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Abstract: In this paper, a fault detection and accommodation scheme is designed, which is
applicable to a large class of nonlinear systems. The nonlinear observer is designed to enable
the detection of fault occurrences through comparison of observed states with their signatures.
Under such circumstances, when a component fails, the fault accommodation control will be
activated to compensate the effects of the fault function.
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1. INTRODUCTION

Various approaches to fault detection have been reported
over the last two decades. It has been shown that the use
of adequate process models can allow early fault detection
with normal measurable variables [1]. In [2], an expert sys-
tem model is developed for fault detection. In [5], a linear
observer is designed for detecting the cutting tool wear. In
[3], an adaptive observer technique is proposed for actuator
fault diagnosis. In [4], a dynamical model is presented
to detect incipient fault. In [21], model following method
is used for reconfigurable flight control problem against
structural damage or system faults. However, the model-
based fault detection schemes depend on the assumption
that a mathematical characterization of the robotic system
is available. In practice, this is not true since it is difficult
to obtain an accurate model. Recently, online approxima-
tion approaches to nonlinear fault detection problem have
been developed [6, 7]. Furthermore, in many applications,
it is important not only to detect but also to accommo-
date any failures as quickly as possible. Visinsky et al [2]
propose an expert system for fault tolerant control (FTC).
In [9], adaptive methods for accommodating actuator fail-
ures are studied. In [14], a fault diagnosis and tolearant
control approach is presented which is based on a simple
first order system. In [10], stable adaptive controllers are
applied to achieve fault-tolerant engine control. Most of
these studies are focused on the single-input-single-output
(SISO) systems [14, 9, 10]. The FTC problem that arises
in multiple-input-multiple-output (MIMO) systems intro-
duces additional complexities and is considered by several
investigators [8, 22, 23, 15]. The work of [8, 22, 23, 12] is
focused on control of MIMO linear systems with actua-
tor or state failures. However, most physical systems are
inherently nonlinear. For most practical applications, the
linear control synthesis on FTC only guarantees stability
in a region about operating point and possibly degradation
in performance and instability over a large domain of
operation. The literature on the FTC scheme of MIMO
nonlinear systems can be found in [15, 16].

In this paper, we present a fault detection and accommo-
dation control scheme based on a class of MIMO nonlinear
systems. There are two main contributions in the paper.
First, the matching condition and full states available
in [15, 16] are removed completely. Second, the stabil-
ity analysis of the fault accommodation control scheme
is investigated for two different operating modes of the
closed-loop system: 1)in the absence of faults, 2)after fault
detection. A simulation example is given to illustrate the
effectiveness of the proposed scheme.

2. PROBLEM STATEMENTS

Consider the following MIMO nonlinear system described
by

x
(ni)
i = fi(x, t) +

m∑
j=1

gij(x)uj + ηi(x, t)

+βi(t − T )ζi(x)
yi = xi

⎫⎪⎪⎬
⎪⎪⎭ ,

where x
(ni)
i = dnixi/dtni ,x = [x1, ..., x

(nm−1)
m ]T ∈ Rn

with n = n1 + n2 + ... + nm, is the overall state vector,
ui ∈ R, i = 1, 2, ..., m, are the inputs and yi ∈ R, i =
1, 2, ..., m, are the outputs of the system. The nonlinear
functions fi, gij , i, j = 1, 2, ..., m, are assumed to be known
and the functions ηi, i = 1, 2, ..., m, represent the system
uncertainties. The terms ζi, i = 1, 2, ...m, are unknown
functions which represent the faults in the system respec-
tively, βi(t−T ), i = 1, 2, ..., m, represent the time profiles of
the faults, and T is the fault-occurrence time. The system
(1) can also be written in the compact form

x(n) = F (x, t) + G(x)u + η(x, t) + B(t − T )ζ(x),
y = Cx

}
(1)

where x(n) = [x(n1)
1 , ..., x

(nm)
m ]T ∈ Rm, u = [u1, ..., um]T ∈

Rm, y = [y1, ...ym]T ∈ Rm, and

F (x, t) = [f1(x, t), f2(x, t), ..., fm(x, t)]T , (2)
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G(x) =

⎡
⎢⎣

g11(x) ... g1m(x)
... ...

