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Abstract: Set Membership function estimation methodologies under the Nearest Point approach are
employed to compute an approximating function for a nonlinear model predictive controller (NMPC).
The method is based on the off-line computation of a finite number ν of exact NMPC control solutions.
The obtained approximating functions fulfill input constraints, have computational time which is
independent on the control horizon and guarantee a level of accuracy which tends to zero by increasing
ν. A nonlinear oscillator example is used to demonstrate the effectiveness of the presented results.

1. INTRODUCTION

Nonlinear Model Predictive Control (NMPC) (see e.g. All-
göwer and Zheng (2000)) is a model based control technique
where the control action is computed by solving at each sam-
pling time a constrained optimization problem using the pre-
dicted behaviour of the controlled nonlinear system. The con-
trol move ut at time t, for time invariant systems, results to
be a nonlinear static function of the system state xt, i.e. ut =
κ0(xt). A serious limitation in using NMPC is the presence of
fast plant dynamics which require small sampling periods that
do not allow to perform the optimization problem online. This
motivates the research efforts devoted to develop computation-
ally tractable NMPC solutions, or suitable approximations of
NMPC control laws. In particular, the use of explicit functions
which approximate the control law κ0 appears to be a viable
solution. A first contribution along this line of research was
given by Parisini and Zoppoli (1995), who considered the use
of a neural approximation of κ0. However, besides the com-
putational problems related, from one side, to the “curse of
dimensionality” causing an exponential dimension increase in
the neural network parameter space and, from the other side,
to possible deteriorations in approximation due to trapping in
local minima, the neural network approach does not appear to
be well suited to obtain conditions that guarantee the stabilizing
properties of the approximated controller and the satisfaction
of the constraints required by the control problem. Moreover,
no information on the guaranteed approximation error with the
neural network approach can be derived. Another methodology
to approximate a nonlinear MPC controller is proposed by Jo-
hansen (2004), who gives an off-line algorithm for the construc-
tion of a piecewise linear (PWL) explicit approximation of the
nominal predictive control law. Then, the PWL approximation
is implemented via a binary search tree. Stability properties are
also obtained. However, with this approach the computational
times depend on the number of the state space partitions, which
increases as the required error tolerance decreases. Moreover,
the stability and constraint satisfaction properties rely on the
assumption of the convexity of the optimal cost function. If
such assumption is not met, ad-hoc solutions have to be used.
To overcome these problems and to obtain a systematic method
to derive approximations of NMPC laws with guaranteed accu-
racy, an alternative approach based on Set Membership (SM)
approximation techniques has been introduced in Canale and
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Milanese (2005) and Canale et al. (2007b). In such approach an
optimal (i.e. with minimum guaranteed approximation error)
approximating function is derived on the basis of a number ν
of exact off-line solutions of the NMPC optimization problem
involved in the design. The obtained approximation error is
bounded and converges to zero as ν increases, thus with the
proper value of ν it is possible to achieve any desired level of
approximation accuracy. However, on-line computation times
of such an approximating function increase with ν and may
still result too high for applications requiring very fast com-
putation times (e.g. less than 1 ms). In this paper, another
SM approach is introduced, denoted as “Nearest Point” (NP)
approximation, whose guaranteed approximation error is not
minimal, but whose computation is simpler and independent on
ν. Using the proposed approach, input constraints are always
satisfied and it is possible to introduce conditions under which
closed loop system stability and state constraint satisfaction are
guaranteed. Moreover, it is possible to guarantee a computable
bound on the maximum distance between the state trajectories
obtained with the nominal and the approximated predictive
control laws. Besides, the computational time is independent
from the MPC control horizon. The only required assumption is
the continuity of the stabilizing nominal MPC control law over
the set considered for the approximation. The effectiveness of
the proposed methodology is tested on a nonlinear oscillator
example.

