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Abstract: Recycle and bypass streams exist in chemical plants in various configurations. They
may lead to plantwide operability problems due to the strong interaction between process
units. Based on the concept of dissipative systems, this paper provides a new approach to
plantwide operability analysis for processes with by-pass and recycle streams, particularly on
plantwide stability, stabilizability, and effects of disturbance. By using the topology of process
interconnections, this analysis approach is developed from a network perspective and can be
used for large scale process systems.
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1. INTRODUCTION

Process operability determines whether a process can be
effectively controlled using a feedback control system, e.g.,
the stabilizability and the extent of disturbance rejection
a control system can achieve. It is an inherent property
of the process, independent to the choice of controllers
implemented. Ignoring operability considerations during
process design may lead to costly retro-fitting and re-
design if the process is found to be difficult to control
during commissioning (Perkins [2001]).

A number of operability analysis tools have been developed
in the literature, ranging from linear operability indicators
such as process singular values (Morari [1983]), relative
gain array (RGA) (Bristol [1966], Skogestad and Morari
[1987]) and the condition numbers (Bahri et al. [1997]) to
the nonlinear methods such as nonlinearity analysis (Guay
et al. [1995]) and steady-state operability index (Vinson
and Georgakis [2000]). More recently, the concept of pas-
sive systems was used to develop methods for analyzing
the steady-state region of attraction Rojas et al. [2006] and
nonlinear dynamic operability (Rojas et al. [2007a,b]). The
above approaches are useful in analyzing the operability of
stand-alone processes. However, in modern chemical plants
which consist a large number of process units, it is often the
coupling between process units that has the major effect
on plantwide controllability.

In this paper, a new approach is developed to study
how a process network (i.e., interconnections of process
units) influences the controllability of the plantwide sys-
tem, in particular, the effects of process recycle and by-
pass streams on the entire process network dynamics and
operability. Materials recycle and heat integration are now
two major components in chemical plants. Recycle and
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bypass streams exist in chemical plants in various config-
urations. They may lead to plantwide operability prob-
lems due to the strong interaction between process units.
Current methods of analysis involve mainly approaches
that are based on heuristics and simulations (Kiss et al.
[2007], Baldea et al. [2006], Baldea and Daoutidis [2007]).
Based on the implication of process dissipativity on its
operability, this work extends the results in Rojas et al.
[2007b] and Moylan and Hill [1978] to provide a network
perspective of plantwide process operability analysis. A
distinctive feature of this approach is that process units
are explicitly modeled with two sets of input/output vari-
ables: one set for the physical material flow (intercon-
necting flow) between the process units in the network
and the other set include the rest of inputs and outputs
(including both information flow and physical flow of the
control system and disturbance). This allows the topology
of the material flow (modeled using an interconnecting
matrix), such as by-pass and recycle streams, to be used
in plantwide operability analysis. Based on the (Q,S,R)-
dissipativity of each process unit and the network topol-
ogy, the stability, stabilizability and disturbance effects of
recycle and by-pass streams can be analyzed. The network
approach inherently scalable and can be applied to large
process systems since it is only based on the model of
each process unit rather than that of the entire plantwide
system.

2. SYSTEM REPRESENTATION

The operability analysis approach presented in this paper
involves a view of processes from network perspective.
As shown in Figure 1, every single process unit (unit i)
in the plantwide system is modeled to have two classes
of inputs: (1) the input of physical material and energy
flow ũi between process units (2) inputs of other physical
flow and the information flow, including the manipulated
variables ûi and disturbances di. All the output variable of
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the process unit is denoted yi, including the physical outlet
flow from the unit and the independent measured process
variables which cannot be derived from the physical outlet
flow. This presents the interconnection of physical flow
among the process units and information flow between
the process units and the controller and enables their
effects in a large network to be analyzed. Information flow
is usually obtained from measuring device on a physical
stream which is later used as process output variable from
the point of view of the controller.

A network of process units is presented in Figure 2. The
outputs of a system that are used in interconnection as the
physical flow inputs to the other systems are represented
as ỹ. The relationship between ỹ and the system outputs
y is given by:

ỹ = FI y, (1)
where FI is an appropriate constant matrix with only one
none-zero element of “1” in each row. It is used to form the
interconnecting (physical) outputs of process units, ỹ, as
a subset of all outputs of the process units in the network,
y. The measured outputs to be controlled are denoted by
ŷ. These outputs are used as feedback signal sent to the
controller and thus regarded as information flow of the
network. The relationship between measured outputs ŷ
and overall network outputs y is given by:

