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Abstract: In this paper, we study a general multiple-level quantized innovation Kalman
filter (MLQ-KF) for estimation of linear dynamic stochastic systems. First, given a multi-level
quantization of innovation, we derive the corresponding MMSE filter in terms of the given
quantization levels under the assumption that the innovation is approximately Gaussian. By
optimizing the filter with respect to the quantization levels, we obtain an optimal quantization
scheme and the corresponding optimal MLQ-KF. The optimal filter is given in terms of a simple
Riccati difference equation as in the standard Kalman filter. For the case of 1-bit transmission,
our proposed optimal filter gives a better performance than the sign-of-innovation filter (SOI-
KF) Ribeiro et al. [2006]. The convergence of the MLQ-KF to the standard Kalman filter is
established.

1. INTRODUCTION

Quantization has been well studied in digital signal pro-
cessing and control where a signal with continuous val-
ues is quantized due to a finite word-length of micro-
processor Williamson [1991]. In most of existing works,
uniform quantization is adopted and the corresponding
quantization error is either neglected or considered as an
additive white noise when discussing performance prob-
lems in control and filtering.

Recently, the low cost and low power consumption wire-
less sensor networks(WSNs) have attracted significant in-
terests due to their potentials in military surveillance,
environmental monitoring, health care, home and other
commercial applications Akyildiz et al. [2002b]. Important
constraints in WSNs are their low-quality sensors, limited
energy and bandwidth Akyildiz et al. [2002a,b]. Many
researchers are currently engaged in developing energy-
efficient algorithms for network coverage Cardei and Wu
[2004], Krasnopeev et al. [2005], decentralized detection
Xiao and Luo [2005] and estimation Wong and Brockett
[1997], Reibeiro and Giannakis [2006a,b], Luo [2005] by
utilizing the quantized messages from sensors. To minimize
the communication cost, only limited information can be
transmitted through networks, harsh quantization is usu-
ally needed. In this situation, better and more efficient
quantization schemes than the uniform quantization are
to be sought and the effects of the quantization error are
to be evaluated.

In the aforementioned references, quantization is carried
out for sensor’s observations. A larger quantization noise
will be generated if the observed values are large, which
results in larger information loss and leads to a lower
estimation accuracy. An interesting distributed estimation

approach based on the sign of innovation (SOI) has been
developed for dynamic stochastic systems in Ribeiro et al.
[2006] where only transmission of innovation of a single bit
is required. However, a small innovation is quantized to 1
or -1, which may give rise to a large estimation error.

In this paper, we consider a general multiple-level quan-
tized innovation Kalman filter for linear discrete-time
stochastic systems. By extending the SOI-KF, we shall
develop a very general multi-level quantized innovation
filtering scheme. For a given set of quantization levels, we
first derive an MMSE filter under the assumption that the
innovation is approximately Gaussian. The filter is further
optimized with respect to the quantization levels to give
an optimal MLQ-KF. The solution to the optimal filter is
given in terms of a simple Riccati recursion as in the stan-
dard Kalman filter. Our result shows that the quantized
innovation filter of 2-bit gives a filtering performance close
to the standard Kalman filter. For 1-bit transmission, our
proposed filter gives a better performance than the sign-
of-innovation filter in Ribeiro et al. [2006]. Convergence
of the MLQ-KF to the standard Kalman filter when the
number of quantization levels goes to ∞ is established.
Simulations demonstrate that the proposed filter gives a
better performance than the SOI-KF when the innovation
is quantized to 1 bit and a close to the standard Kalman
filter performance when the innovation is quantized into 2
bits.

The rest of paper is organized as follows. Problem formula-
tion is delineated in Section II. State estimation based on
the MLQ-KF is considered for a scalar measurement model
in Section III. In this section, we first consider the case of
quantized innovation of 1-bit, then the result is extended
to the general multi-level quantization case. Performance
analysis on the MLQ-KF is given in Section IV. Simulation
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studies are carried out in Section V. Some conclusions are
drawn in Section VI.

