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Abstract: In the literature on filter design, the system whose state has to be estimated is
usually assumed known. However, in most practical situations, this assumption does not hold,
and a two-step procedure is adopted: 1) a model is identified from a set of noise-corrupted data;
2) on the basis of the identified model, a Kalman filter is designed. In this paper, the idea of
directly identifying the filter from data is investigated. In previous works by the authors, it has
been shown that the direct identification of the filter may be more convenient than the two-step
design. In this paper, an approach for the direct design of optimal filters is proposed, where
optimality refers to the minimization of a suitable worst-case estimation error. It is also shown
that the Kalman filter is a particular case of the proposed approach.

Keywords: Filter identification; optimality; worst-case estimation; Set Membership
identification.

1. INTRODUCTION

Consider the following discrete-time LTI system:

xt+1 = Axt + Buũt + Bλλt

ỹt = Cyxt + Dyuũt + Dyλλt

vt = Cvxt + Dvuũt
(1)

where x is the state of the system, ũ is a known input, λ
is an unknown noise, ỹ and v are outputs. All the signals
are vector-valued except v: vt ∈ R. The tilde indicates the
variables which are measured.

The aim of filtering is to obtain a (possibly optimal in some
sense) estimate v̂t of vt using the measurements ũk, ỹk for
k ≤ t.

Within the statistical setting, a huge literature exists on
minimum variance filter design, assuming that the system
(1) is known (see e.g. Gelb (1974); Maybeck (1979)).
However, in most practical situations, the system (1) is not
known. Then, a two-step procedure is usually adopted:
1) a model of system (1) is identified from the available
data ũt, ỹt, ṽt, t ∈ [0, T − 1] (see e.g. Ljung (1999));
2) on the basis of the identified model, a filter is designed
which, using as input (ũt, ỹt), gives an estimate of vt for
t ≥ T (see e.g. Gelb (1974)).
Note that except for cases where Cv and Dvu are actually
known, measurements of vt have to be performed.

In Milanese et al. (2006) a new approach has been pro-
posed. This approach is based on the direct identification
from the available data ũt, ỹt, ṽt, t ∈ [0, T − 1], of a filter
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which, using as inputs (ũt, ỹt), gives an estimate of vt for
t ≥ T . The identified filter is called direct filter or direct
virtual sensor and can be used when the actual sensor is
no longer available.

The advantages of the direct approach have been shown
in Milanese et al. (2006) within a statistical framework.
In that paper, it has been proven that even in the most
favorable situations, e.g. no modeling errors and the min-
imum variance filter is actually computable, the two-step
procedure based on Kalman filter design perform no bet-
ter than the direct approach. More importantly, in the
presence of modeling errors, the directly identified filter,
although not absolutely optimal, is the minimum variance
estimator among the selected approximating filter class. A
similar feature is not ensured by the two-step filter, whose
performance deterioration caused by modeling errors may
be significantly larger.

In the present paper, the direct approach is analyzed
within a Set Membership (SM) framework. The noises are
assumed unknown but bounded in ℓp-norm. A method for
the direct design of optimal filters is proposed, where opti-
mality refers to the minimization of a suitable worst-case
estimation error, measured by an ℓr-norm. The proposed
approach is quite general. Indeed, the statistical setting
is a particular case of the SM framework considered here:
for p = r = 2 and for white noises, the direct approach
provides the Kalman filter, which is the optimal estimator
in the statistical setting.

A simulation example is presented to show the effective-
ness of the proposed approach.

2. OPTIMAL FILTERS FOR KNOWN SYSTEM

In this section, we introduce an approach to the filtering
problem for the case that the system (1) is known. A wide
literature exists on this problem, giving solutions for both
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the case of statistical noise, see e.g. Gelb (1974); Maybeck
(1979), and the case of unknown but bounded noise, see
e.g. Nagpal and Khargonekar (1991); Shaked and Theodor
(1992). The approach presented here is basic to the direct
filter design method presented in the next section, where
the system (1) is assumed unknown.

