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Abstract: This paper outlines two contributions to stability analysis of fuzzy systems:
knowledge of the membership function shape (actually, constraints on the membership function
values) and polynomial approaches. Both ideas reduce the conservativeness in the stability
analysis of a nonlinear system when expressed as a fuzzy model by using membership shape
information and by allowing a more general class of “fuzzy” systems than the widely-used
Takagi-Sugeno one with linear consequents. In this way, the gap between fuzzy and nonlinear
control gets smaller.
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1. INTRODUCTION

Takagi-Sugeno (TS) (Takagi and Sugeno (1985)) fuzzy
systems may be used as universal approximations of con-
tinuous nonlinear dynamic systems, at least in a compact
region including the origin; nonlinear (fuzzy) controllers
may be designed on them. Hence, fuzzy control is a par-
ticular nonlinear control technique. However, there are
some sources of conservativeness responsible for a gap
between what is achievable with current fuzzy techniques
and what could in theory be achieved with a clever use
of nonlinear control techniques Khalil (1996); this is the
fuzzy-nonlinear gap (Sala (2007)).

Currently, most of the significant results use a linear
matrix inequality (LMI) approach, which reached maturity
with (Tanaka and Wang (2001)). Basically, the most
frequently considered setting is the so called parallel-
distributed-compensation (PDC) in which a fuzzy TS
controller shares the membership functions with the plant
to be controlled. Research has focused in conceiving less
conservative LMI conditions, such as the ones in (Kim and
Lee (2000); Liu and Zhang (2003)). The conditions in those
papers are particular cases of the family of assymptotically
necessary and sufficient ones in Sala and Ariño (2007a).

This paper discusses two topics which allow for less con-
servative stability analysis for nonlinear systems expressed
as fuzzy ones:

(a) knowledge of the actual “shape” of the membership
functions (actually, knowledge of constraints on the
membership function values) and

(b) a polynomial approach allowing more general classes
of “fuzzy” models.

Regarding the first issue, it is important to remark that
the LMI conditions in the above works do not depend on
the “shape” of the membership functions. The values of
the membership are needed when implementing a fuzzy
controller, but LMI conditions in controller design are usu-
ally stated as valid for any underlying fuzzy partition. As
a result, the conditions may be conservative: a particular
nonlinear system (modelled as a fuzzy TS one (Tanaka
and Wang (2001))) may be stable, but the LMI conditions
may fail to pinpoint the fact. For instance, the system
ẋ = µ1(z) · x+ (1 − µ1(z)) · (−x) cannot be proved stable
for an arbitrary µ1, 0 ≤ µ1(z) ≤ 1 (it is unstable for
µ1(z) = 1). However, it is stable for, say, µ1 = 0.2 +
0.2sin(x) as ẋ = (−1+2µ1)x is, trivially, an exponentially
stable first-order nonlinear system when µ1 ≤ b < 0.5,
b ∈ R.

In summary, there is still some conservativeness to be lifted
if knowledge on the shape of the membership functions for
a particular TS model is introduced in the LMI framework.
Some shape-dependent conditions for PDC regulators ap-
pear in (Sala and Ariño (2007b); Ariño and Sala (2007b)),
and for non-PDC cases (uncertain memberships) in (Lam
and Leung (2005); Sala and Ariño (2008)); however, the
conditions in those papers consider inequalities restricting
the shape of the memberships which cannot consider the
relationship between the memberships and the state vari-
ables (i.e., nonlinearity!). A preliminary idea on this topic
will be presented in this paper.

Regarding the second topic of the discussion in this paper,
recent advances allow a generalisation of fuzzy models
to polynomial ones via sum-of-squares approaches. This
paper discusses perspectives on them and some examples.

The structure of the paper is as follows: next section
presents well-known preliminary ideas and notation, sec-
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tion 3 outlines the possibilities of using the knowledge
on the membership function shape to relax stability con-
ditions, section 4 discusses how Takagi-Sugeno systems
may be extended to a polynomial approach via sum-of-
squares tools, and a conclusion section closes the paper.
Brief academic examples are provided in sections 3 and 4
to illustrate the presented ideas.