2. PROBLEM FORMULATION

Consider the discrete-time stochastic system:

x(n) = A(n)x(n − 1) + w(n) (1)

y(n) = hT (n)x(n) + v(n) (2)

where x(n) ∈ R
p is the state, y(n) ∈ R is the observation,

and w(n) ∈ R
p and v(n) ∈ R are Gaussian white

noises with zero means and variances W(n) and σ2
v(n),

respectively. A(n) ∈ R
p×p and h(n) ∈ R

n are respectively
bounded time-varying matrix and vector. Note that we
shall consider the scalar measurement case first which will
then be extended to the case of vector measurement.

We consider the sensor network configuration where the
estimation centre has sufficient power to broadcast its
predicted output and the corresponding prediction error
covariance to its sensors. The sensors have limited power
and hence their transmission of information should be
limited. Here, we assume that the energy cost for receiving
a message is much lower than that of transmitting the
message. Also, in the case of large sensor number, due to
the limited bandwidth, only limited number of bits can
be received by the estimation centre. We note that it is
more efficient to transmit innovation than the raw sensor
measurement. That is, for a given estimation accuracy, a
much lower number of bits is required to be transmitted
for the innovation than the measurement. However, given
the bit number (number of quantization levels), what is
the optimal quantization that will give rise to the optimal
estimation and how to compute the optimal estimate? In
the following, we shall propose an optimal quantization
scheme and the corresponding quantized innovation based
optimal filtering.

A sensor makes an observation y(n) and computes the
innovation ǫ(n) := y(n) − ŷ(n|n − 1), where ŷ(n|n −
1) = hT (n)x̂(n|n − 1) together with the variance of the
innovation σ2

ǫ (n) = hT (n)P(n|n − 1)h(n) + σ2
v(n) are

received by the sensor from the estimator centre with
x̂(n|n − 1), the one-step predictor of the state. In Ribeiro
et al. [2006], the so-called sign-of-innovation Kalman fil-
ter (SOI-KF) has been studied where the innovation is
quantized to 1 if it is positive and -1 if it is negative.
The scheme is simple but obviously not optimal. For
the case of small innovation, there is simply no need to
transmit the innovation since the prediction is reasonably
accurate in this case and quantizing the innovation to 1
or -1 will introduce a greater error to the estimation. In
this paper, we shall study a general multi-bit (multi-level)
quantization filtering. When specialized to the 1-bit case,
it will provide a better quantization and filtering than
the SOI-KF. Denote the normalized innovation as ǭ(n),
i.e. ǭ(n) = ǫ(n)/σǫ(n). We shall quantize the normalized
innovation into (2N+1) levels, 0 and ±zj , j = 1, 2, · · · , N .
Let z̄j = σǫzj > 0. We consider a symmetric quantizer for
ǫ given by

b(n) :=



















































zN , z̄N < ǫ(n)
zN−1, z̄N−1 < ǫ(n) ≤ z̄N

...
...

z1, z̄1 < ǫ(n) ≤ z̄2

0, −z̄1 < ǫ(n) ≤ z̄1

−z1, −z̄2 < ǫ(n) ≤ −z̄1

...
...

−zN , ǫ(n) ≤ −z̄N

(3)