Let us suppose that:

- The matrices A, Bu, Bλ, Cy, Dyu, Dyλ, Cv, Dvu are
known.

- (A,Cy) is observable.

- The noise λ is not known.

- Measurements ũt, ỹt are available for any time t.

- The output v is not measured.

Let us recall the definition of p-norm:

‖λ‖p

.
=

[
τ−1∑

t=0

nλ∑

i=1

∣∣λt
i

∣∣p
] 1

p

, p < ∞

‖λ‖∞
.
= max

t=0,..,τ−1
max

i=1,..,nλ

∣∣λt
i

∣∣
(2)

and of pow-norm:

‖λ‖pow

.
=

√√√√1

τ

τ−1∑

t=0

nλ∑

i=1

(λt
i)

2
(3)

Note that, for τ → ∞, these norms become the ℓp-norm
and the ℓpow-semi-norm, respectively.

The aim is to find a filter of the form

v̂t = fw̃t, t = 0, 1, ..., τ − 1 (4)

w̃t .
=

[
w̃t; w̃t−1; ...; w̃t−m+1

]
∈ R

mnw×1

w̃t = [ỹt; ũt] ∈ R
nw×1

f
.
= [f0, f1, ..., fm−1] ∈ R

1×mnw , fk ∈ R
1×nw

with “small” estimation error ‖v − v̂‖r. Here r ∈ {1, 2, ...,
∞, pow}, v = [v0; v1; ...; vτ−1], ṽ = [ṽ0; ṽ1; ...; ṽτ−1]. The
estimation time horizon τ can be either finite or infinite.
The notation [..., ..., ...] is used to indicate a row vector,
the notation [...; ...; ...] to indicate a column vector.

Since the measurements are noise-corrupted no finite
bound on the estimation error can be derived if no as-
sumptions are made on the noise λ. We assume that this
noise is bounded as follows.

Assumption on λ: ‖λ‖p ≤ δ, p ∈ {1, 2, ...,∞, pow}

The estimation error of the filter (4) is given by ‖v − v̂‖r =
‖v − f ∗ w̃‖r, where ∗ indicates the convolution product.
We are interested in a filter with uniform performances
with respect to the sequence w̃, we thus consider the error
sup‖w̃‖

p
=1

‖v − f ∗ w̃‖r. This error is not known, since v

depends on λ, which is not known. However, the tightest
bound on it is given by the following worst-case error.

Definition 1. Worst-case estimation error of a filter f :

EF (f)
.
= sup

‖λ‖
p
≤δ

sup
‖w̃‖

p
=1

‖v − f ∗ w̃‖r

Looking for filters that minimize this error, leads to the
following optimality concepts. Let F a set of asymptoti-
cally stable filters.

Definition 2. A filter f is optimal within the filter set F if:

EF (f)
.
= inf

f∈F
EF (f)

We look for optimal filter within the following set of
systems:

K(m,L, ρ)
.
= {g = [g0, g1, ..., gm−1], gt ∈ R

1×nw :∥∥gt
∥∥
∞

≤ Lρt, t = 0, 1, ...,m − 1}

where ‖gt‖∞
.
= max

i=1,..,nw

|gt
i |. This is the set of all LTI sys-

tems with impulse response of length m and of exponential
decay L, ρ. If m < ∞, K(m,L, ρ) is a set Finite Impulse
Response (FIR) systems, otherwise it is a set of Infinite
Impulse Response (IIR) systems.

In Milanese et al. (2006) it is shown that, if (A,Cy) is
observable, then the system (1) can be represented as

gyy ∗ ỹ + gyu ∗ ũ = gyλ ∗ λ
v = gvy ∗ ỹ + gvu ∗ ũ + gvλ ∗ λ

(5)

where gyy, gyu, gyλ, gvy, gvu, gvλ ∈ K(nx, L, ρ), nx
.
=

dim(xt), and L, ρ < ∞. In Milanese et al. (2006) it is
shown how gyy, ..., gvλ can be computed from (1).