ŷ = Fc y, (2)
where Fc is a constant matrix which selects the outputs
that are measured by the sensors as a subset of the
overall outputs of the network of systems y. For those
measured variables that relate to the physical output
variables, then Fc also converts the physical output flow
(e.g., extensive variables) into measured variables (e.g.,
intensive variables). These measured outputs are then used
as the input signals to the controller. The controller is
assumed to be a negative output feedback loop such that:

uc = −ŷ = −Fc y

û = yc.
(3)

For a plantwide process system, the interconnection
between the physical flow (inputs and outputs) between
different process units can be represented as:

ũ = −Hỹ

= −HFI y

= −H̃y,

(4)

where H, called the interconnection matrix, relates the
physical outputs of the process units to the physical inputs
of other units in the network. Therefore H represents the
topology of the process network.

3. OPERABILITY ANALYSIS

Dissipativity is an input-output property of nonlinear pro-
cess systems and has been shown to relate to the achievable
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Fig. 1. Single System: Inputs and Outputs
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Fig. 2. Network of Systems with interconnected flow (con-
tinuous line) and information flow (dashed line)

dynamic performance of nonlinear processes (Rojas et al.
[2007b]). In this paper, based on the topology of the mate-
rial flow and dissipativity of process units, an approach for
studying the effects of recycle and by-pass streams on the
open-loop plantwide process stability, disturbance impacts
and process stabilizability (via feedback controllers) is
developed.

3.1 Dissipative Systems

The concept of dissipative systems was introduced by
Willems [1972a,b] as an extension to the concept of pas-
sivity. The energy stored in a dissipative system is never
greater than the amount supplied to it by the surround-
ings. In other words, dissipative systems can only dissipate
but not generate energy.
Definition 1. (Dissipative Systems, Willems [1972a,b]). A
dynamical system Σ is called dissipative if:

φ(x(τ)) − φ(x0) ≤
∫ τ

0

w(u(t), y(t)) dt, (5)

where φ(x) : X → R+ is a nonnegative function of the
system’s states called the storage function and w(u, y) is a
real valued function of the system’s inputs and outputs
called the supply rate. The inequality in (5) formalizes
the property of dissipative systems, which states that the
increase in stored energy is never greater than the amount
of energy supplied by the environment.

In this article, the considered supply rate follows the form
of:

w(u, y) = yT Qy + 2yT Su + uT Ru, (6)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12942



where Q ∈ Rp×p, S ∈ Rp×m, R ∈ Rm×m are constant ma-
trices with Q, and R symmetric. These type of systems are
called (Q,S,R)-dissipative to emphasize the specific struc-
ture of the associated supply rate in (6). A comprehensive
analytical framework for (Q,S,R)-dissipative systems was
developed during the initial study by Hill and Moylan
[1976, 1977, 1980]. An important feature of (Q,S,R)-
dissipative systems is that the dissipation inequality in (5)
describes the way the systems absorb energy, carrying
additional information on both the (nonlinear counterpart
of the) phase and gain of the process systems.

Assuming that the i-th process unit in the network is
(Qi, Si, Ri)-dissipative with a differentiable storage func-
tion φi(xi), inputs [ûT

i ũT
i dT

i ]T , and outputs yi as shown
in Figure 1, i.e.:

dφi(xi)
dt

≤ yT
i Qi yi + 2yT

i Si

[
ûi

ũi

di

]
+

[
ûT

i ũT
i dT

i

]
Ri

[
ûi

ũi

di

]
,

(7)
It is then possible to consider the overall storage function
of the entire network of N -process units (subsystems)
given by:

φ(x) =
N∑

i=1

φi(xi). (8)

Thus, by summing the dissipativity inequality of every
process unit in the network, the dissipativity of the overall
plant can be determined.

dφ(x)
dt

≤yT Q y + 2yT S

[
û
ũ
d

]
+

[
ûT ũ T dT

]
R

[
û
ũ
d

]
. (9)

Matrices S and R can be split into submatrices corre-
sponding to the subsets of the inputs (û, ũ and d):

S = [S1 S2 S3] , R =

R1 R4 R5

RT
4 R2 R6

RT
5 RT

6 R3

 . (10)

The interconnection between the inputs and outputs of
each process unit in the entire network can then be
used to simplify the (Q,S,R)-dissipativity of the process
network. By replacing (4) in (9), the network then obeys
the following new inequality:

dφ(x)
dt

≤yT (Q − S2H̃ − H̃T ST
2 + H̃T R2H̃)y+

2yT
[
S1 − H̃T RT

4 S3 − H̃T R6

] [
û
d

]
+

[
ûT dT

] [
R1 R5

R5 R3

] [
û
d

]
.

