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Abstract: This article is devoted to estimating the speed of convergence towards consensus for
a general class of discrete-time multi-agent systems. In the systems considered here, both the
topology of the interconnection graph and the weight of the arcs are allowed to vary as a function
of time. Under the hypothesis that some spanning tree structure is preserved along time, and
that some nonzero minimal weight of the information transfer along this tree is guaranteed, an
estimate of the contraction rate is given. The latter is expressed explicitly as the spectral radius
of some matrix depending upon the tree depth and the lower bounds on the weights.
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1. INTRODUCTION

Appeared in the areas of communication networks, control
theory and parallel computation, the analytical study of
ways for reaching consensus in a population of agents
is a problem of broad interest in many fields of science
and technology; see Angeli et al. (2006b) for references.
Of particular interest is the question of estimating how
quickly consensus is reached on the basis of few qualitative
(mainly topological) information as well as basic quanti-
tative information on the network (mainly the strength of
reciprocal influences).

Originally, this problem was considered in the context of
stationary networks. For Markov chains that are homo-
geneous (that is stationary in the vocabulary of dynami-
cal systems), it amounts to quantify the speed at which
steady-state probability distribution is achieved, and is
therefore directly related to finding an a priori estimate
to the second largest eigenvalue of a stochastic matrix.
Classical works on this subject are due to Cheeger (1969);
Diaconis et al. (1991); see also Rosenthal (1995) for a
survey on improved bounds. The latter concern reversible
Markov chains, for example when the transition matrix is
symmetric, see e.g. Fill (1991) for the non-reversible case.

Among the classical contributions which instead deal with
time-varying interactions we refer to the work of Cohn
(1989), where asymptotic convergence is proved, but ne-
glecting the issue of relating topology and guaranteed
convergence rates. Tsitsiklis et al. also provided impor-
tant qualitative contributions to this subject, see Tsitsiklis
(1984, 1986); Bertsekas et al. (1989), as well as Moreau
(2005). See also Angeli et al. (2006a) for further nonlin-
ear results. In particular, the role of connectivity of the

communication graph in the convergence of consensus and
spanning trees has been recognised and finely analysed
Moreau (2005); Cao et al. (2005); Olshevsky et al. (2006).

More recently, important contributions in characterizing
convergence to consensus in a time-varying set-up were
proven by several authors, see for instance Bertsekas et al.
(1989); Moreau (2005).

In a previous paper Angeli et al. (2006b), several criteria
were provided to estimate quantitatively the contraction
rate of a set of agents towards consensus, in a discrete
time framework. The attempt there consisted in following
the spread of the information over the agent population,
along one or more spanning-trees. Ensuring a lower bound
to the matrix entries of the agents already attained by the
information flow along the spanning-tree, rather than the
nonzero contributions as classically, permitted to obtain
tighter estimates with weaker assumptions. Distinguish-
ing between different sub-populations, of agents already
touched by spanning-tree and agents not yet attained, and
using lower bounds on the influence of the former ones, one
is able to establish rather precise convergence estimates.

As a matter of fact, rapid consensus can be obtained in
two quite different ways — either by dense and isotropic
communications (based, say, on a complete graph), or by
very unsymmetric and sparse relations (with a star-shaped
graph with a leading root). In the first case many spanning
trees cover the graph, while in the second configuration a
unique one does the job.

The present article is a continuation of Angeli et al.
(2006b). Emphasis is put on propagation of a unique
spanning tree and on the resulting consequences in terms
of convergence speed. It is demonstrated that in the partic-
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ular case where such a spanning tree structure is guaran-
teed to exist at any time, ensuring minimal weight to the
transmission of information along the tree (from the root
to the leafs) indeed enforces some minimal convergence
rate, whose expression is particularly simple. A worst-case
estimate is provided, expressed as the spectral radius of
certain matrix whose size equals the depth of the tree and
whose coefficients depend in a simple way of the assumed
minimal weights. This results in a sensible improvement
over existing evaluations.

The paper is organized as follows. Section 2 contains
the problem formulation and a presentation of the main
result, together with the minimal amount of technical tools
to allow for its comprehension. A comparison system is
introduced afterwards in Section 3, whose study is central
to establish the convergence estimate. The original method
for analysis of this system is used in Section 4 to get
convergence rate estimate (therein is stated the main result
of the paper, Theorem 2), and some properties of the latter
are studied. This result is commented in Section 5, before
some concluding remarks. For space reasons, most proofs
are omitted, they may be consulted in the complete version
of this text, see Angeli et al. (2007).