Equations (5) show that the relations between the vari-
ables of system (1) can be represented by means of “short”
(of orders less or equal than the order of system (1)) FIR
systems. This representation is used to derive an optimal
filter. Consider the following optimization problem:

ho
.
= arg min

h∈K(mh,Lh,ρh)
‖gvλ ∗ (1 − h ∗ gyλ)‖

r,p
(6)

where ‖·‖r,p is the induced norm

‖g‖r,p

.
= sup

‖u‖
p
=1

‖g ∗ u‖r (7)

Note that the optimization problem (6) is convex for
any norm ‖·‖r,p. Indeed, a norm is a convex function of
its argument. The argument is a linear function of h.
Therefore ‖gvλ ∗ (1 − h ∗ gyλ)‖

r,p
is a convex function of

h (see e.g. Boyd and Vandenberghe (2004)). Moreover,
the constraint h ∈ K(mh, Lh, ρh) can be written as a
set of linear inequalities. It follows that the optimization
problem (6) is convex.

Let us define the following filter:

vt
o = fow̃

t, t = 0, 1, ... (8)

w̃t ∈ R
mnw×1, fo ∈ R

1×mnw , fk
o

.
= [fk

oy, fk
ou] ∈ R

1×nw

foy
.
= gvy + gvλ ∗ ho ∗ gyy, fou

.
= gvu + gvλ ∗ ho ∗ gyu

Theorem 1. The filter fo is optimal within the set
K(m,L, ρ), where m = mh + 2nx and for some L, ρ < ∞.
The worst case estimation error of fo is given by:

EF (fo) = δ ‖go‖r,p (9)

where go
.
= gvλ ∗ (1 − ho ∗ gyλ).

Proof. First, let us prove that EF (fo) = δ ‖go‖r,p. From

(5) we have
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v − fo ∗ w̃ = gvy ∗ ỹ + gvu ∗ ũ + gvλ ∗ λ
−gvy ∗ ỹ − gvλ ∗ ho ∗ gyy ∗ ỹ − gvu ∗ ũ − gvλ ∗ ho ∗ gyu ∗ ũ

= gvλ ∗ λ − gvλ ∗ ho ∗ (gyy ∗ ỹ + gyu ∗ ũ)
= gvλ ∗ λ − gvλ ∗ ho ∗ gyλ ∗ λ = go ∗ λ

Then ‖v − fo ∗ w̃‖r = ‖go ∗ λ‖r. It follows that

EF (fo) = sup
‖λ‖

p
≤δ

‖go ∗ λ‖r = δ ‖go‖r,p

Consider a generic filter f . Hence v−f ∗ w̃ = (ĝ − f)∗ w̃+
gvλ ∗ λ, where ĝ = [gvy, gvu]. The worst-case estimation
error of f is

EF (f) = sup
‖λ‖

p
≤δ

sup
‖w̃‖

p
=1

‖(ĝ − f) ∗ w̃ + gvλ ∗ λ‖r

Taking a w̃ such that (ĝ − f) ∗ w̃ = 0, we have EF (f)
≥ sup‖λ‖

p
≤δ ‖gvλ ∗ λ‖r = sup‖λ‖

p
≤δ ‖gvλ ∗ (1 − 0 ∗ gyλ)‖

r
.

From (6) we have

EF (f) ≥ sup
‖λ‖

p
≤δ

‖gvλ ∗ (1 − 0 ∗ gyλ) ∗ λ‖
r

≥ sup
‖λ‖

p
≤δ

‖gvλ ∗ (1 − ho ∗ gyλ) ∗ λ‖
r

= δ ‖go‖r,p = EF (fo)

where the last inequality follows from (6). This holds for
any filter of the form (4), therefore fo is an optimal filter.
Moreover, it is easy to see from (8) that m = mh + 2nx.

Remarks

1. The constraints on the exponential decay L, ρ are
parameters of the filter design. They allow to: 1) guarantee
the asymptotic stability of the optimal filter fo (see the
next remark); 2) choose the speed of response of the
optimal filter fo.

