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Abstract: Control of the concentrate quality is usually one of the main targets in the operation of mineral 
concentrator processes. Availability of the estimates of end product properties in advance – based on 
upstream process measurements – offers an opportunity to develop higher level control strategies for the 
unit processes. Here, the recursive PLS and adaptive neural network models are compared in the prediction 
of the concentrate grade at a gravity separation plant. The methods are applied in the Outokumpu Tornio 
Works Kemi Mine plant data. The chromite concentrate grade can be predicted relatively accurately based 
on the slurry properties measured in the grinding circuit. Accordingly, the predicted chromite grade 
decreases about 0.2 %-units when the slurry D50 passing size is increased by 10 %. This enables further 
development of the grinding control, especially the control of the slurry particle size, to meet the 
concentrate specifications. Copyright © 2008 IFAC 
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1. INTRODUCTION 

When operating complex industrial processes, on-line 
modelling is a useful tool. Updated models are needed for 
early reaction to disturbances that affect the process 
efficiency and end product quality through the process chain.  

In gravity mineral separation plants there are usually only 
few control variables. The slurry particle size distribution 
substantially affects the separation performance. Changes in 
the ore mineralogy introduce the majority of the process 
disturbances. Predictive plant models can offer tools for 
adjusting grinding conditions in advance, to keep the process 
in predefined targets, especially for final concentrate quality. 

A number of modelling studies for mineral processing plants 
have been reported previously. The applicability of partial 
least squares (PLS) modelling method for mineral processing 
data was demonstrated using Brunswick mine grinding and 
flotation data (Hodouin et al., 1993). Afterwards, Dayal and 
MacGregor (1997a) showed the recursive PLS (rPLS) 
method to be much better when compared to recursive least 
squares algorithm, using Brunswick’s sulphide flotation data 
as well. The same case process was also used for adaptive 
neural network modelling with good results, despite that the 
variable selection was considered intractable (Forouzi and 
Meech, 1999).  More recently the concentrate grades of a 
flotation plant have been modelled by applying a dynamic 
ARMAX (autoregressive moving average with exogenous 
inputs) model (Casali et al., 2002). Gonzalez et al. (2003) 
compared several model types and structures for the copper 

grade of the Codelco Andina flotation plant. They concluded 
that (linear) PLS and (nonlinear) neural networks are nearly 
equally good in their prediction ability. The PLS algorithm 
was considered to be good for variable selection – also when 
neural networks are applied.  

The use of PLS algorithm for identifying dynamic models 
was already suggested by Hodouin et al. (1993). However, 
the rPLS and adaptive neural network methods with dynamic 
model structures have not been widely studied in mineral 
processing plants. Casali et al., (2002) suggested that the 
dynamic models, when used in prediction of the concentrate 
grade, could be used as a part of control strategy.  

In this study the advantages of continuously adapted 
predictive models are discussed in contrast to non-adaptive 
models. The linear recursive PLS, both with constant and 
variable forgetting factors, are compared with non-linear 
neural network structures with adaptive training. The results 
are evaluated using a concentrator plant case, and the 
applicability of the model types is assessed.   

 

2. APPLIED ADAPTIVE PREDICTION METHODS 

The partial least square (PLS) regression is widely used 
methods for linear model parameter estimation. A good 
description of the method can be found in Wold et al. (2001).  

Since the studied industrial process is time variant, adaptive 
predictive models, both linear and non-linear, were applied 
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here. The selected techniques were a recursive partial least 
squares method and an adaptive neural network. 

2.1 Recursive Partial Least Squares Regression 

Recursive partial least squares regression was first introduced 
by Helland et al. (1992).  In this study, the kernel-base 
recursive PLS algorithm presented by Dayal and MacGregor 
(1997b) was applied. The adaptation is based on the update of 
the PLS covariance matrices when a new observation (xt and 
yt) is available. The old data are exponentially discounted 
with the forgetting factor λt by updating the (unscaled) 
covariance matrices (XTX)t and (XTY)t as follows (Dayal and 
MacGregor, 1997b): 
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Additionally, the forgetting factor can be adjusted 
continuously, to only discount the old data when the process 
is persistently excited, thus containing some new 
information. The variable forgetting factor can be calculated, 
as shown by Fortescue et al. (1981), with 
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where σo
2 is the expected measurement noise variance of the 

output variable, No is the nominal asymptotic memory length 
(determining the adaptation speed) and et is the error between 
the PLS estimate and the measurement. 