2. MODEL PREDICTIVE CONTROL

Consider the following nonlinear state space model:

xt+1 = f(xt, ut) (1)

where xt ∈ R
n and ut ∈ R

m are the system state and control
input respectively. In this paper, it is assumed that function f
in (1) is continuous over R

n × R
m. Assume that the control

objective is to regulate the system state to the origin under
some input and state constraints. The latter are represented by a
convex set X ⊆ R

n and a compact set U ⊆ R
m, both containing

the origin in their interiors, in which the state trajectories xt and
input values ut should be kept respectively.
Denoting by Np and Nc ≤ Np the prediction horizon and the
control horizon respectively, the following objective function J
can be defined:

J(U, xt|t, Np) = Φ(xt+Np|t) +

Np−1∑

k=0

L(xt+k|t, ut+k|t) (2)
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where xt+k|t denotes k step ahead state prediction using the

model (1), given the input sequence ut|t, . . . , ut+k−1|t and the

“initial” state xt|t = xt. U =
[
uT

t|t, . . . , u
T
t+Nc−1|t

]T

is the

vector of the control moves to be optimized. The remaining
predicted control moves [ut+Nc|t, . . . , ut+Np−1|t] can be com-

puted with different strategies, e.g. by setting ut+k|t = uNc−1|t

or ut+k|t = K xt+k|t, ∀k ∈ [Nc, Np−1], where K is a suitable

matrix.
The MPC control law is then obtained applying the following
receding horizon strategy:

(1) At time instant t, get xt.
(2) Solve the optimization problem:

min
U

J(U, xt|t, Np) (3a)

s. t.

xt+1 = f(xt, ut) (3b)

xt+k|t ∈ X, k = 1, . . . , Np (3c)

ut+k|t ∈ U, k = 0, . . . , Np (3d)

(3e)

(3) Apply the first element of the solution sequence U to the
optimization problem as the actual control action ut =
ut|t.

(4) Repeat from step (1) at time t + 1.

It is assumed that the optimization problem (3) is feasible over
a set F ⊆ R

n which will be referred to as the “feasibility set”.
The application of the receding horizon controller gives rise to
the following nonlinear state feedback configuration:

xt+1 = f(xt, κ
0(xt)) = F 0(xt) (4)

where the control law κ0 results to be a time invariant static
function of the state xt at time t, i.e.:

ut = [ut,1 . . . ut,m]T = [κ0
1(xt) . . . κ0

m(xt)]
T = κ0(xt)

κ0 : F → R
m

Moreover, it is assumed that the horizons Np and Nc and the
cost functions L and Φ have been suitably chosen (see e.g.
Mayne et al. (2000) and Goodwin et al. (2005) for details)
such that the nonlinear autonomous system (4) is uniformly
asymptotically stable at the origin for any initial state value
x0 ∈ F , i.e. it is stable and

∀ǫ > 0, ∀δ > 0 ∃T ∈ N s.t.

‖φ0(t + T, x0)‖2 < ǫ, ∀t ≥ 0, ∀x0 ∈ F : ‖x0‖2 ≤ δ
(5)

where φ0(t, x0) = F 0(F 0(. . . F 0

︸ ︷︷ ︸
t times

(x0) . . .)) is the solution

of (4) at time instant t with initial condition x0. Note that,
according to (3c), for any x0 ∈ F the state constraints are
always satisfied after the first time step, i.e.:

φ0(t, x0) ∈ X, ∀x0 ∈ F , ∀t ≥ 1 (6)

Thus, the set X∩F is positively invariant with respect to system
(4):

φ0(t, x0) ∈ X, ∀x0 ∈ X ∩ F , ∀t ≥ 0 (7)

Moreover, due to (3d) the input constraints are satisfied for any
x ∈ F :

κ0(x) ∈ U, ∀x ∈ F (8)

Finally, it is assumed that the nominal control law κ0 is contin-
uous over the feasibility set F . Such property has been investi-
gated e.g. by Ohno (1978), where the continuity of the control
law is studied in the context of general finite-horizon nonlinear
optimal control. Note that stronger regularity assumptions (e.g.
differentiability) cannot be made, since even in the simple case
of linear dynamics, linear constraints and quadratic objective

function, κ0 is a piece-wise linear continuous function (see for
example the papers of Bemporad et al. (2002) and Seron et al.
(2003)).

