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Abstract: This paper introduces a new effective approach to study the stability of neutral
systems. By employing a special Lyapunov-Krasovskii functional form based on delay partition-
ing, delay-dependent stability criteria are established for the nominal and the uncertain case
(polytopic type) in terms of linear matrix inequalities (LMI). Numerical examples are employed
to illustrate that the delay-partitioning projection approach can be applied to estimate the
upper bounds for the delays for the system to maintain stability. Judging from these numerical
results, the stability criteria obtained are less conservative than those of existing methods.
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1. INTRODUCTION

Time delays are often attributed as the major sources of
instability in various engineering systems. Consequently, a
vast amount of effort has recently been devoted to deriving
stability criteria for delay systems. For many physical
examples in practice, their system models can be described
by functional differential equations of the neutral type,
in which the models depend not only on the state delay
but also on the state derivatives (Chen and Zheng [2007]
and Hu and Liu [2007]). A number of methods aiming at
reducing the conservatism of these stability criteria (that
is, less conservative upper bound of the delay for the sys-
tem to remain stable) have been proposed. One approach
is to take an appropriate and equivalent model trans-
formation for the original systems. Fridman and Shaked
[2003] summarized four main model transformations and
showed different sources for conservatism under differ-
ent model transformations. Under such transformations,
the conservatism is mainly due to the bounding of the
cross product terms which appear in the derivative of the
Lyapunov-Krasovskii functional. To reduce the number of
such terms and employ tighter bounds on them would
certainly lead to better results. Therefore, Park proposed
a new upper bound of a vector cross-product with cross-
as well as inner-products in Park [1999]. Moon et al. [2001]
provided another inequality by reducing the limitation
in Park [1999] so that certain matrix variables are no
longer required to satisfy a specific structure. Recently,
a free-weighting matrix method was proposed in Wu et al.
[2004b] and Xu et al. [2005] to investigate the delay-
dependent stability, in which the bounding techniques on
some cross product terms are not involved. This treatment
produces better results, which is often associated with an
increase in variables. Another approach is the construction
of new Lyapunov-Krasovskii functionals with a proper dis-
tribution of the time delay (see Kolmanovskii and Richard
? This work was supported by RGC HKU 7031/07P.

[1999]). Gu et al. [2003] introduced LMI stability condi-
tions via complete and discretized Lyapunov-Krasovskii
functional which leads to results close to analytical ones
in some examples. In addition, a Lyapunov-Krasovskii
functional augmented with the delayed state were used
by He et al. [2005] and Parlakçi [2007] to derive improved
the delay dependent stability criteria for neutral systems.

Robust stability of neutral systems with mixed delays and
time-varying structured uncertainties have been consid-
ered by He et al. [2004]. Based on a descriptor model
transformation and the decomposition of a discrete delay
term matrix, Han [2004] has addressed the problem of the
robust stability of neutral systems with nonlinear param-
eter perturbations. In this paper, the nominal system and
the uncertain system with polytopic-type uncertainties
will be considered for stability investigation. We provide
an improvement as well as a generalization of the results
in Lam et al. [2007] to the case with a constant delay.
Through the use of a new Lyapunov-Krasovskii functional
form based on the idea of ‘delay partitioning,’ the results
obtained have turned out to be less conservative than
existing methods.

The paper is organized as follows. In Section 2, we derive
a general stability result based on delay partitioning and
projection for neutral systems. The nominal and the poly-
topic uncertain cases are considered with different discrete
delays in the state and its derivative. A result is also
provided when these delays are equal. In Section 3, two
detailed numerical examples are used to illustrate that the
proposed approach improves existing methods and gives
better (less conservative) upper bounds on the delay for
stability than those reported earlier.

Notation: Throughout this paper, for real symmetric ma-
trices X and Y , the notation X ≥ Y (respectively, X > Y )
means that the matrix X − Y is positive semidefinite
(respectively, positive definite). 0 is a null matrix with an
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appropriate dimension. The superscript “T” represents the
transpose of the matrix. col{·} denotes a matrix column
with blocks given by the matrices in {·}. A block diagonal
matrix with diagonal blocks A1, A2, . . ., Ar will be denoted
by diag{A1, A2, . . . , Ar}. Matrices, if their dimensions are
not explicitly stated, are assumed to have compatible di-
mensions for algebraic operations. For a given real matrix
B, the orthogonal complement B⊥ (possibly non-unique),
if exists, is defined as the matrix with maximum column
rank that satisfies BB⊥ = 0 and B⊥T B⊥ > 0.