Notations

The i-th vector of the canonical basis in the space R
n

(1 ≤ i ≤ n) is denoted en
i ; the vector with all components

equal to 1 in R
n is written 1n. When the context is clear,

we omit the exponent and just write ei, resp. 1 to facilitate
reading. We also use brackets to select components of
vectors. All these notation are standard, and for a vector
x ∈ R

n, the i-th component is written alternatively xi,
[x]i, (en

i )Tx or eT

i x.

The systems considered here will be composed of n agents:
accordingly, we let N .

= {1, . . . , n}.
As usual, identity and zero square matrices of dimension
q × q are denoted Iq and 0q respectively. We denote Jq

the q × q matrix with ones on the sub-diagonal and zeros
otherwise: (Jq)i,j = δi=j+1. Here, and later in the text,
δ denotes the Kronecker symbol, equal to 1 (resp. 0)
when the condition written in the subscript is fulfilled
(resp. is not). For self-containedness, recall that a real
square matrix M is said stochastic (row-stochastic) if it
is nonnegative with each row sum equal to 1.

The spectral radius of a square matrix M is denoted
λmax(M). Last, we use the notion of nonnegative matrices,
meaning real matrices which are componentwise nonnega-
tive. Accordingly, the order relations ≤ and ≥ envisioned
for matrices are meant componentwise.

2. PROBLEM FORMULATION AND
PRESENTATION OF THE MAIN RESULT

Our aim is to estimate the speed of convergence towards
consensus for the following class of time-varying linear
systems:

x(t + 1) = A(t)x(t) (1)

where A(t)
.
= (ai,j(t))(i,j) ∈ R

n×n is a sequence of stochas-
tic matrices (in particular, A(t)1 = 1; this is exactly the
dual of what happens in the case of non-homogeneous

Markov chains, where the probability distribution, written
as a row vector π(t), verifies rather a relation like π(t +
1) = π(t)A(t)).

Let us first introduce some technical vocabulary to present
in simplest terms the main result of the paper, afterwards
enunciated in Section 4. The definition of the quantity we
intend to estimate is as follows.

Definition 1. (Contraction rate). We call contraction rate
of system (1) the number ρ ∈ [0, 1] defined as:

ρ
.
= sup

x(0)

lim sup
t→+∞





max
i∈N

xi(t) − min
i∈N

xi(t)

max
i∈N

xi(0) − min
i∈N

xi(0)





1

t

,

where the supremum is taken on those x(0) for which the
denominator is nonzero. �

The contraction rate is thus related to the speed of conver-
gence to zero of the agent set diameter. In what follows,
the latter plays the role of a Lyapunov function to study
convergence to agreement. For stationary systems, as is
well known, the number ρ is indeed the second largest
eigenvalue of the matrix A. More in general, it corresponds
to the second largest Lyapunov exponent of the considered
sequence of matrices A(t).

Definition 2. (Communication graph). We call communi-
cation graph of system (1) at time t the directed graph
defined by the ordered pairs (j, i) ∈ N × N such that
ai,j(t) > 0. �

In the present context, we use indifferently the terms
“node” or “agent”.

We now introduce assumptions on the existence of a con-
stant hierarchical structure embedded in the communi-
cation graph, and on minimal weights attached to the
corresponding links.

Assumption 1. For a given positive integer Td > 0, called
the depth of the communication graph, assume the exis-
tence of nested sets N0, . . . ,NTd

such that

• N0 is a singleton (whose element is called the root);
• Nk ⊂ Nk+1;
• NTd

= N = {1, . . . , n}.
Assume in addition, for given nonnegative real numbers
α, β, γ, that, for all t ≥ 0 and all k ∈ {1, 2, . . . , Td}

ai,i(t) ≥ α if i ∈ N0, (2a)
∑

j∈Nk\Nk−1

ai,j(t) ≥ β if i ∈ Nk\Nk−1, (2b)

∑

j∈Nk−1

ai,j(t) ≥ γ if i ∈ Nk\Nk−1. (2c)

�

As an example, the sets Nk may be induced by some fixed
spanning tree embedded in the communication graph: the
existence of a distinguished agent, the root, is presupposed
and, although the matrices A(t) and the underlying com-
munication graphs are allowed some variations, informa-
tion progress from this root along a (time-varying) tree
to attain all the agents. The number Td bounds from
above the minimal time for the information to attain
the most distant agents from the root. Likely, we call
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Fig. 1. The nested sets and the spanning tree

di
.
= min{k : i ∈ Nk} the depth of agent i. The set

Nk indeed consists of all the agents i whose depth di

is guaranteed by Assumption 1 to be at most equal to
k. An example of (fixed) communication graph and the
associated nested sets is shown in Figure 1.