2. PRELIMINARIES

In many situations, Lyapunov-based conditions for sta-
bility or performance of a fuzzy control system may be
expressed in the form

Ξ(t) =

r
∑

i=1

r
∑

j=1

µi(z(t))µj(z(t))x(t)
TQijx(t) > 0 ∀ x 6= 0

(1)
subject to symmetry (Qij = QT

ij , without loss of general-

ity) and the fuzzy partition condition
∑r

i=1 µi = 1, which
implies:

r
∑

i=1

r
∑

j=1

µiµj = 1 (2)

A typical example of the use of condition (1) is proving
quadratic stability of the fuzzy system

ẋ =
r

∑

i=1

µi(Aix+Biu) (3)

with a fuzzy PDC state-feedback controller

u = −

r
∑

i=1

µiKix (4)

yielding a closed loop

ẋ =
r

∑

i=1

r
∑

j=1

µiµj(Ai − BiKj)x

Introducing the notation Gij = Ai −BiKj , Λij = 1
2 (Gij +

Gji), matrices Qij in (1) are (Kim and Lee (2000)):

Qii = −GT
iiP − PGii (5)

Qij = −ΛT
ijP − PΛij (6)

where P > 0 is a symmetric matrix, which defines a
Lyapunov function V (x) = xTPx, to be obtained via
LMI algorithms (Boyd et al. (1994); Tanaka and Wang
(2001)). If Kj is also to be designed, introducing a decay-
rate performance requirement ‖x‖ ≤ σe−αt,

Qij = −(AiX +XAi
T −BiMj −MT

j B
T
i + 2αX) (7)

where X > 0 and Mi = KiX are LMI decision variables
(for details, see (Tanaka and Wang (2001); Kim and Lee
(2000))).

Another example of performance-related condition uses 1

(Tuan et al. (2001)) as Qij the matrix:




PAT
i +RT

j B
T
2i +AiP +B2iRj B1i PCT

i +RT
j D

T
12i

BT
1i −γI DT

11i

CiP +D12iRj D11i −γI





(8)

1 In this case, x in (1) does not represent the state vector; it must
be understood as a vector of artificial variables arising from Schur
complements (Boyd et al. (1994)).

in order to prove that there exists a stabilising state-
feedback controller such that the H∞ norm (i.e., L2 to
L2 induced norm) of a TS fuzzy system given by:

ẋ =

r
∑

i=1

µi(z)(Aix+B1iv +B2iu) (9)

y =
r

∑

i=1

µi(z)(Cix+D11iv +D12iu) (10)

is lower than γ.

Positiveness conditions. Of course, requiring Qij > 0 is a
trivial sufficient condition for positiveness of (1), but much
less conservative conditions appear in literature. A widely-
used one is Theorem 2 in (Liu and Zhang (2003)), which
is mainly based on the scheme in (Kim and Lee (2000)).

Theorem 1. Expression (1) under fuzzy partition condi-
tion holds if there exist matrices Xij = XT

ji such that:

Xii ≤Qii (11)

Xij +Xji ≤Qij +Qji i 6= j (12)

X =







X11 . . . X1r

...
. . .

...
Xr1 . . . Xrr






> 0 (13)

The above conditions have been further improved, at the
expense of higher computational cost. Consider a multi-
dimensional index variable i ∈ {1, . . . , r}n where r is
the number of rules and n is an arbitrary complexity
parameter. Denote by P(i) all the permutations if i. Then,
the results in Liu and Zhang (2003); Fang et al. (2006) are
particular cases of the ones in (Sala and Ariño (2007a)):

Theorem 2. Expression (1) under fuzzy partition condi-
tion holds if there exists a multi-dimensional arrangement
of matrices (tensors) fulfilling, for all i:

∑

j∈P(i)

Qj1j2 >
∑

j∈P(i)

1

2
(Xj +XT

j ) (14)

and the inequality (with complexity n− 2):

∑

k∈Bn−2

µkξ
T







X(k,1,1) . . . X(k,1,r)

...
. . .

...
X(k,r,1) . . . X(k,r,r)






ξ > 0 for ξ 6= 0

(15)
In a suitable recursive framework, it can be proved that
the above conditions become necessary and sufficient with
n → ∞, and establish some “tolerance” parameter for
finite n (Sala and Ariño (2007a)).