2. PROBLEM FORMULATION

Consider the following linear neutral system with constant
delays,

Σ : ẋ(t)− Cẋ(t− g) = Ax(t) + Adx(t− h)

x(t) = φ(t), t ∈ [−β, 0], β = max{g, h}
where x(t) ∈ Rn is the state, φ(t) is the initial function,
h > 0 and g > 0 are constant delays in the state and its
derivative, respectively (h and g will be referred to as the
retarded delay and neutral delay, respectively).

By employing a delay-partitioning approach, we aim at
extending the methodology used in Lam et al. [2007]
for retarded systems with two delay components via a
new form of Lyapunov-Krasovskii functionals to obtain
less conservative results. In order to estimate an upper
bound of the discrete delay for stability, we partition h
into several components, that is, h =

∑r
i=1 hi where

r is a positive integer. To facilitate development, define
σj =

∑j
i=1 hi with σ0 = 0 in the boundary expression

of the summation. Therefore, hi (i = 1, . . . , r) represent a
partition of the lumped time-invariant delay σr.The delay-
dependent stability conditions to be obtained are based on
the following lemmas.
Lemma 1. Let Y ∈ Rn×n and the bi-diagonal upper
triangular block matrix

Jk(Y ) ,




In −Y 0
. . . . . .

. . . −Y
0 In


 ∈ Rkn×kn

If Z = ( Jk(Y ) S ) ∈ Rkn×(kn+m) where S =




S1

...
Sk


 ∈

Rkn×m with Si ∈ Rn×m (i = 1, . . . , k), then

Z⊥ = col

{
−

k∑

i=1

Y i−1Si,−
k∑

i=2

Y i−2Si, . . . ,−Sk, Im

}
.

Proof. First note that when W is invertible, we have

( W S )⊥ =
(
−W−1S

Im

)
. The result given in the lemma

follows from the fact that

J−1
k (Y ) =




In Y · · · Y k−1

0
. . . . . .

...
...

. . . . . . Y
0 · · · 0 In




.

Lemma 2. (Finsler’s Lemma). Consider real matrices B
and M such that B has full row rank and M = MT .
Then the following statements are equivalent:
(1) There exists a scalar ` such that

`BT B −M > 0

(2) The following condition holds:

B⊥T MB⊥ < 0

To guarantee robustness of the results with respect to
small changes of delay, we assume throughout this paper
that the difference equation x(t) − Cx(t − g) = 0 is
asymptotically stable for all values of g or that system
matrix C is a Schur-Cohn stable matrix, that is, all the
eigenvalues of C are inside the unit circle.

3. MAIN RESULTS

In the sequel, we will establish general stability results
by the delay-partitioning projection approach for neutral
systems for the nominal system as well as the uncertain
(polytopic) system.

3.1 Nominal Systems

Theorem 3. Neutral system Σ is asymptotically stable
if there exist matrices P > 0, R > 0, X > 0, and(

Qi Mi

∗ Ni

)
> 0 (i = 1, . . . , r) satisfying

B⊥T




Ω1 + Ω2 Ω3 0
ΩT

3 Ω4 0
0 0 Ω5


 B⊥ < 0 (1)

where B⊥ ∈ R(3r+2)n×(2r+2)n is the orthogonal comple-
ment of B = ( Jr(In) S ) ,

S =




0 0 . . . 0 −In 0
...

...
...

. . .
−In 0 . . . 0 0 −In


 ∈ Rrn×(2r+2)n

and

Ω1 =




AT (P + M1)
+ (P + M1)A
+ Q1

0 . . . 0 M1Ad

+ PAd

∗ Q2 −Q1 . . . 0 0
...

...
. . .

...
...

∗ ∗ . . . Qr −Qr−1 0
∗ ∗ . . . ∗ −Qr




Ω2 = ( A 0 . . . 0 Ad )T (σrX + R + N1) ( A 0 . . . 0 Ad )

Ω3 =




0 . . . 0 0
AT (σrX + R
+ N1)C + PC
+ M1C

M2 −M1 . . . 0 0 0
...

. . .
...

...
...

0 . . . Mr −Mr−1 0 0

0 . . . 0 −Mr
AT

d (σrX + R
+ N1)C



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Ω4 =




N2 −N1 . . . 0 0 0
...

. . .
...

...
...

∗ . . . Nr −Nr−1 0
...