2. The asymptotic stability of optimal filter fo is guaran-
teed if 1) m < ∞ or 2) m = ∞, L < ∞, ρ < 1. Indeed,
gvy, gvλ, gyy, gvu, gyu are all FIR, and thus stable systems.
It follows that: in the case 1), fo is also a FIR, and thus
a stable system; in the case 2), since ρ < 1, ho is a stable
system, which implies that fo is a stable system too.

3. If gyλ is invertible (as a system), then ho is an approx-

imation of g−1
yλ (here g−1

yλ indicates the inverse of system

gyλ). As m → ∞, we have that ho → g−1
yλ , EF (fo) → 0,

vt
o → vt.

4. The filter fo is not polarized: If there is no noise, i.e.
Bλ = 0, Dyλ = 0, then gyλ = 0, gvλ = 0, EF (fo) = 0, vo

= fo ∗ w̃ = gvy ∗ ỹ + gvu ∗ ũ = v.

5. Reduced order filters can be obtained by suitably
approximating the filter fo. This approximation can be
performed in the frequency domain, using e.g. H2 or H∞

approximation techniques, or in the time domain, using a
set of noise-free input-output data generated by fo.

6. The present approach, based on the unknown but
bounded noise framework, is quite general. Indeed, con-
sider the case of infinite-length signals and systems, and
choosing ρ < 1:

a. (r, p) = (2, 2): fo is an H∞ filter, see e.g. (Dahleh and
Diaz-Bobillo (1995)).

b. (r, p) = (∞, 2): fo is an H2 filter, see e.g. (Dahleh and
Diaz-Bobillo (1995)).

c. (r, p) = (∞, 2) and λ white: fo is a minimum variance
filter, see e.g. (Dahleh and Diaz-Bobillo (1995)). It follows
that, for m large enough, fo is the steady-state Kalman
filter of system (1).

3. DIRECT DESIGN OF OPTIMAL FILTERS FROM
DATA

Let us suppose that:

- The matrices A, Bu, Bλ, Cy, Dyu, Dyλ, Cv, Dvu are not
known and thus the optimal filter fo in (8) is not known.

- (A,Cy) is observable.

- The noise λ is not known.

- Measurements ũt, ỹt are available for any time t.

- Noise-corrupted measurements ṽt of vt are available for
t ∈ [0, T − 1].

The problem is to estimate the variable vt, for t ≥ T .

In this section, we consider an approach based on the direct
identification from the available data w̃t, ṽt, t ∈ [0, T − 1],
of a filter which, using as inputs w̃t, gives an estimate of
vt, for t ≥ T .

Consider that a set of noise-corrupted measurements ṽt

and w̃t, t ∈ [0, T − 1] is available. Then:

ṽt = fow̃
t + dt, t = 0, 1, .., T − 1 (10)

where dt = ṽt−vt
o. Note that the noise term dt is composed

of two contributions: dt = ṽt − vt + vt − vt
o = ξt + et

o,
where ξt = ṽt − vt is the noise on the measure of vt, and
et
o = vt−vt

o is the estimation error of the optimal filter fo.

The aim is to identify a filter of the form:

v̂t = f̂w̃t, t ≥ T (11)

with “small” estimation error ‖v − v̂‖r, where r ∈ {1, 2,
..., ∞, pow}, v = [vT ; vT+1 ; ...; vT+τ−1], ṽ = [ṽT ; ṽT+1;
...; ṽT+τ−1].

In order to identify such a filter, we look for an optimal
approximation of the filter fo. Then, we show that the
optimal approximation provides an optimal estimate.

Let us first consider the problem of identifying a system

f̂ which approximates fo with “small” identification error∥∥∥fo − f̂
∥∥∥

q
, where ‖·‖q is a q-norm (2).

Whatever identification method is used, no finite bound
on this error can be guaranteed, unless some assumptions
are made on fo and on noise d. In this paper, we follow
the Set Membership (SM) approach, see e.g. Milanese and
Vicino (1991), Milanese et al. (1996), Partington (1997),
Chen and Gu (2000), and take the following assumptions.