2.5 Adaptive MLP Neural Networks 

Neural networks are common structures in modelling of the 
non-linear complex processes. Multilayer perceptron (MLP) 
neural networks consist of an input layer, one or more hidden 
layers and an output layer. The hidden and output layer 
contains computation nodes with activation functions that are 
often sigmoidal type, thus introducing the non-linearity. The 
network input layer can also contain past output estimates as 
an input, forming a recurrent dynamic network structure. The 
network is trained with data in supervised manner with back-
propagation algorithm, fixing the weights of the neurons. In 
adaptive learning, the training passes are performed 
continuously when a new data set becomes available. For 
more information on the neural networks the reader is 
referred e.g. to Lin and Lee (1996) and Haykin (1999). 

 

 

 

3.  DESCRIPTION OF THE OUTOKUMPU TORNIO 
WORKS KEMI PLANT 

3.1 Kemi Chromite Concentrator 

The Outokumpu Tornio Works Kemi Mine is located in 
Northern Finland. The concentrator processes 1.2 Mt of 
chromite ore annually. The products are upgraded lumpy ore 
and metallurgical grade concentrate. The concentrate is 
produced using gravity and high-gradient magnetic 
separation methods, preceded by a rod mill - ball mill 
grinding stage. The gravity separation circuit includes 
Reichert cones and spiral separators.  The performance of the 
separation process is strongly dependent on the feed slurry 
properties, especially on the particle size distribution. The 
flow sheet of the Kemi concentrator plant is shown in Fig. 1. 

The Kemi Mine is integrated to the ferrochrome smelter of 
Outokumpu Tornio Works, at 20 km distance from the mine. 
At the Outokumpu Tornio Works high chromite grade of the 
concentrate is advantageous for ferrochrome production. 
Therefore the main operating goal at the Kemi Mine is to 
maximize the chromite content of the concentrate, used 
subsequently in the ferrochrome smelters, while keeping the 
concentrate production rate in a predefined value. Hence 
accurate prediction of the product grade, based on the 
grinding circuit slurry properties, gives a good basis for 
process and production management. 

3.1 Applied Process Data 

The selected predictive models were compared using two 
data sequences. The time series consist of 74 and 79 samples 
of ten-minute average data, respectively. The output variable 
is the concentrate grade HRCr2O3 (expressed in %Cr2O3), 
measured by an on-belt XRF analyzer after the drum filter. 
The selected input variables were the feed slurry chromite on-
line assay (%Cr2O3) (TMTCr2O3) and the on-line analysis of 
the 50 % passing size of the particles (µm) (D50), measured 
from the grinding circuit. In addition, to describe the ore in 
terms of grindability, the Bond operating work index (kWh/t) 
(WIo) was calculated by applying (Napier-Munn et al., 2005) 
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where W (kWh/t) is the work input of the grinding mills and 
P80 and F80 (µm) are the 80 % passing sizes of the grinding 
circuit product slurry and the ore feed.  

Furthermore the 40 minutes (equal to 4 samples) process 
delay between the input and output data was compensated by 
shifting the data in time. The data was normalized to zero 
average and unit variance, and median filtering was applied 
for noise reduction. During the data collection, the grinding 
circuit control variables – the ore feed rate and the rod mill 
rotation speed – were varied stepwise to enhance the 
excitation of the data. The combined data sequences are 
shown in Fig. 2., and the mean values and the standard  
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Fig. 1. Flowsheet of the metallurgical grade concentrate plant at the Outokumpu Tornio Works Kemi concentrator. 

 

deviation are in Table 1. Autocorrelation of the concentrate 
grade HRCr2O3 (%) after one and two sample lags is 0.99 
and 0.97; indicating relatively slow process dynamics. 