∗ . . . ∗ −Nr 0

∗ . . . ∗ ∗ CT (σrX + R
+ N1)C −R




Ω5 = diag
{−h−1

1 X, . . . ,−h−1
r X

}

Proof. Construct the Lyapunov-Krasovskii functional
V = V1 + V2 + V3 + V4 where

V1 = xT (t)Px(t)

V2 =

t∫

t−g

ẋT (s)Rẋ(s) ds

V3 =

0∫

−σr

t∫

t+θ

ẋT (s)Xẋ(s) dsdθ

V4 =
r∑

i=1

t−σi−1∫

t−σi

(
x(s)
ẋ(s)

)T (
Qi Mi

∗ Ni

)(
x(s)
ẋ(s)

)
ds

Now, consider the derivative of V along the solution of
system Σ with respect to t, we require:

V̇1 = 2xT (t)P (Cẋ(t− g) + Ax(t) + Adx(t− h))

= xT (PA + AT P )x(t) + 2xT (t)PCẋ(t− g)

+2xT (t)PAdx(t− σr) (2)

V̇2 = ẋT (t)Rẋ(t)− ẋT (t− g)Rẋ(t− g) (3)

V̇3 =

0∫

−σr

[
ẋT (t)Xẋ(t)− ẋT (t + θ)Xẋ(t + θ)

]
dθ

= σrẋ
T (t)Xẋ(t)−

t∫

t−σr

ẋT (s)Xẋ(s) ds

= σrẋ
T (t)Xẋ(t)−

r∑

i=1

t−σi−1∫

t−σi

ẋT (s)Xẋ(s) ds

≤ σrẋ
T (t)Xẋ(t)−

r∑

i=1

[
h−1

i




t−σi−1∫

t−σi

ẋ(s) ds




T

·X



t−σi−1∫

t−σ

ẋ(s) ds




]
(4)

and also

V̇4 =
(

x(t)
ẋ(t)

)T (
Q1 M1

∗ N1

)(
x(t)
ẋ(t)

)
−

r−1∑

j=1

((
x(t− σj)
ẋ(t− σj)

)T

·
(

Qj −Qj+1 Mj −Mj+1

∗ Nj −Nj+1

)(
x(t− σj)
ẋ(t− σj)

))

−
(

x(t− σr)
ẋ(t− σr)

)T (
Qr Mr

∗ Nr

)(
x(t− σr)
ẋ(t− σr)

)
(5)

Note that, in the above derivations, Jensen’s integral
inequality has been used. Combining (2)-(5), it follows that

V̇ ≤ ξT (t)




Ω1 + Ω2 Ω3 0
ΩT

3 Ω4 0
0 0 Ω5


 ξ(t)

where

ζ(t) = col{ x(t− σ1) . . . x(t− σr) }
ξ(t) = col{ x(t) ζ(t) ζ̇(t) ẋ(t− g)

t∫

t−σ1

ẋ(s) ds . . .

t−σr−1∫

t−σr

ẋ(s) ds}

and Ωi (i = 1, . . . , 5) are given in (1). By the Newton-
Leibniz formula, we have

x(t)− x(t− σ1)−
t∫

t−σ1

ẋ(s) ds = 0

...

x(t− σr−1)− x(t− σr)−
t−σr−1∫

t−σr

ẋ(s) ds = 0

That is,
Bξ(t) = ( Jr(In) S ) ξ(t) = 0

The full column rank matrix representation of the right
orthogonal complement of B ∈ Rrn×(3r+2)n is denoted by
B⊥, and a computation method is offered in Lemma 1. By
Lemma 2, V̇ is negative as long as

ξT (t)


BT B −




Ω1 + Ω2 Ω3 0
ΩT

3 Ω4 0
0 0 Ω5





 ξ(t) > 0 (6)

holds, which is equivalent to inequality (1). This implies
that system Σ is asymptotically stable. Hence, the proof
completes.
Remark 4. The augmented Lyapunov functional intro-
duced in V4 is applicable for neutral systems with C 6= 0.
For the retarded type (that is, C = 0), the augmented
state vector (xT (s), ẋT (s)) contains redundant information
such that Mi and Ni (i = 1, . . . , r) may be omitted. By
removing R, Mi, and Ni from V2 and V4, respectively,
together with the removal of ζ̇(t) and ẋ(t − g) from ξ(t),
a delay-dependent stability criterion corresponding to re-
tarded systems will result.