...
gm1(x) ... gmm(x)

⎤
⎥⎦ , (3)

η(x, t) = [η1(x, t), η2(x, t), ..., ηm(x, t)]T , (4)

ζ(x) = [ζ1(x), ζ2(x), ..., ζm(x)]T , (5)

C = diag{C1, C2, ..., Cm}, Ci = [1, 0, ..., 0]1×ni.(6)

We consider faults with time profiles modeled by

B(t − T ) = diag{β1(t − T ), β2(t − T ), ..., βm(t − T )},
βi(t − T ) =

{
0 t < T

1 − e−θi(t−T ) t ≥ T
, (7)

where the fault-occurrence time T is unknown, and θi > 0
is an unknown constant that represents the rate at which
the fault in states and actuators evolves.

The paper has the following two objectives: 1) It can
detect a fault when the monitored system fails to function
normally; 2) After a fault is detected, it is required that
the controller should be reconfigured to accommodate the
fault. The basic assumptions for the problems stated are

A1) The fault function ζ(x) is uniformly continuous.

A2) The matrix G(x)+GT (x)
2 is positive definite or negative

definite, i.e., σ
(

G(x)+GT (x)
2

)
≥ bσ > 0 where σ(.) repre-

sents the smallest singular value of the matrix inside the
bracket and bσ is its lower bound.

A3) The modeling uncertainty ηi(x, t) is bounded by a
known function,i.e.,

|ηi(x, t)| ≤ η̄i(x, t), (8)

where the bounding function η̄(x, t) is continuous and
uniformly bounded.

A4) The desired trajectories yd = [yd1, yd2, ..., ydm]T are
known bounded functions of time with bounded known
derivatives.
Remark 2.1. The model (1) includes a large class of
nonlinear mechanical systems. For example, consider the
following mechanical systems described by

q̈ = M−1(q)[τ − Vm(q, q̇) − F (q̇) − G(q) − τd]

+B(t− T )ζ(q, q̇) (9)

where q = [q1, q2, ...qn]T ∈ Rn are the joint position of
the subsystem i ∈ [1, n]; M(q) are the symmetric positive
definite inertia matrix; Vm(q, q̇) represent Coriolis and
centripetal forces; F (q̇) are the dynamic frictional force
matrix; τd are a load disturbance matrix; G(q) are the
potential energy terms; τ denote generalized input control
of the system applied at the joints. The fault function
is represented by the term B(t − T )ζ(q, q̇) ∈ Rn, where
ζ(q, q̇) is a vector which represents the fault in the system,
B(t − T ) represents the time profile of the fault, and T is
the time of occurrence of the fault.

In order to be able to design the output feedback control,
let us re-write system (1) as

ẋ = A0x +b[F (x, t) + G(x)u + η(x, t)
+B(t− T )ζ(x)]

y = x = Cx

}

where

A0 = diag{A01, A02, ..., A0m} (10)

b = diag{b1, b2, ..., bm} (11)

A0i =

⎡
⎢⎢⎣

0 1 0 ... 0
0 0 1 ... 0
...

...
... ...

...
0 0 0 ... 0

⎤
⎥⎥⎦

ni×ni

, bi =

⎡
⎢⎢⎣

0
0
...
1

⎤
⎥⎥⎦

ni×1

, (12)

x = [x1, x2, ..., xm]T . (13)

The proposed fault control scheme makes use of the
assumptions:

A5) (C, A0) is observable.

A6) F (x, t) is Lipschitz in x i.e., ||F (x, t) − F (x̂, t)|| ≤
LF ||x − x̂||, and G(x) is Lipschitz in x i.e., ||G(x) −
G(x̂)|| ≤ LG||x − x̂||.
A7) The modeling uncertainty is bounded by a known
constant, i.e., ||η(x, t)|| ≤ η̄.

3. FAULT DETECTION SCHEME

In this section, the proposed fault detection system and
its constituent components will be elaborated in detail.
The construction of a nonlinear estimation model is first
designed. Utilizing this estimation model, a time-varying
threshold bound is developed so that it can serve to give
a warning signal when a fault occurs.