Table 1.  Statistics of applied data 

 Average Standard deviation
HRCr2O3 (%) 45.20 0.17 

TMTCr2O3 (%) 26.32 0.90 
WIo (kWh/t) 10.34 0.89 

D50 (µm) 66.89 4.71 
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Fig. 2. Applied scaled process data from the Kemi 
concentrator; the concentrate grade (HRCr2O3 (%)) is the output 
variable and the input variables, measured in the grinding 
stage, are: the chromite assay (TMTCr2O3 (%)), grinding work 
index (WIo (kWh/t)) and the 50% passing size of the particles 
(D50 (µm)). 

 

 

4. RESULTS 

The aim of the modelling was to predict the concentrate grade 
after the 40 minutes process delay, based on the prevailing 
grinding circuit measurements. Firstly, non-recursive PLS 
models were studied with the two data sequences. According 
to the cross-validations, two latent variables is the best 
selection, resulting in root mean square errors of cross-
validation (RMSECV) to be 0.17 (data 1) and 0.30 (data 2). 
Likewise, the R2 values were 0.45 and 0.80 respectively. 

4.1 Recursive Partial Least Squares Models 

The performance of the raw PLS model presented above 
implies that the process conditions are varying significantly, 
causing prediction error and motivating use of model 
adaptation algorithms. The two data sequences were merged 
to form a sequence including totally 153 samples. As the two 
data sequences are from two very different situations, a 
change in the process conditions takes place certainly after the 
sample number 74.  The modified kernel algorithm with 
recursive updates of the covariance matrices (1 and 2) was 
applied to the data. In addition, effect of the adaptation of the 
forgetting factor λt (3) was studied. For adaptation of λt the 
effective memory length N was set to 10 (standing for 1.67 
hours time slot), and the expected measurement noise of the 
output variable σo

2 was set to 0.04. Minimum value limit for 
the forgetting factor was set to 0.85. First 15 data samples 
were used for calculation of the initial values of covariance 
matrices. 

The recursive PLS yields notably better measures of fit when 
compared to the non-recursive version. Additionally, the non-
unity forgetting factor enhances the prediction performance. 
In terms of R2, maximum absolute error and standard error of 
prediction (SEP) the adaptive forgetting factor yields the best 
results. The measures of fit for different forgetting factors of 
the rPLS models are presented in Table 2. 
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Table 2.  Performance of recursive PLS with 
different forgetting factors λt 

 λt = 1 λt = 0.95 Adaptive λt
R2 0.70 0.77 0.85 

Max. abs. 
error 

1.98 1.19 0.97 

Standard 
error of 

prediction 

0.59 0.52 0.44 

 

The static rPLS models, shown in Table 2, result in relatively 
large variations of the regression coefficients, as shown in Fig. 
3. This apparently indicates the lack of dynamics in the 
model. It turned out that in this case the most suitable 
dynamic model (in terms of fit statistics) is a relatively simple 
output error (OE) type model including, in addition to the 
input variables, a time delayed output estimate as a fourth 
input. A scheme of the model structure is shown in Fig. 4. 
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Fig. 3. Evolution of the regression coefficients of static rPLS 
model with adaptive forgetting factor. 

 

Fig. 4. A scheme of the output-error model structure; 
parameters a and b are the coefficients for the inputs and the 
precious output estimate respectively. 

Next the recursive PLS was used in identification of the OE 
model parameters. Also in this case two latent variables were 
sufficient. The rPLS identified OE model yields a higher R2 

value and smaller maximum absolute error and standard error 
of prediction, when compared to non-dynamic rPLS (with 
adaptive λt). Also the prediction performance is still better 
when compared with the original data one lag autocorrelation. 
The performance of the dynamic rPLS models is shown in 
Table 3. 