The discussed conditions are the state-of-the-art in fuzzy
systems, but they are membership-independent (valid for
any shape) and Qij stem from TS models with linear
consequents. These restrictions may be partially lifted in
stability analysis of fuzzy systems, as discussed in the
sequel.

3. KNOWLEDGE OF MEMBERSHIP SHAPE

This section outlines how the knowledge of membership-
shape information in the form of “when state x fulfills some
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Fig. 1. Membership function µ1 for the example in the
main text.

quadratic inequality, it is known that the membership
functions fulfill another inequality” may be used to prove
stability of some TS systems for which the standard
approach fails.

3.1 Main Result

The following example shows how to incorporate some
information about the actual shape of the membership
functions.

Example. Consider the system ẋ =
∑2

i=1 µi(x)Aix with

A1 =

(

−1 0
0 0.5

)

A2 =

(

0.5 0
0 −1

)

with membership functions given by µ1(x) = x2
1/(x

2
1+x

2
2)∗

(1−exp(−x2
1−x

2
2))+0.5∗exp(−x2

1−x
2
2), µ2(x) = 1−µ1(x)

(µ1 is depicted in figure 1).

Note that both Ai are unstable, hence the usual fuzzy
control approach of testing feasibility of AT

i P + PAi < 0
fails.

However, the nonlinear system is stable, and that fact will
be proved below.

Indeed, note that the diagonals are the level set for µ = 0.5.
In fact, we can set up a cover with the regions:

R1 : x2
1 − x2

2 ≥ 0 R2 : −x2
1 + x2

2 ≥ 0

and µ1 ≤ µ2 in R1, µ1 ≥ µ2 in R2.

Let us define Qi = AT
i P +PAi (the well-known quadratic

stability condition) and check the condition

xT (µ1Q1 + µ2Q2)x > 0 (16)

on R1.

In that case, we can add (µ1−µ2)x
TT1x (which is negative)

for any T1 > 0.

The result: if there exist T1 > 0 so that for all x ∈ R1

the expression xT (µ1(Q1 +T1)+µ2(Q2−T1))x > 0 holds,
then (16) is positive on R1.

To further reduce conservativeness, now we apply the S-
procedure, for the region R1, given by xTB1x ≥ 0 with

B1 =

(

1 0
0 −1

)

The result is the assertion below:

if there exists T1 ≥ 0 and τ1 ≥ 0 so that µ1(Q1 + T1) +
µ2(Q2 − T1) − τ1B1 > 0 then (16) holds on R1.

Similarly, with R2 (with an associated shape matrix B2 =
−B1) we get the assertion:

if there exists T2 ≥ 0 and τ2 ≥ 0 so that µ1(Q1 − T2) +
µ2(Q2 + T2) + τ2B1 > 0 then (16) holds on R2.

So we get the LMIs in decision variables P (appearing in
Q1 and Q2), T1, T2, τ1, τ2:

Q1 + T1 − τ1B1 > 0 (17)

Q2 − T1 − τ1B1 > 0 (18)

Q1 − T2 + τ2B1 > 0 (19)

Q2 + T2 + τ2B1 > 0 (20)

T1 > 0, T2 > 0, τ1 > 0, τ2 > 0 (21)

which yield feasible, proving the existence of a quadratic
Lyapunov function for this particular nonlinear system
even if there is no common Lyapunov function for the
family of fuzzy systems with vertex models A1 and A2.

In summary, the example shows that quadratic stability of
nonlinear systems may be tackled via a fuzzy approach if
the state-space is divided in sectors for which some bounds
on the membership can be computed. In a general case,
there might be more than 2 sectors.

Based on the ideas in the example, the following result can
be proved.

Theorem 3. Consider a subset Ω ∈ R
n so that there exist

known matrices C and B such that

xTCx ≥ 0, µT (x)Bµ(x) ≥ 0 ∀x ∈ Ω

Then, the conditions:

r
∑

i=1

r
∑

j=1

µiµjx
TQ′

ijx ≥ 0 ∀x ∈ Ω (22)

Q′
ij = Qij − τijC − βijR (23)

R − νC ≥ 0 (24)

τij ≥ 0, ν ≥ 0 (25)

are a sufficient condition for:
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r
∑

i=1

r
∑

j=1

µiµjx
TQijx ≥ 0 ∀x ∈ Ω (26)