Assumptions on fo: fo ∈ K(m,L, ρ)

Assumption on d: ‖d‖p ≤ ε, p ∈ {2,∞, pow}

A key role in the SM framework is played by the Feasible
Systems Set, often called “unfalsified systems set”, i.e. the
set of all systems consistent with prior information and
measured data.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

464



Definition 3. The Feasible Systems Set FSST is

FSST .
=

{
f ∈ K(m,L, ρ) : ‖ṽ − f ∗ w̃‖p ≤ ε

}

The Feasible Systems Set FSST summarizes all the infor-
mation (measured data and prior information on fo and
noise d) that is available up to time T − 1. An important
property in order to derive optimal estimates is that, if
prior assumptions are true, then fo ∈ FSST .

The identification error of a direct filter of the form (11)

is given by
∥∥∥fo − f̂

∥∥∥
q
. This error is not known, since fo is

not known. It is only known that fo ∈ FSST . Therefore,

the tightest bound on
∥∥∥fo − f̂

∥∥∥
q

is given by the following

worst-case error.

Definition 4. Worst-case identification error of a direct

filter f̂ :

Eq(f̂)
.
= sup

f∈FSST

∥∥∥f − f̂
∥∥∥

q

Looking for direct filters that minimize the worst-case
error, leads to the following optimality concept.

Definition 5. A direct filter f̂ is optimal in identification if

Eq (̂f) = inf
f̂

Eq(f̂) = rI

The quantity rI , called radius of information, gives the
minimal identification error that can be guaranteed by any
estimate based on the available information up to time
T − 1.

Let us define the direct filter:

v̂t
c = fcw̃

t, t ≥ T (12)

fc
.
=

1

2

(
f + f

)

where the components fk

i
and f

k

i of f and f are obtained
by means of the following convex optimization problems:

fk

i
= min fk

i , f
k

i = max f i
i

subject to:

‖ṽ − f ∗ w̃‖p ≤ ε∣∣fk
i

∣∣ ≤ Lρk, k = 0, ...,m − 1, i = 1, ..., nw

Theorem 2. The direct filter fc is optimal in identification,
for any q-norm ‖·‖q. The worst-case identification error of
fc is given by:

Eq(fc) =
1

2

∥∥f − f
∥∥

q
= rI

Proof. See Milanese and Tempo (1985).

According to this result, the direct filter fc is the best
approximation of the filter fo. Moreover, fo is the filter
which, using the knowledge of the system (1), provides
the best estimate of the variable v (within the filter class
K(m, L, ρ)). We now show that fc is the filter which,
without using the knowledge of the system (1), provides
the best estimate of the variable v.

Let us consider the estimation error sup
‖w̃‖

p
=1

∥∥∥v − f̂ ∗ w̃
∥∥∥

r
,

which can be written as sup
‖w̃‖

p
=1

∥∥∥eo + fo ∗ w̃ − f̂ ∗ w̃
∥∥∥

r
,

where eo = v− fow̃. This error is not known, since fo and
eo are not known. It is only known that fo ∈ FSST and
that eo is bounded as ‖eo‖r ≤ δo

.
= δ ‖go‖r,p, see (9). Here,

we assume to know this bound.

Assumption on eo: ‖eo‖r ≤ δo, r ∈ {1, 2, ...,∞, pow}

The tightest bound on sup‖w̃‖
p
=1

∥∥∥eo + f ∗ w̃ − f̂ ∗ w̃
∥∥∥

r
is

thus given by the following worst-case error.

Definition 6. Worst-case estimation error of a direct filter

f̂ :

EDr(f̂)
.
= sup

f∈FSST

sup
‖e‖

r
≤δo

sup
‖w̃‖

p
=1

∥∥∥e + f ∗ w̃ − f̂ ∗ w̃
∥∥∥

r

Looking for estimates that minimize the worst-case error,
leads to the following optimality concept.