3. SM “NEAREST POINT” APPROXIMATION OF MPC

To reduce the relatively high computational time needed to
solve the optimization problem (3), in this paper a Set Mem-
bership approximation technique, denoted as “Nearest Point”
(NP), is proposed for the computation of an approximating

function κNP ≈ κ0. Such an approximating function, defined on
a compact set X ⊆ F , is derived by the off-line computation of

κ0(x) for a suitable number ν of states x̃k ∈ X , k = 1, . . . , ν.

These state values define the set Xν = {x̃k, k = 1, . . . , ν} ⊂
X . Function κNP will be also referred to as “FMPC” (Fast
Model Predictive Control) control law.

3.1 Prior information

The approximation of function κ0 is performed on a compact
set X ⊆ F . Since X and the image set U of κ0 are compact,
continuity of κ0 over F implies that its components κ0

i , i =
1, . . . ,m are Lipschitz continuous functions over X , i.e. there
exist finite constants γi, i = 1, . . . ,m such that:

∀x1, x2 ∈ X , ∀i ∈ [1,m],
|κ0

i (x
1) − κ0

i (x
2)| ≤ γi‖x

1 − x2‖2

(9)

∀x1, x2 ∈ X ,

‖κ0(x1) − κ0(x2)‖2 ≤ ‖γ‖2 ‖x
1 − x2‖2

(10)

where γ = [γ1, . . . , γm]T .
As already pointed out, it is assumed that a set Xν ⊂ X of ν

initial conditions x̃k is chosen and that the corresponding exact

solutions ũk = κ0(x̃k), k = 1, . . . , ν are computed off-line
and stored. The set Xν is supposed to be chosen such that the
following property holds:

lim
ν→∞

dH(X ,Xν) = 0 (11)

where dH(X ,Xν) is the Hausdorff distance between X and Xν ,
defined as (see e.g. Blagovest (1990)):

dH(X ,Xν) = max

(
sup
x∈X

inf
x̃∈Xν

(‖x − x̃‖2), sup
x̃∈Xν

inf
x∈X

(‖x − x̃‖2)

)

Note that uniform gridding over X satisfies condition (11).
All this prior information can be summarized by concluding
that

κ0 ∈ FFS,

where the set FFS (Feasible Functions Set) is defined as:

FFS = {κ ∈ Aγ : κ(x̃) = ũ, ∀x̃ ∈ Xν}

where Aγ is the set of all continuous functions κ : X → U,
such that (9) holds.

3.2 “Nearest Point” approximation

NP approximation technique is now presented. The aim is to

derive, from the ν off-line computed values of ũk and x̃k and

from the known properties of κ0, an approximation κNP of κ0

with the following properties:

i) the input constraints are always satisfied:

κNP(x) ∈ U, ∀x ∈ X (12)

ii) for a given ν, a bound ζ(ν) on the pointwise approximation
error can be computed:

‖κ0(x) − κNP(x)‖2 ≤ ζ ∈ R
+, ∀x ∈ X (13)
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iii) ζ(ν) is convergent to zero:

lim
ν→∞

ζ = 0 (14)

Such properties are needed to prove the stability results reported
in Section 4.
For any x ∈ X , denote with x̃NP a state value such that:

x̃NP ∈ Xν : ‖x̃NP − x‖2 = min
x̃∈Xν

‖x̃ − x‖2 (15)

Then, the NP approximation κNP(x) is computed as:

κNP(x) = κ0(x̃NP) (16)

Such approximation trivially satisfies condition (12). The next
Theorem 1 shows that NP approximation (16) satisfies also
properties (13) and (14).