3.2 Uncertain Systems

In what follows, polytopic-type uncertainties are consid-
ered in system Σ, that is, the system matrices satisfy the
real convex polytopic constraint

( A Ad C ) ∈ Ω, Ω ,
{

( A(α) Ad(α) C(α) )

=
p∑

j=1

αj ( Aj Adj Cj ),
p∑

j=1

αj = 1, αj ≥ 0
} (7)
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where Aj , Adj and Cj (j = 1, . . . , p) are constant matrices
with appropriate dimensions and αj (j = 1, . . . , p) are
time-invariant uncertainties.

For system Σ with the polytopic uncertain domain defined
in (7), we consider an alternative equivalent version of The-
orem 3 for the subsequent use with parameter-dependent
Lyapunov functional. The idea is to have a LMI stability
characterization with no product terms involving the Lya-
punov matrices and the system matrices. To achieve this,
we choose

ξ̄(t) = col{ x(t) ζ(t) ẋ(t) ζ̇(t) ẋ(t− g)
t∫

t−σ1

ẋ(s) ds . . .

t−σr−1∫

t−σr

ẋ(s) ds}

and insert the following identity

2
(
xT (t)W1 + ẋT (t)W2

)

· (ẋ(t)− Cẋ(t− g)−Ax(t)−Adx(t− σr)) = 0 (8)

into the derivative of the Lyapunov functional V defined in
the proof of Theorem 3, the slack parameter-independent
matrices W1 and W2. Therefore, a corresponding condition
of inequality (6) is given by

ξ̄T (t)


B̄T B̄ −




Ω̄1 Ω̄2 0
Ω̄T

2 Ω̄3 0
0 0 Ω5





 ξ̄(t) > 0 (9)

where

B̄ =
(
Jr(In) S̄

) ∈ Rrn×(3r+3)n

S̄ =




0 0 . . . 0 −In 0
...

...
...

. . .
−In 0 . . . 0 0 −In


 ∈ Rrn×(2r+3)n

Ω̄1 =




Q1 −W1A− A
T

W
T
1 0 . . . 0 −W1Ad

∗ Q2 −Q1 . . . 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.

∗ ∗ . . . Qr −Qr−1 0

∗ ∗ . . . ∗ −Qr




Ω̄2 =




P − A
T

W
T
2

+W1 + M1
0 . . . 0 0 −W1C

0 M2 −M1 . . . 0 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

0 0 . . . Mr −Mr−1 0
.
.
.

−A
T
d W

T
2 0 . . . ∗ −Mr 0




Ω̄3 =




R + N1 + W2

+W
T
2 + (σr) X

0 . . . 0 0 −W2C

∗ N2 −N1 . . . 0 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

∗ ∗ . . . Nr −Nr−1 0
.
.
.

∗ ∗ . . . ∗ −Nr 0

∗ ∗ . . . ∗ ∗ −R




Under such a treatment, the stability result to be derived
contains no product term of the Lyapunov matrices and
the system matrices which is suitable for determining
the stability of neutral system with polytopic-type un-
certainty. An LMI-based delay-dependent robust stability

condition for uncertain neutral system Σ is given by the
following theorem.
Theorem 5. Neutral system Σ with polytopic-type uncer-
tainties (7) is robustly stable if there exist matrices Pj > 0,

Rj > 0, Xj > 0,
(

Qij Mij

∗ Nij

)
> 0 (i = 1, . . . , r) and W1,

W2 such that

B̄⊥T




Ω̄1j Ω̄2j 0
Ω̄T

2j Ω̄3j 0
0 0 Ω5j


 B̄⊥ < 0 (10)

holds for j = 1, . . . , p, where B̄⊥ ∈ R(3r+3)n×(2r+3)n is the
right orthogonal complement of B̄ =

(
Jr(In) S̄

)
in (9).

Ω̄1j =




Q1j −W1Aj

− A
T
j W

T
1

0 . . . 0 −W1Adj

∗ Q2j −Q1j . . . 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.

∗ ∗ . . . Qrj −Q(r−1)j 0

∗ ∗ . . . ∗ −Qrj




Ω̄2j =




Pj + W1

− A
T
j W

T
2

+ M1j

0 . . . 0 0 −W1Cj

0 M2j −M1j . . . 0 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

0 0 . . . Mrj −M(r−1)j 0
.
.
.

−A
T
djW

T
2 0 . . . ∗ −Mrj 0




Ω̄3j =




W2 + W
T
2

+ Rj + N1j

+ (σr) Xj

0 . . . 0 0 −W2Cj

∗ N2j −N1j . . . 0 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

∗ ∗ . . . Nrj −N(r−1)j 0
.
.
.