Definition 7. A direct filter f̂ is optimal in estimation if

EDr (̂f) = inf
f̂

EDr(f̂)

Theorem 3. The direct filter fc is optimal in estimation.
The worst-case estimation error of fc is given by:

EDr(fc) = δo + rI

Proof. Consider that:

sup
‖e‖

r
≤δo

sup
‖w̃‖

p
=1

∥∥∥e + f ∗ w̃ − f̂ ∗ w̃
∥∥∥

r

= sup
‖e‖

r
≤δo

sup
‖w̃‖

p
=1

(
‖e‖r +

∥∥∥
(
f − f̂

)
∗ w̃

∥∥∥
r

)

= sup
‖e‖

r
≤δo

‖e‖r +sup
‖w̃‖

p
=1

∥∥∥
(
f−f̂

)
∗ w̃

∥∥∥
r
= δo +

∥∥∥f−f̂
∥∥∥

r,p

where ‖·‖r,p is the induced norm (7). Then:

EDr(f̂) = sup
f∈FSST

(
δo +

∥∥∥f − f̂
∥∥∥

r,p

)

= δo + sup
f∈FSST

∥∥∥f − f̂
∥∥∥

r,p

Since fc is a central estimate of fo, it follows that

sup
f∈FSST

∣∣fw̃t − fcw̃
t
∣∣ ≤ sup

f∈FSST

∣∣∣fw̃t − f̂w̃t
∣∣∣ , ∀w̃t, f̂

This implies that

sup
f∈FSST

‖(f − fc) ∗ w̃‖r ≤ sup
f∈FSST

∥∥∥
(
f − f̂

)
∗ w̃

∥∥∥
r
, ∀w̃, f̂

which implies that

sup
f∈FSST

‖f − fc‖r,p ≤ sup
f∈FSST

∥∥∥f − f̂
∥∥∥

r,p
,∀f̂

Therefore, we have

inf
f̂

EDr(f̂) = δo + inf
f̂

sup
f∈FSST

∥∥∥f − f̂
∥∥∥

r,p

= δo + sup
f∈FSST

‖f − fc‖r,p = EDr(fc) = δo + rI
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Remarks

1. The filter fc is not polarized: If d = 0, then, fc = fo,
v̂c = vo. If also λ = 0, then v̂c = vo = v.

2. Let fls be the least-squares estimate of fo. If p = 2 and
fls ∈ K(m,L, ρ) then fc = fls, see e.g. Kacewicz et al.
(1986). On the other side, if d is white and u is quasi-
stationary, then fls converges to fo as T → ∞, Ljung
(1999). It follows that, under the conditions of Remark 6.c
in Section 2, fc tends to the steady-state Kalman filter of
system (1) as T → ∞.

3. Reduced order filters can be obtained by suitably
approximating the filter fc. This approximation can be
performed in the frequency domain, using e.g. H2 or H∞

approximation techniques, or in the time domain, using a
set of noise-free input-output data generated by fc.

4. EXAMPLE

An example of filter design for an automotive problem is
presented. The vertical dynamics of a vehicle with con-
trolled suspensions can be approximated as a fourth order
linear system, known as a quarter-car model, formed by
the sprung(chassis) mass Mc and the unsprung (wheel)
mass Mw, connected by the suspension spring Kc and
damper βc to one another, and to the ground by the tire
stiffness Kw. The usual instrumentation for this system
is an accelerometer measuring the chassis vertical accel-
eration and the objective is to recover the differential
speed, between chassis and wheel, for control purposes.
The system is described by the following set of equations:

Mcẍc = ũ − Kc (xc − xw) − βc(ẋc − ẋw)
Mwẍw = −ũ + Kc (xc − xw) − Kw (xw − xr)

+βc(ẋc − ẋw)
(13)

where ẍc, ẋc and xc are the chassis vertical acceleration,
speed and position respectively, ẍw, ẋw and xw are the
wheel vertical acceleration, speed and position respec-
tively, xr is the road profile, and ũ is the active suspension
force.