Theorem 1.

i) The pointwise NP approximation error ‖κ0(x) − κNP(x)‖2

is bounded:

‖κ0(x) − κNP(x)‖2 ≤ ζNP = ‖γ‖2 dH(X ,Xν), ∀x ∈ X

ii) The bound ζNP converges to zero:

lim
ν→∞

ζNP = 0

Proof. See Canale et al. (2007a).

As regards the computation of the Lipschitz constants γ =
[γ1, . . . γm], which are needed to compute the approximation

error bound ζNP, estimates γ̂i, i = 1, . . . ,m can be derived as
follows:

γ̂i = inf
(
γ̃i : ũh

i + γ̃i‖x̃
h − x̃k‖2 ≥ ũk

i , ∀k, h = 1, . . . , ν
)

(17)
The next result shows that γ̂i is convergent to γi, i = 1, . . . ,m.

Theorem 2.

lim
ν→∞

γ̂i = γi, ∀i = 1, . . . ,m

Proof. See Canale et al. (2007a).

4. STABILITY AND PERFORMANCE ANALYSIS OF NP
APPROXIMATED PREDICTIVE CONTROL LAWS

A key point in the use of approximating functions in NMPC
implementation is the stability and input and state constraint
satisfaction of the resulting controlled system. In this Sec-
tion, such issues will be addressed. In particular, it will be

shown how the approximated control law κNP obtained with
NP technique is able to keep the state trajectories inside a
given compact set and to make them converge to an arbitrarily
small neighborhood of the origin. Besides, an analysis of the

capability of κNP of satisfying input and state constraints will
be carried out. Finally, performance degradation issues will be
considered using the distance between the state trajectory of
the nominal control system and the one obtained employing the
approximated control law, given the same initial condition x0.

4.1 Problem settings

The analysis of the stabilizing properties of function κNP will

be carried out considering the compact set X over which κNP

is defined. Indeed, since X and U are both compact, continuity
of function f in (1) over R

n × R
m implies that f is Lipschitz

continuous over X × U with Lipschitz constant γf , i.e.:

‖f(w1)−f(w2)‖2 ≤ γf‖w
1−w2‖2, ∀w1, w2 ∈ X×U (18)

where w = (xT , uT )T . Since f is known, γf can be numeri-
cally or analytically computed.

Note that, due to the Lipschitz properties (10) and (18) of the
control law κ0(x) and of the system model f respectively,

function F 0(x) defined in (4) is Lipschitz continuous too, with

Lipschitz constant: LF = γf

√
1 + ‖γ‖2

2.

The use of κNP(x) instead of κ0(x) in the feedback control loop
gives rise to the following discrete time nonlinear autonomous
system:

xNP
t+1 = f(xNP

t , κNP(xNP
t )) = F NP(xNP

t ) (19)

whose state trajectory at time instant t with initial condition x0

is indicated as:

φNP(t, x0) = F NP(F NP(. . . F NP

︸ ︷︷ ︸
t times

(x0) . . .))

It is useful to compute an upper bound on the Euclidean norm
of the one-step state trajectory perturbation induced by the use

of control function κNP instead of κ0. Considering any initial
state x0 ∈ X , such perturbation is computed as:

xNP
1 − x1 = f(x0, κ

NP(x0)) − f(x0, κ
0(x0))

Therefore, at time instant t the following equation is obtained:

xNP
t+1 = F 0(xNP

t ) + e(xNP
t ) (20)

with
e(x) = f(x, κNP(x)) − f(x, κ0(x)) (21)

Since κ0(x) is not known in general, e(x) cannot be explicitly
computed, but a bound µ on its Euclidean norm ∀x ∈ X can be
derived from (13) and (21):

‖e(x)‖2
2 = ‖f(x0, κ

NP(x0)) − f(x0, κ
0(x0))‖

2
2 ≤

≤ γ2
f ‖(x0, κ

NP(x0)) − (x0, κ
0(x0))‖

2
2 =

= γ2
f

(
‖(x0 − x0‖

2
2 + ‖κNP(x0) − κ0(x0))‖

2
2

)
≤

≤ γ2
f ζNP(ν)2

⇒ ‖e(x)‖2 ≤ γf ζNP(ν) = µ(ν) (22)

