (1997). For viscoelastic materials
the results are approximate and apply to frequencies
where the damping is sufficiently low. The validity of the
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Fig. 9. Optimal input signal (solid). Frequencies fulfilling
(25) marked with (∗).

approximate results are confirmed through experiments
on bars made of the weakly damped material PMMA
(plexiglass). In particular the analysis explains why the
variances of the estimates as well as the spectrum of the
optimal excitation vary strongly with frequency.
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