When b(n) = 0, it will not be transmitted to the esti-
mation center. Hence, for the same 1-bit transmission,
we can have 3 levels unlike that in Ribeiro et al. [2006]
where the innovation is quantized to 1 as long as it is
positive and -1 if it is negative. Intuitively, our approach
should perform better since one more quantization level
is added. The question is how to design the quantization
levels zj that will give rise to the optimal estimation.
Note that since quantized innovation of zero will not be
transmitted, the number of bits required for the (2N +1)-
level quantization is nb ≥ [log2(2N)], where [·] is the
integer round-up function. It should be noted that due
to the presence of quantizer, the innovation may not re-
main Gaussian. However, as in Ribeiro et al. [2006], it is
assumed that the innovation is approximately Gaussian.
Note that with more quantization levels it can be argued
that the innovation resulted from our quantization should
be closer to a Guassian distribution than that of Ribeiro
et al. [2006]. We further assume that there exists no error
in transmitting the quantized message b(n). Our goal in
this paper is to find and analyze the MMSE (minimum
mean square estimator) with the innovation quantized into
2N + 1 levels. Denote b0:n = {b(0), b(1), · · · , b(n)}. Since
the MMSE is obtained by the conditional expectation,
therefore, if x̂(n|n) denotes the MMSE of x(n) given b0:n,
we have

x̂(n|n) := E[x(n)|b0:n] =

∫

Rp

x(n)p[x(n)|b0:n]dx(n) (4)

Note that given the optimal estimates of the state and
output at k− 1, the one-step ahead predictors of the state
and observation are given by Ribeiro et al. [2006]

x̂(n|n − 1) := E[x(n)|b0:n−1] = A(n)x̂(n − 1|n − 1) (5)

ŷ(n|n − 1) := E[y(n)|b0:n−1] = hT (n)x̂(n|n − 1) (6)

We define the error covariance matrices of the state filter
and predictor as:

P(n|n) := E[(x̂(n|n) − x(n))(x̂(n|n) − x(n))T ] (7)

P(n|n− 1) := E[(x̂(n|n− 1)− x(n))(x̂(n|n− 1)− x(n))T ]
(8)

It is well known that

P(n|n − 1) = A(n)P(n − 1|n − 1)AT (n) + W(n) (9)

3. KALMAN FILTERING WITH MULTIPLE-LEVEL
QUANTIZED INNOVATION

In this section, we shall first consider the case when N = 1.
We derive the filtering error covariance matrix in terms of
the quantization level z1 and by minimizing the covariance
with respect to z1 we obtain the optimal 1-bit quantization
scheme and the corresponding optimal Kalman filter (1-
LQ-KF). We then extend this result to the general cases
of N > 1.
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3.1 Kalman filter with quantized innovation of 1-bit

For N = 1, the quantized innovation is reduced to

b(n) :=

{

z1, z̄1 < ǫ(n)
0, −z̄1 < ǫ(n) ≤ z̄1

−z1, ǫ(k) ≤ −z̄1

(10)

When z1 → 0+, it reduces to the case of SOI-KF Ribeiro
et al. [2006].

Theorem 1. For the stochastic dynamic system described
by (1) and (2), if p[x(n)|b0:n−1] = N [x(n); x̂(n|n −
1),P(n|n−1)], the Kalman filter with quantized innovation
of single bit can be given by

x̂(n|n) = x̂(n|n − 1) + f1(n)

× P(n|n − 1)h(n)
√

hT (n)P(n|n − 1)h(n) + σ2
v(n)

(11)

and the corresponding filtering error covariance is

P(n|n) = P(n|n − 1) − 2φ2(n)

αz1

×P(n|n − 1)h(n)hT (n)P(n|n − 1)

hT (n)P(n|n − 1)h(n) + σ2
v(n)

(12)

where x̂(n|n − 1) and P(n|n − 1) are respectively given

by (5) and (9), φ(x) := 1√
2π

exp(−x2

2 ), αz1 := Q(z1) =
∫ ∞

z1
φ(x)dx, and f1(n) := φ(z1)

αz1
Sgn(b(n)) with

Sgn(x) =

{

1, x > 0
0, x = 0
−1, x < 0

Obviously, when z1 → 0+, then (11) and (12) are identical
to the recursive formula in Ribeiro et al. [2006].
Proof: First, due to the symmetry of the problem, it
is sufficient to prove the case b(n) = z1. To establish
(11), recall that the conditional mean can be obtained by
averaging x(n) over the posterior pdf, p[x(n)|b0:n]:

x̂(n|n) := E[x(n)|b0:n] =

∫

Rn

x(n)p[x(n)|b0:n]dx(n)