Thus the value of µ(ν) depends on the number ν of exact

solutions of (3) considered for the approximation of κ0. On the
basis of property (14) it can be noted that:

lim
ν→∞

µ(ν) = 0 (23)

Thus it is always possible to choose a suitable value of ν which
guarantees a given one-step perturbation upper bound µ(ν).
Given these preliminary considerations, the aims of this Section
are:

i) to find sufficient conditions on µ (and, consequently, on ν)

which guarantee that the state trajectory φNP(t, x0) is kept
inside the compact set X , over which the approximation is
carried out, and converge to an arbitrarily small neighbor-
hood of the origin, for any t ≥ 0 and any x0 ∈ G ⊂ X ,
where G is a positively invariant set with respect to system
(4):

∃G ⊂ X : φ0(t, x0) ∈ G, ∀x0 ∈ G, ∀t ≥ 0 (24)
Note that the set X has to be chosen such that it contains
in its interior a set G satisfying (24). An indication on the
existence of such a set G is given by property (7). In fact,
suppose that the state constraint set X is bounded and that
the feasibility set F is such that X ⊂ F , then, any set G such
that X ⊆ G ⊂ F is positively invariant with respect to system
(4). Moreover, note that {0} ∈ G, since the origin is a stable
fixed point for the nominal system (4).

ii) To evaluate the capability of κNP of keeping the state and
input variables inside the subsets X and U respectively, i.e.:

F NP(x) ∈ X

κNP(x) ∈ U

thus satisfying the constraints. As regards the input con-
straints, they are trivially satisfied due to property (12).
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iii) To estimate an upper bound ∆(ν) of the distance

d(t, x0) = ‖φNP(t, x0) − φ0(t, x0)‖2 (25)

between the nominal and FMPC controlled state trajectories:

d(t, x0) ≤ ∆(ν), ∀x0 ∈ G, ∀t ≥ 0

such that
lim

ν→∞
∆(ν) = 0

∆ is regarded as a measure of performance degradation of
system (19) with respect to system (4).

4.2 Main results

In order to introduce convergence properties of the approxi-

mated controller κNP under the assumption of uniform asymp-
totic stability in the origin of system (4) for any x0 ∈ X ,
the following candidate Lyapunov function V : X → R

+ for
system (4) is defined:

V (x) =
T̂−1∑

j=0

‖φ0(j, x)‖2 (26)

where:

T̂ ≥ T

T = inf
x∈X

(
T ∈ N : ‖φ0(t + T, x)‖2 < ‖x‖2, ∀t ≥ 0

)

The following inequalities hold:

‖x‖2 ≤ V (x) =
V (x)

‖x‖2

‖x‖2 ≤ b ‖x‖2, ∀x ∈ X (27)

where

b = sup
x∈X

V (x)

‖x‖2

and

V (F 0(x)) − V (x) = ∆V (x) =

= −
‖x‖2 − ‖φ0(T̂ , x)‖2

‖x‖2

‖x‖2 ≤ −K‖x‖2, ∀x ∈ X
(28)

with

K = inf
x∈X

‖x‖2 − ‖φ0(T̂ , x)‖2

‖x‖2

, 0 < K < 1

Thus V (x) is a Lyapunov function for system (4) over X .
Moreover, it can be easily showed that V (x) is Lipschitz

continuous, with Lipschitz constant L̃V :

|V (x1) − V (x2)| ≤ L̃V ‖x1 − x2‖2, ∀x1, x2 ∈ X (29)

with

L̃V =

T̂−1∑

j=0

(LF )j (30)

thus the following inequality holds:

∀x ∈ X , ∀e : (F 0(x) + e) ∈ X
V (F 0(x) + e) ≤ V (F 0(x)) + L̃V µ

(31)