Table 3.  Performance of recursive PLS with 
adaptive λt in identification of dynamic OE 

model 

 3 latent variables 2 latent variables 
R2 0.99 0.98 

Max. abs. 
error 

0.38 0.36 

Standard 
error of 

prediction 

0.10 0.14 

 

The time series of the measured concentrate grades together 
with predicted OE-rPLS grade estimates and the residuals are 
shown in Fig. 5 and the evolution of the model regression 
coefficients is shown in Fig. 6. The regression coefficients 
change abnormally between samples 60-80; this is probably 
due to a failure in the chromite assay slurry sampler, causing 
the sudden change in the measurement. This can be seen also 
in Fig. 2. Changes of the model adaptation rate in the 
recursive parameter update are shown in the forgetting factor 
plot of Fig. 7. According to the autocorrelation, the model 
residual is virtually white noise. In average, the model 
coefficients for the rPLS updated output error model are: 
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Fig. 5. Measured and predicted concentrate grades and the 
residuals when the dynamic OE-rPLS model with adaptive 
forgetting factor is applied. 
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Fig. 6. Evolution of the regression coefficients of dynamic 
OE-rPLS model with adaptive forgetting factor. 
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Fig. 7. Changes of the variable forgetting factor in OE-rPLS 
identification. 

Table 4 summarizes the effects of changes in the model input 
variables on the predicted PLS model output (5), in terms of 
original unscaled Cr2O3 (%) grades. The listed numbers 
indicate the change of the model output resulting from a 10% 
increase of each input from its mean value, respectively. It can 
be seen that the feed chromite content (TMTCr2O3) and the 
particle size (D50) cause the largest responses on the estimate 
of the concentrate grade, but to opposite directions.  

 

 

 

 

Table 4.  Effect of the input changes on the 
unscaled PLS estimates of the concentrate grade 

Input 
variable 

10 % of the 
variable’s 

mean 

32
ˆ

OCrRHΔ (%) when the 
input change is 10 % of 

the mean 
TMTCr2O3 2.6 0.26 

WIo 1.0 0.08 
D50 6.7 -0.19 

 

4.1 Non-linear neural network models 

Finally, the same output error model type with same variable 
selection as in (5) was implemented using a non-linear 
multilayer neural networks. The network contained also a 
feedback connection enclosing the network output to the input 
layer. The network structure was one hidden layer including 
tangent sigmoid transfer function neurons, and one output 
neuron with linear transfer function. The network was trained 
using the backpropagation or Levenberg-Marguardt learning 
algorithm; the error goal was set to 1x10-8. The initial network 
learning was performed using with first sixteen data samples. 

To determine the most appropriate network and adaptation 
configuration, the number of hidden neurons and number of 
adaptive learning passes for each new data vector were varied. 
Number of data passes enhances the network’s ability to 
predict the process output. However, it is generally favourable 
to keep the network structure as simple as possible and at the 
same time to avoid overlearning of (noisy) measurement data. 
The networks were trained in adaptive manner using the data 
shown in Fig. 2. The performance of some tested variants is 
given in Table 5. In terms of R2 Networks 2 and 4 (4 uses the 
Levenberg-Marguardt algorithm) are equally good. However, 
the Network 4 has a simpler structure having only 5 hidden 
neurons. Also, the same structure yields a good fit also with 
the backpropagation algorithm (Network 3). Thus the 
structure applied in the Networks 3 and 4 is the best fulfilling 
the requirements of data fit and simplicity of the structure. 
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Table 5.  Performance of adaptive neural 
networks with different configurations 

 Network 
1 

Network 
2 

Network 
3 

Network 
4 -LM 

Hidden 
neurons 

10 10 5 5 

Number 
of passes 

1 10 5 5 

R2 0.80 0.99 0.97 0.99 
Max. abs. 

error 
1.08 0.20 0.41 0.52 

Standard 
error of 

prediction 

0.45 0.07 0.14 0.10 

 