∗ ∗ . . . ∗ −Nrj 0

−Rj




Ω5j = diag
{
−h

−1
1 Xj , . . . ,−h

−1
r Xj

}

Proof. Construct a Lyapunov-Krasovskii functional can-
didate V̄ = V̄1 + V̄2 + V̄3 + V̄4 with

V̄1 =
p∑

j=1

xT (t)αjPjx(t)

V̄2 =
p∑

j=1

t∫

t−g

ẋT (s)αjRj ẋ(s) ds

V̄3 =
p∑

j=1

0∫

−σr

t∫

t+θ

ẋT (s)αjXẋ(s) dsdθ

V̄4 =
p∑

j=1

r∑

j=1

t−σj−1∫

t−σj

(
x(s)
ẋ(s)

)T (
Qi Mi

∗ Ni

)(
x(s)
ẋ(s)

)
ds

Proceeding as in the proof of Theorem 1, a sufficient
condition for ˙̄V < 0 along the solutions of uncertain
neutral system Σ is given by

ξ̄T (t)


B̄T B̄ −




Ω̄1j Ω̄2j 0
Ω̄T

2j Ω̄3j 0
0 0 Ω5j





 ξ̄(t) > 0 (11)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12351



with the same free weighting matrices W1, W2 in (8).
For each inequality in (11), the corresponding orthogonal
complement matrix B̄⊥ does not change due to the same
Newton-Leibniz formula. The proof can then be estab-
lished by following a similar line of arguments as that in
Theorem 3.

It should be pointed out that the results in Theorems 3
and 5 are neutral-delay-independent and retarded-delay-
dependent. When the effect of the neutral delay is involved
in the analysis, a less conservative stability criterion can
be obtained. Instead, we study the stability of uncertain
neutral system Σ with the identical neutral delay and
retarded delay(that is, g = h). By observing the structure
of the Lyapunov-Krasovskii functional used in the proof
of Theorem 5, it is obvious that the stability condition
for uncertain systems can be easily obtained by employing
V̄ = V̄1 + V̄3 + V̄4 and omitting the term ẋ(t−g) from ξ̄(t).
Corollary 6. When g = h, neutral system Σ with
polytopic-type uncertainties (7) is robustly stable if there

exist matrices Pj > 0, Xj > 0,
(

Qij Mij

∗ Nij

)
> 0, (i =

1, . . . , r), and W1, W2 such that

B⊥T




Ω̄1j Ω̄2j 0
Ω̄T

2j Ω̄3j 0
0 0 Ω5j


 B⊥ < 0 (12)

holds for j = 1, . . . , p, where B⊥ ∈ R(3r+2)n×(2r+2)n is the
orthogonal complement of B = ( Jr(In) S ) with the same
matrix S in Theorem 3,

Ω̄2j =




Pj − A
T
j W

T
2

+ W1 + M1j
0 . . . 0 −W1Cj

0 M2j −M1j . . . 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 . . . Mrj −M(r−1)j 0

−A
T
djW

T
2 0 . . . ∗ −Mrj




Ω̄3j =




(σr) Xj + N1j

+W2 + W
T
2

0 . . . 0 −W1Cj

∗ N2j −N1j . . . 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.

∗ ∗ . . . Nrj −N(r−1)j 0

∗ ∗ . . . ∗ −Nrj




and Ω̄1j , Ω5j are defined as in Theorem 5.
Remark 7. For retarded delay components with equal
width (h1 = h2 = · · · = hr), their influence on the
maximal delay bound for stability is identical and indis-
tinguishable from the effects due to the retarded delay.
Consequently, by maximizing the delay bound of each
component, we can compute an overall stability bound
on the effective time delay. For the retarded delay h in
system Σ partitioned into r identical delay components,
that is h = rh1, nominal system Σ is asymptotically
stable if there exist matrices P > 0, R > 0, X > 0,

and
(

Qi Mi

∗ Ni

)
> 0, (i = 1, . . . , r) satisfying inequality (1)

where all hi (i = 1, . . . , r) are replaced by h1. Similarly, the
robust stability condition of system Σ with polytopic-type
uncertainties can also be obtained by the above partition-
ing procedure from Theorem 5.

4. NUMERICAL EXAMPLES

In this section, two examples are provided to demonstrate
that stability conditions proposed in this paper are less
conservative.