(11)

In a special case of an open-loop system when the con-
troller is not considered, the input vector û is empty.
Hence, the dissipativity of the system can simply be writ-
ten as:

dφ(x)
dt

≤yT (Q − S2H̃ − H̃T ST
2 + H̃T R2H̃)y+

2yT
[
S3 − H̃T R6

]
d + dT R3d.

(12)

The dissipativity of the overall process can be used to
determine the stability and the disturbance effects on the
open-loop plantwide process. Furthermore, it can infer the
stabilizability of the entire process system.

3.2 Plantwide Stability

The stability of a (Q,S,R)-dissipative plantwide process
systems can be inferred directly from the negative defi-
niteness of matrix Q (Hill and Moylan [1976]). The formal
result is given in the following theorem:

Theorem 2. (Hill and Moylan [1976]). Let Σ be (Q,S,R)-
dissipative. Assume Σ is zero-state detectable (i.e., if
u(t) = 0 and y(t) = 0 then limt→∞ x(t) = 0). The
equilibrium x = 0 of the free system ẋ = f(x) is
Lyapunov stable if Q is negative semi-definite (Q ≤ 0) and
asymptotically stable if the matrix Q is negative definite
(Q < 0).

This result can be used immediately for a network of
dissipative systems. According to (11), if

Q − S2H̃ − H̃T ST
2 + H̃T R2H̃ < 0 (13)

then the open-loop process network (without the con-
troller) has an asymptotically stable equilibrium x = 0.

3.3 Disturbance Effect on Output

The open-loop disturbance effects can be determined
based the L2 gain of the plantwide process from distur-
bance to process outputs. The L2 gain of a nonlinear
system can be estimated from its (Q, S,R)-dissipativity:
Theorem 3. (Moylan and Hill [1978]). Consider a nonlin-
ear (Q,S,R)-dissipative system Σ with Q < 0. Assume
x0 = 0. Then Σ is finite gain L2 stable i.e.,

‖yτ‖L2 ≤ γ ‖uτ‖L2 , (14)
where the subscript τ denotes truncation, e.g.:

yτ (t) ,
{

y(t), 0 ≤ t ≤ τ
0, t > τ

(15)

The L2 gain γ of Σ is bounded by:
γ ≤ ‖Q̂− 1

2 ‖
(
α + ‖Q̂− 1

2 S‖
)
, (16)

where ‖ · ‖ is the (induced) matrix 2-norm (that is ‖A‖ =
σ̄(A)), Q̂ , −Q and α > 0 is a finite scalar such that:

R + ST Q̂−1S − α2 I ≤ 0. (17)

Here we need to quantify the disturbance effect on some
process outputs. Consider specific process outputs of in-
terest obtained from:

yv = V y, (18)
where V is a constant matrix for selecting a subset of
outputs of interest, yv, from the entire output vector y.
Since

yT V T V y − yT
v yv = 0, (19)

Inequality (12) can be rewritten as follows:
dφ(x)

dt
≤ yT (Q − S2H̃ − H̃T ST

2 + H̃T R2H̃ + V T V )y

+ 2yT (S3 − H̃T R6)d + dT R3 d − yT
v yv.

(20)
Define:

Q̂ , −(Q − S2H̃ − H̃T ST
2 + H̃T R2H̃ + V T V ). (21)

Assume Q̂ > 0. According to Theorem 2, this implies that
the open-loop system is stable. Completing squares in (20)
results in:
dφ(x)

dt
≤ −

∥∥∥Q̂
1
2 y − Ŝ d

∥∥∥2

−yT
v yv +dT (R3 + ŜT Ŝ)d, (22)
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where
Ŝ , Q̂− 1

2 (S3 − H̃T R6). (23)
Thus the open-loop system with input d and output yv

satisfies the following inequality:
dφ(x)

dt
≤ −yT

v yv + dT (R3 + ŜT Ŝ)d. (24)

According to Theorem 3, the open-loop system above has
a finite L2 gain γ which is bounded by α > 0, which in
turn, satisfies the following condition:

R3 + ŜT Ŝ − α2I ≤ 0. (25)
By means of the Schur complement in Boyd et al.
[1994], the following linear matrix inequality (LMI) is
constructed:[

R3 − α2I ST
3 − RT

6 H̃

(ST
3 − RT

6 H̃)T Q − S2H̃ − H̃T ST
2 + H̃T R2H̃ + V T V

]
≤ 0.

(26)

For a stable system i.e. Q̂ > 0, the gain from the
disturbance to the output is always bounded. This implies
that the above LMI (or equivalently, Inequality (25)) can
always be solved if the system is stable.