We consider the following nonlinear model as an observer.

x̂(n) = Λx̃(n−1) + F (x) + G(x)u, (14)

where x̂(n) denotes the estimated state vector, x̃(n−1) =
x(n−1) − x̂(n−1), and Λ = diag{λ1, λ2, ..., λm}(λi > 0) is a
constant matrix. The next step in the construction of the
fault detection scheme is the design of the algorithm for
monitoring a fault occurrence. Based on the estimation
model (14), a fault estimation algorithm is presented.
Since B(t − T )ζ(x) is zero when t < T , each component
x̄i(t), i = 1, 2, ..., m, of the state estimation error is given
by

x̄i(t) = e−λitx̄i(0) +

t∫
0

e−λi(t−τ)ηi(x, t)dτ = 	i. (15)

The threshold bound is defined as 	i. The decision that a
fault has occurred is made when at least one component
of the estimation error |x̄i(t)| exceeds its corresponding
threshold bound 	i. The fault detection time is defined as
Td.

4. ROBUST CONTROL FOR THE HEALTHY
SYSTEMS

Before the fault occurrence, we first consider a robust
controller of the system (1) when there is no fault issue.
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For given a desired trajectory ydi(t) ∈ R, we define the
errors ei(t) = yi − ydi. Then, the filtered tracking error is
given by

ṡ1 = (
d

dt
+ k1)n1−1e1, ..., ṡm = (

d

dt
+ km)nm−1em, (16)

where k1, ..., km are positive constants to be selected. From
the result of [20], it is well-known that for si(t) = 0, we
have a set of linear differential equations whose solutions
ei, i = 1, 2, ..., m, converge to zero with constants (ni −
1)/ki, i = 1, 2, ..., m. Thus, the system equation can be
written as

Ṡ(t) = F (x) + G(x)u + v + η(x, t) + B(t − T )ζ(x),(17)
where S = [s1, s2, ..., sm]T and v = [v1, v2, ..., vm]T with
vi = −y

(ni)
di + kni−1

i ėi + (ni − 1)kni−2
i ëi + ... + (ni −

1)kie
(ni−1)
i .

In the absence of any faults, the original system (17)
becomes as

Ṡ(t) = F (x) + G(x)u + v + η(x, t), (18)
The following original control law is assumed

u = G−1(x)[−F (x) − v − ΛS − 1
2
δ||η̄(x, t)||2S], (19)

where Λ is the same as in (14) and the parameter δ > 0
is a design constant. It is easy to prove that the proposed
controller (19) can achieve the following theorem.

Theorem 4.1. Consider the system (1) without the presence
of faults (0 ≤ t ≤ T ) and the controller described by
(19). Suppose Assumptions A1-A3 are satisfied. Then, the
tracking errors S are UUB.

5. ACCOMMODATION CONTROL AFTER FAULT
DETECTION

Fault accommodation scheme is typically achieved through
reconfiguration of the feedback control system. In this
subsection, we develop a nonlinear fault accommodation
controller and analyze the properties of the proposed
scheme.

We assume that the fault function ζ(x) can be approx-
imated by a general one layer neural network (NN) [18]
as

ζ(x) = W ∗T Φ(x) + ξ, (20)
where the bounded function approximation error ξ sat-
isfies ||ξ|| ≤ ξM with constant ξM . Therefore, the fault
accommodation control law is reconfigured by

u = G−1(x)[−F (X) − v − ΛS − 1
2
δ||η̄(X, t)||2S − ŴT Φ(x)],(21)

with the learning rule

˙̂
W = ΥΦ(x)ST − ρΥ(Ŵ − Wa), (22)

where Υ = ΥT > 0, ρ > 0, and Wa is a design con-
stant vector. Define the Lyapunov function V = S2 +
tr(W̃T Υ−1W̃ ). The time derivative of V is given by

V̇ ≤−2λmin(Λ)||S||2 + δ−1 + 2ρtr[W̃T (Ŵ − Wa)]

− 2STB(t − T )ξ + 2ST Θ(t − T )W ∗T Φ(x), (23)
where we have used that

B(t− T )ζ(X) − ŴT Φ(x)

= W̃T Φ(x) − Θ(t − T )W ∗T Φ(x) + B(t− T )ξ.(24)
By completion of squares, it follows that

2tr[W̃T (Ŵ − Wa)]≤−||W̃ ||2F + ||W ∗ − Wa||2F . (25)
where || · ||F is the Frobenius norm. Using the inequality
2αT β ≤ 1

2αT α + 2βT β, we have

−2STB(t − T )ξ ≤ 1
2
λmin||S||2 + 2λ−1

minξ2
M

2ST ΘW ∗T Φ≤ 1
2
λmin(Λ)||S||2

+ 2λ−1
minmax1≤i≤n[e−2θi(t−T )]||W ∗T Φ||2.

where λmin = λmin(Λ). Substituting the above inequali-
ties into (23) yields

V̇ ≤−λmin||S||2 − ρ||W̃ ||2F + ρ||W ∗ − Wa||2F + 2λ−1
minξ2

M

+2λ−1
minmax1≤i≤n[e−2θi(t−T )]||W ∗T Φ(q, q̇)||2 + δ−1.