Proof: Indeed, consider any x ∈ Ω, then

xTRx ≥ νxTCx ≥ 0

Hence,

xTRxµTBµ =
r

∑

i=1

r
∑

j=1

µiµjβijx
TRx ≥ 0

So, for any x ∈ Ω:
r

∑

i=1

r
∑

j=1

µiµjx
TQijx ≥

r
∑

i=1

r
∑

j=1

µiµjx
T (Qij − βijR)x

and, furthermore, as xTCx ≥ 0,
r

∑

i=1

r
∑

j=1

µiµjx
TQijx ≥

r
∑

i=1

r
∑

j=1

µiµjx
T (Qij − βijR− τC)x

hence if (23) holds, (26) does as well.

The above result can be applied if a cover {Ω1, . . . ,Ωp} of
the state space (or a subset of it including the origin in
which Lyapunov functions are searched) is known so that
the conditions in the above theorem hold for some known
Ci, Bi.

Note also that linear restrictions can be made quadratic by
multiplying by

∑

i µi in order to apply the above theorem.

Remark: The division of the state space in zones reminds
of the ideas of piecewise Lyapunov functions (Johansson
(1999)); the Lyapunov function is quadratic in the ap-
proach in this paper. An interesting idea could be com-
bining both approaches.

4. POLYNOMIAL FUZZY SYSTEMS: PRELIMINARY
IDEAS

The second contribution of this paper towards extend-
ing the domain of applicability of fuzzy ideas refers to
polynomial systems. The ideas presented here are, indeed,
preliminary work-in-progress.

This section presents how fuzzy systems can be embedded
into the polynomial system class, for which sum-of-squares
sufficient stability conditions can be stated, and solved
with recent tools, such as the freely available SOSTOOLS
package (Prajna et al. (2004)).

4.1 Polynomial-in-membership Fuzzy Systems

A polynomial-in-membership fuzzy system is a natural
extension of the TS model to the form:

ẋ = p1(µ)(A1x+B1u) + p2(µ)(A2x+B2u) + . . . (27)

where pi are polynomials in the membership functions (µ
is a vector (µ1, µ2, . . . , µp)). Multiplying by

∑

µi, pi may
be assumed to be homogeneous polynomials of any desired
degree.

As an example, consider the nonlinear system

ẋ1 = (sin z)x1 + (sin z)2x2 + u (28)

ẋ2 = x1 − x2 (29)

with z ∈ [−π/2, π/2].

0 1

1

-1

Fig. 2. Range of first-row elements of the TS state ma-
trix: [solid line] polynomial-in-membership represen-
tation; [shaded area] independent nonlinearity, stan-
dard sector-nonlinearity approach.

If we fuzzify sin z = µ1 ∗ 1 + µ2 ∗ (−1), then (sin z)2 =
µ2

1 − 2µ1µ2 + µ2
2. Hence, by replacing the expressions

in the system’s equations, we obtain a polynomial-in-
membership TS fuzzy system:

ẋ1 = (µ1 + µ2) ∗ (µ1 ∗ 1 + µ2 ∗ (−1))x1 + (30)

+µ2
1 − 2µ1µ2 + µ2

2x2 + u (31)

ẋ2 = x1 − x2 (32)

which results:

ẋ1 = (µ2
1 − µ2

2)x1 + (µ2
1 − 2µ1µ2 + µ2

2)x2 + u (33)

ẋ2 = x1 − x2 (34)

so that the system can be expressed as:

ẋ =

2
∑

i=1

2
∑

j=1

µiµj(Aijx+Bu) (35)

with B = (1 0)T and

A11 =

(

1 1
1 −1

)

A12 = A21 =

(

0 −1
1 −1

)

A22 =

(

−1 1
1 −1

)

and so, stability analysis (and control design) can be
carried out less conservatively than considering the non-
linearities sin z and (sin z)2 as unrelated ones. Indeed,
in the latter case, following standard sector-nonlinearity
methodologies (Tanaka et al. (2001)), the system would
be expressed as a convex combination of:

(

1 0
1 −1

) (

−1 0
1 −1

) (

1 1
1 −1

) (

−1 1
1 −1

)

Figure 2 pictorially represents the difference between the
standard approach and the polynomial-in-membership ap-
proach.