(13)
By applying the Bayes’ rule, we have

p[x(n)|b0:n] =
p[b(n)|x(n),b0:n−1]p[x(n)|b0:n−1]

p[b(n)|b0:n−1]
(14)

where

p[b(n) = 1|b0:n−1] = Pr{ǫ(n) > z̄1|b0:n−1} = αz1
(15)

and

p[b(n) = 1|x(n),b0:n−1] = Pr{ǫ(n) > z̄1|x(n)}
= Pr{v(n) > hT (n)(x̂(n|n − 1) − x(n)) + z̄1|x(n)}

= Q

[

hT (n)(x̂(n|n − 1) − x(n)) + z̄1

σv(n)

]

(16)

Then, letting x̃(n) = x(n)− x̂(n|n−1) and substituting it
to (13) with the consideration of (14), (15) and (16) lead
to

x̂(n|n) = x̂(n|n − 1) +
1

αz1

∫

Rp

x̃(n)Q

[

−hT (n)x̃(n) − z̄1

σv(n)

]

×exp[− 1
2 x̃

T (n)P−1(n|n − 1)x̃(n)]

(2π)n/2det1/2[P(n|n − 1)]
dx̃(n) (17)

Similar to Ribeiro et al. [2006], we have proved that the
integral part of (17) can be reduced to

l(z̄1, n) = φ(z1)
P(n|n − 1)h(n)

√

hT (n)P(n|n − 1)h(n) + σ2
v(n)

(18)

which yields

x̂(n|n) = x̂(n|n − 1) +
l(z̄1, n)

αz1

Sgn(b(n)) (19)

for b(n) = z1 as assumed. That is, (11) follows. Substitut-
ing f1(n) into (19) and subtracting x(n) on the both sides
of (19), then the filtering error variance can be computed
as

P(n|n) = P(n|n − 1) + k(n)kT (n)E[f2
1 (n)]

−2k(n)E[f1(n)xT (n)] (20)

where

k(n) =
P(n|n − 1)h(n)

√

hT (n)P(n|n − 1)h(n) + σ2
v(n)

(21)

E[f1(n)xT (n)] = E{E[f1(n)xT (n)|f1(n)]}

= αz1

φ(z1)

αz1

E
[

xT (n)|b(n) = z1

]

−αz1

φ(z1)

αz1

E
[

xT (n)|b(n) = −z1

]

= 2
φ2(z1)

αz1

kT (n) (22)

E[f2
1 (n)] = 2αz1

φ2(z1)

α2
z1

= 2
φ2(z1)

αz1

(23)

Substituting the above into (20), we have (12).

3.2 Kalman filter with multiple-level quantized innovation

When transmission of multi-bit quantized innovation is
allowed in the sensor network, it will result in a finer quan-
tization of innovation and hence a better state estimation.
In this subsection, we shall extend our study of the single-
bit case to the general multi-bit case. We consider the
quantized innovation in (3).

Theorem 2. Consider the dynamical system (1)-(2) and
the multi-level quantization of innovation in (3), then the
recursive formulae for computing the state estimator can
be given by

x̂(n|n) = x̂(n|n − 1) +
fN (n)P(n|n − 1)h(n)

√

hT (n)P(n|n − 1)h(n) + σ2
v(n)
(24)

P(n|n) = P(n|n − 1) − 2
N

∑

k=1

[φ(zk) − φ(zk+1)]
2

αzk
− αzk+1

×P(n|n − 1)h(n)hT (n)P(n|n − 1)

hT (n)P(n|n − 1)h(n) + σ2
v(n)

(25)

where

fN (n) =
N

∑

k=0

Sgn(b(n))I{k}(b(n))
φ(zk) − φ(zk+1)