Let

μ = 2λ−1
min(Λ)ξ2

M

+ 2λ−1
min(Λ)max1≤i≤n[e−2θi(t−T )]||W ∗T Φ||2 + δ−1.

Hence, we obtain the following conditions for V̇ ≤ 0

||S||>
√

ρ||W ∗ − Wa||2F + μ

λmin(Λ)
,

or, ||W̃ ||F >

√
ρ||W ∗ − Wa||2F + μ

ρ
.

This demonstrates that S, W̃ are uniformly bounded.
Thus, we have the following theorem.
Theorem 5.1 Consider the system (1) in the presence
of faults and the nonlinear fault accommodation scheme
described by (21) and (22). Suppose Assumptions A1-A3
are satisfied. Then, the tracking error S and NN weights
W̃ are UUB.

6. EXTENSION TO OUTPUT FEEDBACK
CONTROL DESIGN

In the preceding section, all the results have been obtained
under the assumption that the full state of the system is
measured. We now remove this assumption and consider
more realist problems where only a part of the state is
available for measurement.

6.1 Fault Detection Scheme

To detect the fault, the following observer is constructed:

˙̂x = A0x̂ + L0(y − ŷ) + b[F (x̂, t) + G(x̂)u] (26)

ŷ = x̂ = Cx̂ (27)
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Define the state and output estimation errors by x̃ = x−x̂
and ỹ = y − ŷ respectively. It can be easily derived that
the dynamics of residual generator is governed by

˙̃x = Āx̃ + b[G(x)u − G(x̂)u] + b[F (x, t) − F (x̂, t)]

+bη(x, t) (28)

ỹ = Cx̃ (29)
where Ā = A0 − L0C. The gain matrix L0 is chosen
so that Ā is stable. We consider the Lyapunov function
V0 = x̃T P x̃ and its derivative is given by

V̇0 = x̃T (ĀT P + PĀ)x̃ + 2x̃T Pb[G(x)u − G(x̂)u]

+ 2x̃T Pb[F (x, t) − F (x̂, t)] + 2x̃T Pbη(x, t) (30)
Note that the last three terms satisfy the inequalities
2x̃T Pb[G(x)u − G(x̂)u] ≤ x̃T P 2x̃ + L2

G||b||2||ỹ||2||u||2,
2x̃T Pb[F (x, t) − F (x̂, t)] ≤ γx̃T P 2x̃ + γ−1||b||2L2

F ||x̃||2,
2x̃T Pbη(x, t) ≤ ||x̃||2 + ||Pb||2η̄2 where we have used
Assumption A 6, x − x̂ = y − ŷ and γ = ||b||2L2

F . This
implies that

V̇0 ≤−λmin(Q)
λmax(P )

V0 + L2
G||b||2 ‖ ỹ ‖2‖ u ‖2 +||Pb||2η̄2(31)

In the above analysis, it is assumed that

ĀT P + PĀ + (||b||2L2
F + 1)P 2 + I + Q ≤ 0 (32)

By using Lemma 3.2.4 of [25], we have

V0 ≤ e−
λmin(Q)
λmax(P ) tV0(0)

+

t∫
0

e−
λmin(Q)
λmax(P ) (t−τ)[L2

G||b||2 ‖ ỹ ‖2‖ u ‖2 +||Pb||2η̄2]dτ

= 	out (33)
Using ||x̃||2 ≤ 1

λmin(P )V0, one obtains

||ỹ|| ≤ ||C||√	out = 	 (34)
In the above result, V0(0) can be replaced by a conservative
estimate δ0, where |V0(0)| ≤ δ0. Since the first term con-

tains an exponential function e−
λmin(Q)
λmax(P ) t, the replacement

will not affect the threshold seriously. The fault detection
can be carried out as{ ||ỹ|| ≤ 	, no fault occurs

||ỹ|| > 	, fault has occurred . (35)

6.2 Robust Control for the Healthy System

For the design of fault accommodation control, we need
to introduce a state error system. Define the state error
E = x − xd where xd = [yd1, ..., y

(nm−1)
dm ]T ∈ Rn. System

(10) may be expressed as

Ė = AE + b[F (x, t) + G(x)u − y
(n)
d + KE + η(x, t)

+B(t − T )ζ(x)] (36)

e = CE (37)

where A = A0 − bK, y
(n)
d = [y(n1)

d1 , ..., y
(nm)
dm ]T and e = y −

yd. The constant matrix K in (36) is chosen so that C[sI−
A]−1b is strictly positive real (SPR).