Treat α2 as a single decision variable (and positive). The
upper bound of the L2 gain of the open-loop system from
the disturbance d to the process outputs of interest yv

can then be obtained by solving the following optimization
problem:

Problem 4.

min
α2

α2

subject to Inequality (26).

For chemical processes with recycle and and bypass
streams, the above method can be used to quantify the
effects of disturbances on the process outputs with differ-
ent recycle or bypass ratios.

3.4 Stabilizability of Plantwide Processes

Chemical processes that involve chemical reaction are
often unstable (e.g., exothermal reactions). It is necessary
to employ controllers to stabilize these types of processes.
Using the concept of Q, S,R-dissipativity, it is possible to
determine whether the process can be stabilized by using
a feedback controller (i.e., the stabilizability analysis).
Proposition 5. An unstable plantwide process Σ which
is dissipative according to (11) can be stabilized by a
(Qc, Sc, Rc)-dissipative controller Σc (in negative feed-
back) if: [

Q11 Q12

Q21 Q22

]
< 0, (27)

where:
Q11 = (Q − S2H̃ − H̃T ST

2 + H̃T R2H̃ + FT
c RcFc),

Q12 = (S1 − FT
c ST

c − H̃T RT
4 ),

Q21 = QT
12,

Q22 = (R1 + Qc).

(28)

Proof. The addition of the control feedback loop to the
system results in a network of two systems. Assume Σc is
(Qc, Sc, Rc)-dissipative:

dφc(xc)
dt

≤ yT
c Qc yc + 2yT

c Sc uc + uT
c Rcuc. (29)

Using feedback relationship in (3), the network of dissipa-
tive systems with dissipative controller can be represented
by the following inequality:

dφ̂(x̂)
dt

≤yT (Q − S2H̃ − H̃T ST
2 + H̃T R2H̃)y+

2yT
[
S1 − H̃T RT

4 S3 − H̃T R6

] [
û
d

]
+

[
ûT dT

] [
R1 R5

R5 R3

] [
û
d

]
+

yT
c Qc yc + 2yT

c Sc uc + uT
c Rcuc,

(30)

where x̂ =
[
xT xT

c

]T
, and φ̂(x̂) = φ(x)+φc(xc). Replacing

the relationship (3) in the above expression, the new
inequality is obtained:

dφ̂(x̂)
dt

≤
[
yT yT

c

] [
Q11 Q12

Q21 Q22

] [
y
yc

]
+ 2

[
yT yT

c

] [
S3 − H̃T R6

R5

]
d + dT R3 d.

(31)

where Q11, Q12, Q21 and Q22 are given in (28). The
unstable system Σ can be stabilized if there exists a set of
(Qc, Sc, Rc) such that the modified Q in (31) is negative
definite as shown in Theorem 2. ♦♦♦

4. RECYCLE AND BYPASS

Recycle and bypass streams are common configurations
used in chemical processes. Reactant in chemical reactor
is often recycled back to reduce production cost, while the
bypass configuration is commonly used in the control of
heat exchanger networks. It is well-known that recycle
streams can cause stability issues in chemical processes.
Snowball effect is one of the major problem encountered
in process with recycle streams (Kiss et al. [2007]). In
most cases, the recycle streams also contain some inert
materials. This then requires the addition of purge streams
in order to eliminate the accumulation of the inert mate-
rials in the process network. With this configuration of
recycle and purge streams, processes become more com-
plex and exhibit multiple time-scale dynamic behaviors
(Baldea et al. [2006], Baldea and Daoutidis [2007]). Unlike
recycle streams, bypass streams do not cause stability
issues. Both recycle and bypass may have significant im-
pact on plantwide operability. In this section, the methods
discussed in Section 3 are used as analytical tools to assess
operability of chemical processes with recycle and by-pass
streams.

To use the proposed techniques of operability analysis in
this paper, every system needs to be transformed into
the representation discussed in Section 2. The inputs to a
single system needs to be distinguished into three subsets,
namely the disturbances d, the manipulated inputs û and
the interconnecting inputs ũ as shown in Figure 1. After
each system has been transformed into this representation,
a network approach as shown in Figure 2 can then be
used describe the interconnection of every single systems
as well as with the controller. Following these steps, the
operability analysis can then be performed on the network
of chemical processes.

The (Q, S,R)-dissipativity of a system can be established
via various methods based on nonlinear control theory.
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For chemical process it is possible to determine their
dissipativity based on the process knowledge, e.g., based
on process thermodynamics and conservation of mass
(Alonso and Ydstie [1996], Ydstie and Alonso [1997], and
Farschman et al. [1998]).