αzk
− αzk+1

(26)

with IA(·) the indicator function given by
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I{k}(b(n)) =

{

1, |b(n)| = zk

0, otherwise

Clearly, when N = 1, the above filter is simplified to that
in Theorem 1.
Proof: For the same reason as in Theorem 1, we only need
to prove the case when b(n) is positive. Since

p[b(n) = zk|b0:n−1] = Pr{z̄k < ǫ(n) ≤ z̄k+1|b0:n−1}
= αzk

− αzk+1
(27)

and

p[b(n) = zk|x(n),b0:n−1] = Pr{z̄k < ǫ(n) ≤ z̄k+1|x(n)}

= Q

[

−hT (n)x̃(n) − z̄k

σv(n)

]

− Q

[

−hT (n)x̃(n) − z̄k+1

σv(n)

]

(28)

Substituting (27) and (28) into (13) yields

x̂(n|n) = x̂(n|n − 1) +
l(z̄k, n) − l(z̄k+1, n)

αzk
− αzk+1

(29)

By taking into consideration (26) and (29), (24) follows.
Next, apply the theorem of total probability as in (21) to
obtain

E[fN (n)xT (n)] = E
{

E[fN (n)xT (n)|fN (n)]
}

= 2
N

∑

k=1

[φ(zk) − φ(zk+1)]
2

αzk
− αzk+1

kT (n) (30)

and

E[f2
N (n)] = 2

N
∑

k=1

[φ(zk) − φ(zk+1)]
2

αzk
− αzk+1

(31)

Finally, in view of (20), (30), and (31), we obtain (25).

Remark 1. Theorem 2 gives the MMSE filter based on the
given quantized innovation of (3). It is clear that the filter
performance relies on the choice of the quantization levels
zj , j = 1, 2, · · · , N . The optimal quantizer and filter can
be obtained by optimization, which will be discussed in
the next section.

4. OPTIMAL FILTERING AND PERFORMANCE
ANALYSIS

The mean-squared errors (MSE) of x̂(n|n) and x̂(n|n− 1)
are given by minimizing the tr[P(n|n)] and tr[P(n|n− 1)]
among all possible estimators x̂(n|n)and x̂(n|n − 1).

Define

F (z1, · · · , zN ) = 2
N

∑

k=1

[φ(zk) − φ(zk+1)]
2

αzk
− αzk+1

then the optimal filter can be obtained by maximizing
F (z1, · · · , zN ) under the constraint 0 < z1 < · · · < zN .
Calling the function,

[x, y] = fmincon(fun, x0, A, b, Aeq, beq, lb, ub)

in the Optimization Toolbox of Matlab, we can approxi-
mately obtain the optimal quantization levels for a given
N . For N = 1, if we set z1 → 0+, φ(z1) → 1√

2π
and

αz1
→ 1

2 . In this situation, the filter of Theorem 1 is
reduced to that of Ribeiro et al. [2006]. However, by
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Fig. 1. Optimal F (z1, z2, · · · , zN ) versus N ,SOI-KF
Ribeiro et al. [2006] is treated as N=0 for the special
case of MLQ-KF

maximizing F (z1) the optimal level is z∗1 = 0.612, which
leads to F (z1) = 0.8098. Apparently, it gives a much im-
proved filter than the SOI-KF in Ribeiro et al. [2006]. The
optimal filter associated with the optimal 1-bit quantized
innovation is given in the theorem below.

Theorem 3. Consider the system (1)-(2) and the 1-bit
innovation quantizer (10). The optimal filter is given by

x̂(n|n) = x̂(n|n − 1) +

1.2240P(n|n − 1)h(n)b(n)
√

hT (n)P(n|n − 1)h(n) + σ2
v(n)

(32)

and the corresponding filtering error covariance is

P(n|n) = P(n|n − 1) −
0.8098P(n|n − 1)h(n)hT (n)P(n|n − 1)

hT (n)P(n|n − 1)h(n) + σ2
v(n)

.