Note that constant L̃V as defined in (30) is not in general the
lowest constant such that (29) holds. From a practical point of

view, a less conservative estimate L̂V of the “best” constant
LV can be computed by considering a number ξ of values of

x̃h ∈ X , h = 1, . . . , ξ, such that the set Xξ = {x̃h ∈ X , h =
1, . . . , ξ} satisfies the property:

lim
ξ→∞

dH(X ,Xξ) = 0

and applying the following:

L̂V = inf(L̃V : V (x̃h) + L̃V ‖x̃h − xk‖ ≥ V (xk), ∀xk, xh ∈ Xξ)

A proof similar to that of Theorem 2 can be used to show that

lim
ξ→∞

L̂V = LV

In the following, the ‖ · ‖2-ball set centered in x is denoted as:

B(x, r) = {x̂ ∈ R
n : ‖x̂ − x‖2 ≤ r, }

and notation B(A, r), A ⊆ R
n is used to indicate the set:

B(A, r) =
⋃

x∈A

B(x, r)

Theorem 3. Let κ0 be the exact nonlinear MPC control law
computed according to (3), such that (5), (6) and (9) hold. Let

κNP be the NP approximation of κ0 computed using a number
ν of exact off-line solutions such that (11) and (24) hold. Then,
it is always possible to find a suitable value of ν such that there
exist a finite value ∆ ∈ R

+ with the following properties:

i) the distance d(t, x0) in (25) is bounded by ∆:

d(t, x0) ≤ ∆, ∀x0 ∈ G, ∀t ≥ 0 (32)

ii) ∆ can be explicitly computed as:

∆ = sup
t≥0

min(∆1(t, µ), ∆2(t, µ))

where:

∆1(t, µ) =
t−1∑

k=0

(LF )kµ (33)

∆2(t, µ) = 2 ηt sup
x0∈G

V (x0) +
b

K
LV µ (34)

with η =

(
1 −

K

b

)
, 0 < η < 1.

iii) ∆(ν) converges to 0:

lim
ν→∞

∆(ν) = 0 (35)

iv) the state trajectory of system (19) is kept inside the set
B(G, ∆) for any x0 ∈ G:

φNP(t, x0) ∈ B(G, ∆), ∀x0 ∈ G, ∀t ≥ 0
v) the set B(G,∆) is contained in X

B(G, ∆) ⊆ X
vi) the state trajectories of system (19) asymptotically con-

verge to the set B(0, q):

lim
t→∞

‖φNP(t, x0)‖2 ≤ q, ∀x0 ∈ G

with

q =
b

K
LV µ ≤ ∆ (36)

.

Proof. See Canale et al. (2007a).

Remark 1. If LF < 1 (i.e. F 0 is a contraction operator),
a simplified formulation for bound ∆ is obtained. In fact,
Lyapunov function (26) can be chosen as V (x) = ‖x‖2, with
b = 1 in (27), K = (1−LF ) in (28) and LV = 1 in (29). Thus
the bound ∆2(t, µ) in (34) is computed as:

∆2(t, µ) = 2(LF )t sup
x0∈G

‖x0‖2 +
1

1 − LF

µ

and q in (36) is:

q =
1

1 − LF

µ

On the other hand the bound ∆1(t, µ) in (33) is such that:

∆1(t, µ) ≤
1

1 − LF

µ, ∀t ≥ 0

therefore a simpler formulation for ∆ is obtained:

∆ = sup
t≥0

min(∆1(t, µ), ∆2(t, µ)) =
1

1 − LF

µ
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The main consequence of Theorem 3 is that, with the proper
value of ν, for any initial condition x0 ∈ G it is guaranteed that

the state trajectory φNP is kept inside the set X and converges
to the set B(0, q), which can be arbitrarily small since q linearly
depends on µ:

lim
ν→∞

q =
b

K
LV lim

ν→∞
µ(ν) = 0

Therefore, it is possible to “tune” the number ν of state values
considered for the approximation of the control law κ0 in order
to guarantee the desired regulation precision. Moreover, on the
basis of (32) and (35) it can be noted that for any ǫ > 0 it is
always possible to find a suitable value of ν such that

d(t, x0) < ǫ, ∀x0 ∈ G, ∀t ≥ 0
i.e. it is possible to obtain the desired upper bound on the

distance between the state trajectories φNP(t, x0) and φ0(t, x0).
Moreover, as ν → ∞ the performances of control system