For the healthy system, i.e., B(t−T )ζ(x) = 0, the feedback
control is required to cause output vector y to track
reference yd. Since the state of system (10) is not available,
the following observer is proposed

˙̂x = A0x̂ + L(y − ŷ) + b [F (x̂, t) + G(x̂)u + Ξ1] (38)

where Ξ1 = LG

bσ
ỹ[ke ‖ e ‖ +||F (x̂, t)||+ ‖ y

(n)
d ‖] +

( 2
λmin(Q1)L

2
F + 1

2 )ỹ + 3L2
G

2b2σ
ỹ[k2

e ||e||2 + ||F (x̂, t)||2 + ||y(n)
d ||2].

The gain matrix L is chosen so that C[sI − (A0−LC)]−1b
is SPR. When equation (38) is subtracted from (10) it
results in the following observation error system

˙̃x = Āx̃ + b[G(x)u − G(x̂)u + F (x, t) − F (x̂, t)

+η(x, t) − Ξ1] (39)

where Ā = A0 − LC. Using (38), we now propose the
following controller for the healthy system

u =
e

eT G(x̂)e
[−ke||e||2 − eT F (x̂, t) + eT y

(n)
d ] (40)

where ke > 0 with ke > 2
λmin(Q1)L

2
F + 1

λmin(Q2)
||K||2 +

1 (Q1, Q2 will be given below). Our task is to stabilize
(10),(38) with respect to the Lyapunov function V3 = V1+
V2 where V1 = x̃T P1x̃ and V2 = ET P2E.

Since C[sI−Ā]−1b is SPR, from Lemma 3.5.4 of [25], there
exists P1 > 0 such that ĀT P1 + P1Ā = −Q1, b

T P1 = C.
Similarly, since C(sI−A)−1b is also SPR, we have AT P2+
P2A = −Q2, b

T P2 = C. The derivative of V1 is

V̇1 = x̃T (ĀT P1 + P1Ā)x̃ + 2ỹT [G(x)u − G(x̂)u

+ F (x, t) − F (x̂, t) + η(x, t)] − 2ỹT Ξ1

≤−3
4
λmin(Q1)||x̃||2 + η̄2 − 3

L2
G

b2
σ

||ỹ||2[k2
e ||e||2

+||F (x̂, t)||2 + ||y(n)
d ||2] (41)

where we have used the facts that

eT G(x̂)e = eT (
G(x̂) + GT (x̂)

2
)e ≥ bσ||e||2

and Assumptions A6-A7.

Using (36) and SPR condition, the derivative of the
Lyapunov function V2 is computed as

V̇2 = ET (AT P2 + P2A)E + 2eT [G(x) − G(x̂)]u

+ 2eT [G(x̂)u + F (x, t) − y
(n)
d + KE + η(x, t)] (42)

Taking a similar proof procedure as in the derivative of V1,
we have

V̇2 ≤−λmin(Q2)||E||2 + 2
LG||ỹ||

bσ
||[−ke||e||2

−eT F (x̂, t) + eT y
(n)
d ]|| − 2ke||e||2

+2eT [F (x, t) − F (x̂, t)] + 2eT KE + 2eT η(x, t)

≤−λmin(Q2)
2

||E||2 +
3L2

G

b2
σ

||ỹ||2[k2
e ||e||2 + ||F (x̂, t)||2

+ ||y(n)
d ||2] − λe||e||2 +

λmin(Q1)
4

||x̃||2 + η̄2
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where λe = 2ke − 4
λmin(Q1)L

2
F − 2

λmin(Q2) ||K||2 − 2. Com-

bining V̇1 with V̇2, the derivative of the Lyapunov function
V3 is

V̇3 ≤ −λmin(Q1)
2

||x̃||2 − λmin(Q2)
2

||E||2 − λe||e||2 + 2η̄2

which can be used to show that x̃, E are UUB.