Of course, polynomial-in-membership controllers may be
easily designed for polynomial-in-membership plants, us-
ing the results in (Sala and Ariño (2007a)). The polyno-
mial order of the controller may not be the same of that of
the plant (for instance, (Ariño and Sala (2007a)) proposes
higher-order polynomial controllers for a standard Takagi-
Sugeno plant). Shape-dependent conditions on this class
of systems are considered in Sala and Ariño (2008).

4.2 Polynomial-in-state fuzzy systems

A different generalisation of TS systems involves expres-
sions such as:

ẋj =

p
∑

i=1

µipij(x, u) j = 1, . . . , n (36)
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where pij are polynomials in the state and input variables.
These are TS models with nonlinear consequent (polyno-
mial, in particular).

For instance, a nonlinear system

ẋ =





−x3
1 − (0.05 + 0.95(sinx1)

2)x1x
2
3

−(1 + (sinx1)
2) ∗ x2 − x1x2

−x3 + 3 ∗ x2
1 ∗ x3 − 3 ∗ x3



 (37)

may be modelled as:

ẋ =





−x3
1 − µ1x1x

2
3 − 0.05µ2x1 ∗ x

2
3

−µ1 ∗ x2 − x1x2 + µ2 ∗ (−2x2)
−x3 + 3 ∗ x2

1 ∗ x3 − 3 ∗ x3



 (38)

where the sector-nonlinearity methodology is used to
model only the non-polynomial functions of the state (in
this case, (sinx1)

2 expressed as an interpolation between
0 and 1).

If the sector-nonlinearity approach is used, then perhaps
the membership values have been obtained assuming that
x ∈ Ω where Ω is a compact set containing the origin.
Then, if a superset of Ω may be expressed as:

g(x) > 0

where g is a vector-valued polynomial constraint, such
constraints can be also used to relax the requirements of
Lyapunov decrescence only in Ω.

4.3 Full-polynomial fuzzy systems

The most general expression would be an expression which
is polynomial in the memberships and polynomial in the
states and inputs.

ẋj = pj(µ, x, u) j = 1, . . . , n∀x ∈ Ω (39)

For instance, a nonlinear system

ẋ =





−x3
1 − (0.05 + 0.95(sinx1)

2)x1x
2
3

−(1 + (sinx1)
2) ∗ x2 − x1x2

−x3 + 3 ∗ x2
1 ∗ x3 − 3(sinx1) ∗ x3



 (40)

could be modelled as a full-polynomial fuzzy system com-
bining both of the previous approaches (there appear poly-
nomial expressions of the state and of a non-polynomial
nonlinearity, the latter modelled as a fuzzy expression in-
terpolating between -1 and 1). Details are straightforward,
omitted for brevity.

4.4 summary: a polynomial view of fuzzy systems

The previous ideas show that fuzzy systems may be
considered a particular case of polynomial ones, in the
sense that fuzzy systems are polynomial systems, i.e.,
derivatives of state variables are expressed as polynomials
in two sets of variables:

• State variables
• Membership functions, which may be themselves a

nonlinear (even non-polynomial) function of state
variables and other scheduling inputs.

Additional information on the membership functions is
that they are positive and all of them add one, as usual,
hence there is no loss of generality in assuming that
the polynomial fuzzy systems are homogeneous in the
membership functions.

In many cases, fuzzy systems are obtained from nonlinear
systems from which a sector condition holds, at least
locally. In that case, such validity domain should be ex-
pressed by polynomial constraints in the state variables in
order to overcome some conservativeness (local approach,
see below).

4.5 Available tools

Polynomial-in-membership systems: may be ap-
proached easily via the Polya-related constructs in (Sala
and Ariño (2007a)). Indeed, its application is evident once
they are expressed as homogeneous sums:

ẋ =
∑

i∈In

µi(A
′
ix+B′

iu) (41)

Most, if not all, of the fuzzy literature in analysis and
control design can be applied to the above systems with
minimal modifications.

Poynomial-in-state and full-polynomial systems: in
this case, the tools for polynomial systems (sum of squares)
may be applied (Prajna et al. (2004)). Indeed, polynomial
fuzzy systems are a particular class of polynomial systems:
they are those homogeneous in the scheduling variables µ.
However, the ideas in SOSTOOLS apply with very small
modifications, as shown in the example below.