5.  DISCUSSION 

The comparison of the prediction performances of static non-
recursive PLS with the recursive PLS algorithm, shown in 
Table 2, clearly points out the benefits of adaptive updating of 
the model parameter.  Certainly, the adaptation is 
advantageous especially in mineral process modelling, since 
the process involves numerous unmeasured disturbances and 
the process operating conditions are highly time variant. In 
addition, the variable forgetting factor in the rPLS algorithm 
typically enhances the prediction performance, even though 
the difference was relatively small (see Table 2). However, by 
using the variable forgetting factor in the model, the effective 
memory length of the model adaptation is certainly more 
suitable for prevailing operating conditions. The prediction 
performance was further improved by introducing dynamics 
to the model. This can be seen also from the regression 
coefficients; in the dynamic case (Fig. 6) the input variable 
coefficients are more stable when compared to the static 
model (Fig. 3). The model accuracy can be still improved 
slightly by introducing non-linearity to the adaptive model. 
Nevertheless, the neural network model parameters cannot be 
interpreted so easily. For this reason the regression coefficient 
models are more practical, especially when the model purpose 
is, in addition to the prediction, to find out the effect of each 
input variable to the process output. The linear models can be 
also more robust in contrast to nonlinear models when 
unmeasured disturbances are present. As a future work, the 
model should be tested longer periods with process data from 
different normal operating conditions. 

6.  CONCLUSIONS 

In this paper, the feasibility of the adaptive models in 
prediction of the concentrate grade in gravity separation plant 
at the Outokumpu Kemi concentrator was studied. Adaptive 
models are advantageous for the case process where a lot of 
unmeasured disturbances exist. The identification of dynamic 
output error (OE) model with recursive PLS – instead of static 

model – improves the prediction: then the maximum absolute 
deviation from the measured Cr2O3 (%) assay decreases from 
0.17 to 0.06 percentage units (unscaled). Instead, the 
application of a non-linear neural network model did not 
cause any drastic improvements to the prediction 
performance. The selected OE-rPLS model type indicates the 
slurry particle size to be an important factor in estimation of 
the concentrate grade. For instance, by increasing the 50 % 
passing size of the grinding circuit outlet slurry (D50) by ten 
percent from the mean value decreases 0.19 % units of the 
resulting estimate of the chromite concentrate grade. 

REFERENCES 

 

Casali, A., G. Gonzalez, H. Agusto and G. Vallebuona (2002). 
Dynamic simulator of a rougher flotation circuit for a 
copper sulphide ore, Minerals Engineering, 15, pp. 253-
262. 

Dayal, B.S. and J.F. MacGregor (1997a). Recursive 
exponentially weighted PLS and its applications to 
adaptive control and prediction, Journal of Process 
Control, 7, pp 169-179. 

Dayal, S.B. and J.F. MacGregor (1997b). Improved PLS 
algorithm, Journal of Chemometrics, 11, pp. 73-85. 

Forouzi, S. and J.A. Meech (1999). An adaptive artificial 
neural network to model Cu/Pb/Zn flotation circuit, In: 
IEEE Industry Applications Society, Advanced Process 
Control Applications for Industry Workshop 29-30 April 
1999, Vancouver, Canada, pp. 75-82. 

Fortescue, T.R., L.S. Kerhenbaum and B.E. Ydstie (1981). 
Implementation of self-tuning regulators with variable 
forgetting factors, Automatica, 17, pp. 831-835.  

Gonzalez, G.D., M. Orchard, J.L. Cerda, A. Casali and G. 
Vallebuona (2003). Local models for soft-sensors in 
rougher flotation bank, Minerals Engineering, 16, pp. 
441-453. 

Haykin, S. (1999). Neural networks a comprehensive 
foundation (2nd Ed.), Prentice Hall, New Jersey. 

Helland, K., H. Berntsen, O. Borgen and H. Martens (1992). 
Recursive algorithm for partial least-square regression, 
Chemometrics and intelligent laboratory systems, 14, pp. 
129-137. 

Hodouin, D., J.F. MacGregor, M. Hou and M. Franklin 
(1993). Multivariate statistical analysis of mineral 
processing plant data, CIM Bulletin, 86, pp. 23-34. 

Lin, C.-T. and C.S. Lee (1996), Neural fuzzy systems: a 
neuro-fuzzy synergism to intelligent systems, Prentice 
Hall, New Jersey. 

Napier-Munn, T.J., S. Morrell, R.D. Morrison and T. Kojovic 
(2005). Mineral comminution circuits, their operation 
and optimization, JKMRC, Queensland. 

Wolds, S., M. Sjöström and L. Eriksson (2001). PLS-
regression: a basic tool of chemometrics, Chemometrics 
and intelligent laboratory systems, 58, pp. 109-130. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3285