6.3 Accommodation Control After Fault Detection

When a fault is detected, the accommodation in the
control system can be achieved through adding a NN
approximator into the normal controller. In this section,
we use the same control policy to compensate for the
faults. The proposed control law is given as follows:

u =
e

eT G(x̂)e
[−ke||e||2 − eT F (x̂, t)

+eT y
(n)
d − eT ŴT Φ(x̂)] (43)

with adaptive law ˙̂
W = ΥΦ(x̂)ỹT − ρΥ(Ŵ − Wa). The

reconfigured observer is given by

˙̂x = A0x̂ + L(y − ŷ) + b{F (x̂, t) + G(x̂)u + Ξ1

+ ŴT Φ(x̂) +
1
2
ỹ + [1 +

2LG

λebσ
||ŴT Φ(x̂)||]LG

bσ
ỹ||ŴT Φ(x̂)||}

The resulting observation error equation is

˙̃x = Āx̃ + b{G(x)u − G(x̂)u + F (x, t) − F (x̂, t) + η(x, t)

−Ξ1 + B(t − T )ζ(x) − ŴT Φ(x̂)

−1
2
ỹ − [1 +

2LG

λebσ
||ŴT Φ(x̂)||]LG

bσ
ỹ||ŴT Φ(x̂)||

}

Taking a similar proof procedure as in V̇3, the derivative
of V = V3 + tr(W̃T Υ−1W̃ ) is

V̇ ≤ −λmin(Q1)||x̃||2
2

− λmin(Q2)||E||2
2

− (ρ − 2Φ̄2

λe
)||W̃ ||2F

+ρ||W ∗ − Wa||2F + (1 +
4
λe

)||ḡ||2 + 2η̄2

where we have used the fact that ||Φ(x̂)|| ≤ Φ̄ and the
relationship B(t− T )ζ(x) − ŴT Φ(x̂) = W̃T Φ(x̂) + ḡ with
ḡ = W ∗T [Φ(x)−Φ(x̂)]−Θ(t−T )W ∗T Φ(x)+B(t−T )ξ. We
can show that x̃ and E are UUB under the accommodation
control (43).

7. SIMULATION EXAMPLE

To illustrate the performance of the proposed control
scheme, we consider the following linear motor

q̈ = M−1[τ − V (q, q̇) − F (q̇) − G(q) − τd]

+D(t − T )ζ(q, q̇) (44)
where q is the position, M is the mass, τ is the torque,
V (q, q̇) denotes the Coriolis and centripetal force, F (q̇) and
G(q) denote the frictional and ripple forces respectively,
and τd includes other residual uncertainties and distur-
bances in the system.

The function V (q, q̇) is assumed to be Dq̇ with D = 0.05,
while the friction F (q̇) and G are assumed to be

F (q̇) = f1sgn(q̇) + f2q̇ + f3exp(−(q̇/q̇s)2)sgn(q̇) (45)

and G(q) = g1sin(w1q + φ1), respectively.

If a fault occurs due to a tangle of complex factors, the
tracking performance will be degraded significantly. In the
simulation, the fault is assumed to be a nonlinear variation
described by

ζ(q, q̇) = [1 − e−10(t−T )] × (q2q̇ + 10). (46)

The fault depends on the current position and velocity
of the mechanical system. The failure is assumed to
be triggered at t = 5s. Figure 1 shows the position
control when a fault modeled by (46) occurs without fault
accommodation scheme. It is observed that the tracking
error is increased significantly after the occurrence of
the fault. Note that from the figure 1 the error between
the state and the estimation has exceeded the threshold
bound. Now we consider a reconfigured controller after
the fault is detected. In this case, the fault is detected at
T = 5.0121 when the residual error is above the threshold
bound and the fault accommodation control is activated.
The NN learning model used in this simulation has its
parameters first fixed at Γ = I, η = 0.1. Figure 2 shows
the plot of the fault accommodation control with the
developed NN learning. It can be observed that the NN
learning can compensate provides the fault function after
detecting the system failure.

Fig. 1. Position control with fault occurrence

8. CONCLUSIONS

In this paper, the fault detection and accommodation
schemes have been proposed for a class of MIMO nonlinear
systems. Using an online approximation approach, we
have been able to relax the parametric fault requirements
of traditional adaptive control without considering the
dynamic uncertainty as part of the fault. Stability results
were obtained by considering two situations.
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