Remark on control design: Transforming the resulting
expressions to LMI in the second case above is not possible
in a general case if both Lyapunov functions and feedback
gains are considered decision variables. Indeed, the deriva-
tive of the Lyapunov function is a polynomial in (x, ẋ), and
if ẋ includes decision variables, products of them appear
so the problem is no longer a LMI one.

Iterative LMI approaches might be the only option with
current tools, unless specific structures appear in the
system model or conservative steps are taken. Only the
particular case of polynomial-in-membership systems with
linear consequents may be easily handled. These ideas are
a matter of current research.

4.6 Example of the polynomial approach

Consider the system (38), and write it as:

ẋ =





−(ψ2
1 + ψ2

2)x
3
1 − ψ2

1x1x
2
3 − 0.05ψ2

2x1 ∗ x
2
3

−ψ2
1 ∗ x2 − (ψ2

1 + ψ2
2)x1x2 + ψ2

2 ∗ (−2x2)
(ψ2

1 + ψ2
2) ∗ (−x3 + 3 ∗ x2

1 ∗ x3 − 3 ∗ x3)



 (42)

where ψ2
i = µi and the add-1 condition has been used

considering ψ2
1 + ψ2

2 = 1 in order to convert the system
equations into an homogeneous polynomial in the mem-
berships.

Consider now a Lyapunov function V (x) in the form of a
degree 4 polynomial in the state variables x1, x2, x3.

Then, in a sum of squares programming package the posi-
tiveness of V (x) is set as requiring V (x) to be SOS (SOS is
a sufficient conditions for positiveness). The negativeness
of dV

dt
is set as requiring -dV

dt
to be SOS.

Note that the derivative of the Lyapunov function will
then be non-positive for any value of ψi, i.e., for any
non-negative µi. As the fuzzy system is an homogeneous
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polynomial in µi, being non-positive in the hyperplane
∑

i µi = 1 is equivalent to being non-positive in the first
quadrant (indeed an homogeneous polynomial of degree n
verifies, for any λ > 0, f(λµ) = λnf(µ) hence the signs do
not change in the first quadrant).

Using SOSTOOLS and SeDuMi, the solver finds, in less
than half a second, a 4th-degree Lyapunov function given
by (terms lower than 10−7 set to zero):

V (x) = 8.3931∗x2
1+6.1584∗x2

2+2.0284∗x2
3+12.539∗x4

1+
+ 0.24121e− 2 ∗ x4

3 + 12.074 ∗ x2
1 ∗ x

2
2 + 1.5372 ∗ x2

1 ∗ x
2
3 +

+ 0.15023 ∗ x2
2 ∗ x

2
3

which is, evidently, SOS and whose time derivative with
changed sign is also SOS.

Luckily, the proposed system is stable in all state space.
If the search for a Lyapunov function had not been
successful, there would have been two options:

• Searching for a higher-degree global Lyapunov func-
tion (this approach may quickly exhaust computa-
tional resources)

• Pursuing a local approach in a region around the
origin 2 described by g(x) ≥ 0. The idea would
stem from Karush-Kuhn-Tucker (Positivstellensatz )
(Prajna et al. (2004)) argumentations, searching for
vectors of SOS polynomials τ1, τ2 such that V (x) −
τ1g(x) and −dV/dx−τ2g(x) are SOS. Indeed, {V (x)−
τ1g(x) > 0, τ1 ≥ 0} entails {V (x) > 0 ∀ x, g(x) ≥
0} and similar arguments apply to the derivative
equation. τ1 and τ2 have the role of (generalized)
Lagrange multipliers.

As previously considered, the locality idea may be quite an
interesting one for fuzzy systems in which, usually, sector-
nonlinearity modelling techniques are locally applied.

5. CONCLUSIONS

This paper has outlined a couple of ideas which contribute
to bridge the gap between fuzzy systems and nonlinear
systems, at least regarding stability analysis: on one hand,
knowledge of the actual membership function shape (which
is available in nonlinear control) may reduce conserva-
tiveness; on the other hand, the “local” models need
not be linear and they may be expanded to polynomial
ones, even resorting to polynomial-in-membership fuzzy
systems (when polynomial expressions of non-polynomial
nonlinearities appear). In this way, fuzzy systems may be
considered a particular case of polynomial ones.
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