In order to give better understanding of the approach
proposed in this paper, an illustrative example on a
chemical process with recycle stream is given as follows:
Example 6. Consider an endothermic CSTR with three
input streams, the inlet flows of component A (FA) and
component B (FB) and recycle flow (FR) (as shown in
Figure 3). The reaction involved in the reactor is given by:

A + B → C (32)
A controller is implemented to control the liquid level in
the reactor by manipulating the flowrate FA. Another
controller is employed to control the concentration of
product C in the reactor by manipulating flowrate FB . In
this example, it is assume temperature is not considered
for simplicity. However, the it will be discussed in the later
part of the paper.

To analyze the stability of the open-loop system, the
controller is ignored. The inlet flows FA and FB are then
considered as disturbances to the open-loop system. The
process is transformed into an appropriate representation
as shown in Figure 4. Since there are no manipulated in-
puts in the open-loop system, there exist only two subsets
of inputs, the disturbances d and the interconnecting input
ũ. Observe that the disturbances are the external inlet
flows, and the interconnecting input is the inlet flow from
the recycle stream. The outputs of the process consists of
several variables, the liquid level h, outlet flow rate FO,
and other variables, such as temperatures, and pressures
which are not considered at this stage. This representation
of the process allows the use of network analysis framework
proposed in this paper. Figure 5 describes the network
representation of the process. It is now possible to do open-
loop stability analysis, and effect of changes in the external
inlet flow (d) to the outputs of the process. In this case,
it is assumed that the recycle ratio is constant at KR for
simplicity. Observe that outlet flow rate and the concen-
tration of the components are the outputs interconnecting
to the inputs back into the reactor via recycle. It is obvious

Σ

= CAR CBR CCR]
TFR[

d =FA FB]
T

[

]
ThCCOCBOCAOFO[=y

ũ

Fig. 4. System Representation of Reactor with Recycle

FI

]
TFBFA=d

[FR ]
TCCRCBRCAR=ũ

y=[FO CAO CBO CCO h]
T

Σ

−H ỹ

[

Fig. 5. Network Representation of Reactor with Recycle

û

= CAR CBR CCR ]
TFR[

]
ThCCOCBOCAOFO[=y

Σ

[ ]
TFBFA=

ũ

Fig. 6. System Representation of Reactor with Recycle
(with controller)

from Figure 5 that the interconnection matrix H has the
first diagonal entry of −KR. The stability of the open-
loop system can then be simply assessed by evaluating the
negative definiteness of (Q−S2H̃ − H̃T ST

2 + H̃T R2H̃) in
(12). It has been shown that the recycle ratio KR affects
the interconnection matrix H. This implies that the selec-
tion of recycle ratio KR has direct effect on the stability
of the open-loop system. This technique of analysis can
be used to assess the stability of the process during early
stage of process design due to the fact that the recycle
ratio KR is considered explicitly. Different recycle ratios
can then be tried to optimize the plant objectives while
stability condition can be ensured.

If the stability of the process can be established via its
dissipativity, it is also interesting to quantify the effect of
disturbances (in this case, variation in external inlet flows
A and B) to the outputs. By solving Problem 4, the L2

gain of the outputs from the disturbance can be quantified.

If the control loop is considered in the analysis, then it is
possible to assess the stabilizability of an unstable process.
In this case, the process must be transformed into a new
representation as shown in Figure 6. The external inlet flow
FA and FB have now become the manipulated input and
are used to control the liquid level and the concentration
of C in the reactor. The network representation can
then be used to interconnect the process and the recycle
stream with the controller. This configuration is shown
in Figure 7. From the network representation, it is then
possible to analyze the stabilizability of the process with a
controller. The appropriate controller can be obtained via
Proposition 5.
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Fig. 7. Network Representation of Reactor with Recycle
(with controller)

If the considered reactor is exothermic and includes a cool-
ing water jacket, and temperature controller is necessary.
In this case, the network representation can be expanded
to allow proposed operability analysis.

Here we illustrated the proposed analysis approach using
an example of a system with a recycle stream. The same
method can be applied to processes with bypass streams
(e.g., heat exchanger networks) in a similar manner.

5. CONCLUSION

Based on dissipativity and process network topology, an
approach to plantwide operability analysis has been de-
veloped in this paper. Unlike many existing methods that
are only based on heuristics and simulations, the proposed
approach is an analytical method for plantwide stability,
stabilizability and disturbance effects. The primary advan-
tage of this technique lies in its scalability. It can be used
for complex process systems with a large number of process
units.
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