A set of 7000 data has been generated from the quarter-car
model, with Mc = 432.8kg, Mw = 40kg, Kc = 17200N/m,
Kw = 200000N/m, βc = 3000Ns/m, recorded with a
sample time of Ts = 1/512s. The system is driven by
a “On-Off Sky-Hook” control law as ũ and a Pavé road
profile as xr (see e.g. Canale et al. (2006)).

The data-set has been partitioned in two sets:

Dm = {(ỹt, ũt, ṽt), t = 0, . . . , T − 1}

Ds = {(ỹt, ũt), t = T, . . . , N − 1}

with T = 3500 and N = 7000.

In this example, the problem of estimating the variable
vt = ẋc(Tst) −ẋw(Tst), t = T, ..., N − 1 using the
measurements ỹt = ẍt

c(Tst) +λt, ũt = ũ(Tst), t = 0, ...,
N − 1, ṽt = vt +ξt, t = 0, ..., T − 1, is considered. The
noises λ and ξ are i.i.d. Gaussian noises of zero mean and
standard deviation 0.038 and 0.01 respectively. Note that
the maximum amplitudes of ỹ and ṽ are about 4 and 0.8
respectively, and the signal to noise ratios are 57 and 50
respectively.
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Fig. 1. Automotive example: Error signal radio on set Ds

for virtual sensors of different orders.

As standard procedure, LTI models of the form [ŷt, v̂t]† =

M̂(ut, λt, ξt) have been identified on the set Dm using the
prediction error method and state space model structures
of different orders nK = 2, . . . , 5. For each model M̂ , a
Kalman filter v̂t

K = K̂(ỹt, ũt) has been designed.

In the direct design methodology, the optimal filter v̂t
c =

fcw̃
t has been identified on the set Dm assuming fo ∈

K(148, 0.175, 0.965) and ‖d‖2 ≤ 0.08. Moreover, reduced
order filters have been obtained by approximation of fc in
the time domain.

All the filters have been applied to the set Ds. The error-
signal ratio obtained on the set Ds by the filters are
reported in Figure 1. The horizontal black line corresponds
to the performance of the filter fc, the black columns to the
performance of the reduced order direct filters (DVS), the
white columns to the performance of the Kalman filters.
It can be noted that all the direct filters offer satisfactory
performances even in the presence of undermodeling. The
two-step Kalman filters turn out to be very sensitive to
unmodelled dynamics: when the order of the model set
used in the first step is lower than 4 (the order of the true
system) the resulting estimators have a poor performance.

In figure 2 the estimates provided by the filter fc and the
reduced order filter of order 2 are compared to the true
signal v on a portion of the set Ds. It can be observed
that the three lines are nearly overlapping. In figure 3
the estimates provided by the Kalman filters of orders 4
and 2 are compared to the true signal v on a portion of
the set Ds. It can be observed that, while the estimate
of the 4-th order Kalman filter nearly overlaps the true
signal, the estimate of the 2-nd order Kalman filter is quite
inaccurate.

5. CONCLUSIONS

A Set Membership filtering approach for linear systems has
been proposed. A method for the design of optimal filters
from data has been presented and it has been proved that
the optimal filter minimizes the worst-case error for any ℓr

norm used to measure the estimation error. An example of
filter design for an automotive problem has been presented
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Fig. 2. Direct filters estimation. Bold line (black): true
signal. Dashed line (blue): estimate provided by fc.
Thin line (red): estimate provided by the direct filter
of order 2.
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Fig. 3. Kalman filters estimation. Bold line (black): true
signal. Dashed line (blue): estimate provided by the
filter of order 4. Thin line (red): estimate provided by
the filter of order 2.

to demonstrate the capabilities of the proposed approach
and its advantages over two-step approaches. Possible
extensions of the presented results are the use of of LTI
filters to nonlinear systems and the application of the
proposed framework to the design of optimal nonlinear
filters for nonlinear systems.
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