F NP match with those of F 0, as it would be expected since

ζNP(ν) → 0. As a consequence, during the computation of
the approximating function the value of ν can be chosen in
order to set a compromise between system performances (with
respect to the nominal MPC control law) and memory usage,
which increases as ν does. Note that with NP approximation the
computational time does not increase with increasing ν values,
as pointed out in the example of Section 5.

4.3 State constraint satisfaction

Theorem 3 does not address explicitly the problem of state
constraint satisfaction for the FMPC controlled system (19),
i.e.:

φNP(t, x) ∈ X, ∀x ∈ G, ∀t ≥ 1
However, as a consequence of Theorem 3, it is possible to

choose ν such that there exist a finite number T of time steps

after which the state trajectory φNP is kept inside the constraint
set X, for any initial condition x0 ∈ G. Moreover the value of

T decreases as ν increases. In fact, using (32) it follows that

∀x0 ∈ G, ∀t ≥ 0
‖φNP(t, x0)‖2 ≤ ‖φ0(t, x0)‖2 + ∆(ν)

(37)

Then, considering a value of ν such that:

B(0, ǫ + ∆(ν)) ⊂ X (38)

with ǫ > 0 “small” enough, on the basis of the uniform
asymptotic stability assumption (5), it is always possible to find

T < ∞ such that:

‖φ0(t + T , x0)‖2 < ǫ, ∀x0 ∈ G, ∀t ≥ 0
Using (37) it can be noted that:

‖φNP(t + T , x0)‖2 ≤ ‖φ0(t + T , x0)‖2 + ∆(ν) <
< ǫ + ∆(ν), ∀x0 ∈ G, ∀t ≥ 0

⇒ φNP(t + T , x0) ∈ B(0, ǫ + ∆(ν)), ∀x0 ∈ G, ∀t ≥ 0

and, on the basis of (38):

φNP(t + T , x0) ∈ X, ∀x0 ∈ G, ∀t ≥ 0

thus after a finite number T of time steps there is the guarantee
that state constraints are satisfied. Note that in general the

higher is ǫ in (38), the lower is T . Since the maximum value of

ǫ such that (38) holds is higher as ∆(ν) decreases, T in general
decreases as ∆(ν) does, i.e. as ν increases.

5. SIMULATION EXAMPLE

Consider the two-dimensional nonlinear oscillator obtained
from the Duffing equation (see e.g. Jordan and Smith (1987)):

ẋ1(t) = x2(t)
ẋ2(t) = u(t) − 0.6x2(t) − x1(t)

3 − x1(t)
(39)

where the input constraint set U is:

U = {u ∈ R : |u| ≤ 5}

The following discrete time model to be used in the nominal
MPC design has been obtained by forward difference approxi-
mation:

xt+1 =

[
1 Ts

−Ts (1 − 0.6Ts)

]
xt +

[
0
Ts

]
ut +

[
0 0

−Ts 0

]
x3

t

with sampling time Ts = 0.05 s. The nominal MPC controller
κ0 is designed according to (3) with horizons Np = 100,
Nc = 5 and the following functions L and Φ:

L(x, u) = xT Qx + uT Ru, Φ = 0

where

Q =

[
1 0
0 1

]
, R = 0.5

The following linear state inequality constraints define the
considered set X:

X = {x ∈ R
2 : ‖x‖∞ ≤ 5}

The state prediction has been performed setting ut+k|t =
ut+Nc−1|t, k = Nc, ..., Np − 1. The optimization problem (3)

employed to compute κ0(x) has been solved using a sequential
constrained Gauss-Newton quadratic programming algorithm
(see e.g. Nocedal and Wright (2006)), where the underlying

quadratic programs have been solved using the MatLabr func-
tion quadprog.
Fig. 1 shows the obtained feasibility set F and the set X
considered for the approximation, together with the constraint
set X and the trajectories of the nominal and FMPC controlled

systems with initial condition x0 = [−2.2,−3.4]T and ν =
1.4 104. The starting point is outside the state constraint set and
near to the boundary of the feasibility set. The state trajectories
obtained with online optimization and NP approximation are
practically superimposed, and their distance in (25) is such
that d(t, x0) < 0.012. The time courses of the state variables
are reported in Fig. 2.(a) and 2.(b), while Fig. 2.(c) shows the
courses of input variable u: note that input and state constraints
are never violated with NP control law. If the achieved per-

-3-3-3-3 -2-2-2-2 -1-1-1-1 0000 1111 2222 3333
-4-4-4-4

-2-2-2-2

0000

2222

4444

xxxx
1111

xx xx
22 22

XXXX FFFF
XXXX

====

Fig. 1. Duffing oscillator example: sets F and X (thick solid
line), constraint set X (thick dotted line) and nominal
(solid), approximated (dashed) and uncontrolled (dash-
dotted) state trajectories with initial condition x0 =
[−2.2,−3.4]T . NP approximation carried out with ν =
1.4 104

formances are not satisfactory, better results can be obtained,
according to Theorem 3, by increasing the number ν of off-
line computed values. Moreover the regulation precision can
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Fig. 2. Duffing oscillator: nominal (solid) and approximated
(dashed) (a), (b) state courses and (c) control input with

initial condition x0 = [−2.2,−3.4]T . NP approximation

carried out with ν = 1.4 104.

be also improved by considering a more dense gridding near
the origin in the computation of the off-line exact solutions.
As regards the computation efforts, the mean computational
time obtained with the nominal controller over more than 200
simulations considering different starting conditions is equal to
0.06 s. Table 1 shows the mean computational time t obtained
with NP approximation with increasing values of ν (which
means better regulation precision and lower performance degra-
dation). A mean computation time of about 10−5 s is obtained
independently on ν. Indeed, such computational times depend

on the employed calculator: in this case MatLabr 7 and an
AMD Athlon(tm) 64 3200+ with 1 GB RAM have been used.
Note that the NP computational do not depend on the prediction
and control horizons and in general on the nominal controller,
which could be more complex (i.e. with higher required com-
putational effort) than the one considered in this example.

Table 1. Duffing oscillator example: mean compu-
tational times of NP approximation.

ν ≃ 106 ν ≃ 105 ν ≃ 104 ν ≃ 103

t 3 10−5 s 3.5 10−5 s 4 10−5 s 2.1 10−5 s

6. CONCLUSIONS

In this paper the application of SM function approximation
methodologies has been investigated in the implementation of
a given predictive control law for nonlinear systems. Such
methodologies rely on the off-line computation of a finite
number ν of exact values of the nominal predictive control
law: the obtained approximation error converges to zero as ν
increases. In particular, a “Nearest Point” approach has been
introduced, whose computation times are independent on ν,
which can be used even in presence of quite fast plant dynamics.
Conditions on the approximating function have been given in
order to guarantee closed loop stability, performance and state
constraint satisfaction properties. Such control computation is
simply reduced to the evaluation of a static non linear function,
independent on the prediction and control horizons, the com-
putational time can be significantly reduced leading to a fast

implementation of the predictive control law. This way, it may
overcome the problems related to the constraints satisfaction in
neural networks approximation approaches. The effectiveness
of the proposed methodology has been shown by the applica-
tion to nonlinear oscillator example. Note that approaches em-
ploying SM approximation techniques for the implementation
of predictive controllers has also been successfully applied to
practical control problems, such as semi-active suspension con-
trol and energy generation using tethered airfoils (see Canale
et al. (2006) and Canale et al. (2007c)).
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