(33)

For N = 2, the optimization of F (z1, z2) with respect
to z1 and z2 leads to z∗1 = 0.3823 and z∗2 = 1.2437,
which gives F (z∗1 , z∗2) = 0.9201. Surprisingly, we can
closely approximate the standard Kalman Filter by only
quantizing the innovation into 2 bits. Fig 1 shows the
relationship between N and F (z∗1 , · · · , z∗N ).

In the following, we show that the limiting case of the filter
associated with the multi-level quantization of innovation
converges the clairvoyant Kalman filter.

Theorem 4. Let △ = supk∈N△k, where △k = |zk − zk+1|,
and zk, k ∈ N satisfy that

(1) z1 → 0+

(2) △k ≤ △ → 0

(3) S(N) =
N
∑

k=1

△k → ∞ as N → ∞.

Then, for ǭ(n) belonging to the interval (zk, zk+1]

fN (n) =
φ(zk) − φ(zk+1)

αzk
− αzk+1

→ zk+1 (34)

and
∞
∑

k=1

[φ(zk) − φ(zk+1)]
2

αzk
− αzk+1

→ 1

2
(35)

Proof: For △ → 0, △zk → 0 as well. Hence
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lim
zk→zk+1

φ(zk) − φ(zk+1)

αzk
− αzk+1

= lim
△zk→0

φ(zk+1 −△zk) − φ(zk+1)
∫ zk+1

zk+1−△zk
φ(t)dt

= lim
△zk→0

φ
′

(zk+1 −△zk)

φ(zk+1 −△zk)

= zk+1 (36)

S : =
∞
∑

k=1

[φ(zk) − φ(zk+1)]
2

αzk
− αzk+1

=
1√
2π

∞
∑

k=1

[e(−
z2

k
2 ) − e(−

z2
k+1
2 )]2

∫ zk+1

zk
e(− t2

2 )dt

=
1√
2π

∞
∑

k=1

[e(−
z2

k
2 ) − e[− (zk+△zk)2

2 ]]2

e−
(zk+θk△zk)2

2 △zk

=
1√
2π

∞
∑

k=1

e−
z2

k
2

[1 − e−(
(△zk)2

2 −zk△zk)]2

△zke−
(θk△zk)2

2 −θkzk△zk

(37)

where 0 ≤ θk ≤ 1. Using the Taylor expansion for the
exponential function in (37), we have S := S0 + S1

S1 =
1√
2π

∞
∑

k=1

z2
ke−

z2
k
2 △zk

(△ → 0)−−−−−→
1√
2π

∫ ∞

0

t2e−t2/2dt = 1/2 (38)

and there exist nonnegative integers 0 ≤ i, j, u, v ≤ n < ∞
and |ci,j,v,u| < ∞ such that

S0 =
1√
2π

∑

i,j,u,v

∞
∑

k=1

[ci,j,v,ue(−
z2

k
2 )(△zk)2+izj

kθu
k×

o((△zk)v)] < △
∑

i,j,u,v

ci,j,v,u
1√
2π

∞
∑

k=1

zj
ke(−

z2
k
2 )△zk

:= C△ → 0 (as △ → 0)
(39)

where C is a finite constant because for △ → 0,

1√
2π

∞
∑

k=1

zj
ke−

z2
k
2 △zk → 1√

2π

∫ ∞

0

tje−t2/2dt < E[Xj ] < ∞

for standard Gaussian random variable x and ∀j ∈ N. This
completes the proof.