Example 1 Consider the linear neutral system Σ with the

following polytopic system matrices

A =
(

0 −0.12 + 12ρ
1 −0.465− ρ

)
,

Ad =
(−0.1 −0.35

0 0.3

)
, C =

(
c 0
0 c

)
,

where |ρ| ≤ 0.035. If we let ρm = 0.035 and set

A1 =
(

0 −0.12 + 12ρm

1 −0.465− ρm

)
, A2 =

(
0 −0.12− 12ρm

1 −0.465 + ρm

)
,

Ad1 = Ad2 = Ad =
(−0.1 −0.35

0 0.3

)
,

system Σ has the polytopic-type uncertainties described
by (7). According to the method mentioned in Theorem 5
and Corollary 6 with r = 10, the upper bounds on the
time delay obtained to the system are listed in Table 1 for
different two cases c = 0 and c = 0.05. For the retarded
system (C = 0), the upper bounds of delay given in
Fridman and Shaked [2003] and Suplin et al. [2006] are
0.782 and 0.863, respectively. When c = 0.05, a maximum
value of h in Suplin et al. [2006] with g = h is found to be
0.462 which is less than those given by Theorem 5 (0.4637)
and Corollary 6 (0.6176) of this paper.

Table 1. Comparison on upper bound of delay

c 0 0.05

Fridman and Shaked [2003] 0.782 /

Suplin et al. [2006] 0.863 0.462

Theorem 5 0.8682 0.4637

Corollary 6 0.8682 0.6176

Example 2 Consider the uncertain neutral system Σ with

A =
(−2.0 + δ 0

0 −0.9 + δ

)
,

Ad =
(−1.0 + δ 0

−1.0 −1.0 + δ

)
, C =

(
c 0
0 c

)

where |δ| ≤ a. The retarded delay h is considered to be
partitioned into a number of identical delay components
based on the idea in remark 7. By maximizing the width of
the delay components, the overall stability bound on delay
is the sum of each part. Two cases are taken into account
in this example.

Case 1: a ≡ 0. Let us consider the nominal form of the
neutral system in Table 2 which presents the allowable
maximum values of the time delay h for different values
of the parameter c. It is clearly seen from Table 2 that
the stability criteria proposed in this paper yield much
improved bounds than those in other papers for nominal
systems.

Case 2: a 6= 0. Choosing c = 0.1, the delay bounds
obtained for different value of a, in the sense of the
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Table 2. Comparison on upper bound of delay with a = 0 and g = h

c 0.1 0.3 0.5 0.7 0.9

Fridman and Shaked [2003] 3.49 2.06 1.14 0.54 0.13

Xu et al. [2005] 3.58 2.30 1.46 0.86 0.32

Wu et al. [2004a] 4.35 4.13 3.67 2.87 1.41

He et al. [2005] 4.42 4.17 3.69 2.87 1.41

Parlakçi [2007] 4.5747 4.2910 3.7575 2.8835 1.4142

Theorem 3 (r = 5) 5.9670 5.4897 4.6939 3.4823 1.5467

Theorem 3 (r = 10) 6.0196 5.5341 4.7275 3.5023 1.5510

Table 3. Comparison on upper bound of delay with c = 0.1 for different a

Theorem 5 Corollary 6

a Han [2002] Wu et al. [2004a] Parlakçi [2007] r = 5 r = 10 r = 5 r = 10

0.05 3.61 3.64 3.7934 4.5286 4.5662 5.8419 5.8938

0.10 2.90 3.06 3.1690 4.4128 4.4498 5.7246 5.7760

0.15 2.19 2.60 2.6745 4.3041 4.3406 5.6145 5.6652

0.20 1.48 2.24 2.2817 4.2021 4.2380 5.5107 5.5609

0.25 0.77 1.94 1.9666 4.1059 4.1411 5.4128 5.4624

feasibility of the corresponding criteria, are summarized
in Tables 3 along with those given in Han [2002], Wu
et al. [2004a] and Parlakçi [2007]. Tables 3 shows that the
proposed methodology of this paper gives better results
for uncertain neutral systems.

5. CONCLUSION

Stability analysis based on a new form of Lyapunov-
Krasovskii functional has been provided for linear neutral
systems. By employing more partitioning components in
the retarded delay, improved stability bounds for the re-
tarded delay have been obtained. Based on the numerical
examples, these stability criteria for neutral systems are
less conservative those those in the literature. Further-
more, the delay-partitioning projection approach proposed
in this paper can be extended to solve many problems, such
as exponential stability analysis, H2/H∞ control, guar-
anteed cost control and so on, for (descriptor)/(neutral)
delay systems.
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