Remark 2. Conditions (2) and (3) of Theorem 4 can be
simultaneously satisfied. For example, the power series
∑∞

k=1
1
k diverges to ∞. Consequently, for sufficiently large

N ∈ N, nk := 1
N+k ≤ 1

N+1 → 0 and
∑∞

k=1 nk → ∞. As

zk → zk+1, then ǭ(n) = ǫ(n)
σǫ(n) → zk+1. It follows from (34),

(35), (24), and (25) that the filter becomes

x̂(n|n) → x̂(n|n − 1) +
ǫ(n)P(n|n − 1)h(n)

hT (n)P(n|n − 1)h(n) + σ2
v(n)

(40)

P(n|n) → P(n|n − 1) − P(n|n − 1)h(n)hT (n)P(n|n − 1)

hT (n)P(n|n − 1)h(n) + σ2
v(n)

(41)
which is the standard Kalman Filter.
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Fig. 2. Comparison of position and velocity tracking per-
formance between the 1-LQ-KF and SOI-KF.
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Fig. 3. Comparison between filtering error variances of
SOI-KF and 1-LQ-KF obtained by Monte Carlo sim-
ulations based on 500 samples.

5. SIMULATION

Consider a simple tracking system

x(n + 1) =

[

1 τ
0 1

]

x(n) +

[

τ2/2
τ

]

w(n) (42)

y(n) = [1, 0]x(n) + v(n) (43)

where τ is the sampling period. The state x(n) =
[s(n), ṡ(n)]T , where s(n) and ṡ(n) are the position and
velocity of the target at time τn, respectively. y(n) is the
measurement signal, v(n) is the measurement noise with
zero and variance σ2

v and is independent of the Gaussian
noise w(n) which is of zero mean and variance σ2

w. Our aim
is to solve the optimal multi-level quantization Kalman fil-
ter (MLQ-KF) and compare it with the standard Kalman
filter (OKF) Anderson and Moore [1979], and SOI-KF of
Ribeiro et al. [2006].

In the simulation, we set the sampling period τ = 0.1s and
σ2

w = 1, σ2
v = 0.81 and take the initial value x(0) = [0 0]T

and P0 = 0.01I2. The superiority of our proposed 1-bit
quantized innovation Kalman filter (1-LQ-KF) over the
SOI-KF Ribeiro et al. [2006] is showed in Fig 2 and Fig 3
while Fig 4 and Fig 5 illustrate that 2-bit MLQ-KF (2LQ-
KF) is sufficient to approximate the standard Kalman
filter. Fig 6 demonstrates that the estimated filtering error
variances obtained by the Monte Carlo method converge to
the theoretic variances computed by the Riccati recursions.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1424



0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

Time Step

E
s
ti
m

a
to

r 
o
f 

P
o
s
it
io

n

 

 

KF

2LQ−KF

Ture Value

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

Time Step

E
s
ti
m

a
to

r 
o
f 

V
e
lo

c
it
y

 

 
KF

2LQ−KF

Ture Value

Fig. 4. Comparison of position and velocity tracking per-
formance between the 2LQ-KF and standard Kalman
filter.
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Fig. 5. Comparison of the filtering error variances of the
2LQ-KF and the standard Kalman filter obtained by
Monte Carlo simulations based on 500 samples.
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Fig. 6. Computed filtering error variance by the Riccati
difference equation and the filtering error variance
obtained by Monte Carlo simulations based on 500
samples.

6. CONCLUSIONS

Extending previously proposed sign of innovation Kalman
filter, we have developed a very general multi-level quan-
tized innovation filter. By assuming that the innovation
is approximately Gaussian, we have derived an optimal
multi-level quantization scheme and the corresponding
optimal filter. The solution to the optimal filter is given
in terms of a simple Reccati recursion as in the standard
Kalman filter. Our result shows that the quantized inno-

vation filter of 2-bit gives a filtering performance close to
the standard Kalman filter. For 1-bit transmission, Our
proposed filter gives a better performance than the sign-
of-innovation filter in Ribeiro et al. [2006]. Performance
analysis of the multi-level quantized innovation filter has
been carried out. It has been shown that the quantized
innovation filter converges to the standard Kalman filter
when the level of quantization goes to ∞.
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