In addition to the spanning tree structure, Assumption 1
imposes some minimal weights to the information trans-
mitted downstream along this structure (this is the role
played by γ), and also to the information used between
agents located at same depth. Concerning the latter, ex-
pressed by condition (2b), remark that it is fulfilled by
self-loops, that is when

ai,i(t) ≥ β if di > 0

(because by definition, i ∈ Ndi
\ Ndi−1 for di > 0); but

it is indeed weaker: it allows just as well communications
between agents whose depths are equal. The constraint on
the self-loops of the root agent, measured by α, is different
than for the other agents (β); this is done on purpose,
and permits to treat simultaneously the case of leaderless
coordination and ‘pure’ coordination with a leader (case
corresponding to α = 1).

Last, notice that, the matrices A(t) being stochastic, one
should have:

α, β + γ ≤ 1

for Assumption 1 to be fulfilled.

We are now in position to present the contents of The-
orem 2. The latter states that, under the conditions ex-
posed above, the rate of convergence of system (1) is at
most equal to the spectral radius of the Td × Td matrix
ζTd

(α, β, γ) defined by

ζTd
(α, β, γ) =



















β⋆ 0 . . . 0 1 − α⋆ − β⋆

α⋆ β⋆ . . .
... 1 − α⋆ − β⋆

0 α⋆ . . . 0
...

...
. . .

. . . β⋆ 1 − α⋆ − β⋆

0 . . . 0 α⋆ 1 − α⋆



















,

with α⋆ = min{α, γ}, β⋆ = min{β + γ, α} − α⋆. A major
characteristic of this estimate is that it is independent of
the number n of agents: it only depends upon α, β, γ and
the depth Td.

3. A COMPARISON SYSTEM FOR THE
DIAMETERS EVOLUTION

We now build an auxiliary time-varying system, with a
simpler structure than (1), and with the property that
the asymptotic contraction rate of the original system
can be bounded from above by carrying out suitable
computations on this newly introduced system. Our main
result for the present section (demonstrated in Angeli et al.
(2007)) is a statement relating convergence of (1) towards
consensus of a comparison system introduced below.

Theorem 1. Assume system (1) fulfills Assumption 1, for
given nonnegative numbers α, β, γ (such that α, β+γ ≤ 1).
Let ∆(t) be defined by

∆(t)
.
=















max
i∈N0

xi(t) − min
i∈N0

xi(t)

max
i∈N1

xi(t) − min
i∈N1

xi(t)

...
max

i∈NT
d

xi(t) − min
i∈NT

d

xi(t)















.

Then, ∆(t) satisfies the following inequality:

∆(t + 1) ≤





1 0Td×1

α⋆

0(Td−1)×1
ζTd

(α⋆, β⋆)



∆(t) , (3)

where ζTd
(α⋆, β⋆) ∈ R

Td×Td is defined by:

ζTd
(α⋆, β⋆)

.
= (1 − α⋆ − β⋆) 1eT

Td
+ β⋆ITd

+ α⋆JTd
, (4)

α⋆ .
= min{α, γ}, β⋆ .

= min{β + γ, α} − α⋆ . (5)

�

Recall that inequality (3) is meant componentwise.

Remark 1. Two special cases of interest as far as applica-
tion of Theorem 1 are obtained for the following values of
parameters:

(1) α = 1: viz. communication graph admits a leader; un-
der such premises, expressions for α⋆ and β⋆ simplify
as follows:

α⋆ = γ β⋆ = β

(2) α = β, viz. root agent is not different from any other
member of the group in terms of self-confidence on
his own position in the formation of consensus:

α⋆ = min{β, γ} β⋆ = max{0, β − γ}
�

4. CONVERGENCE RATE ESTIMATE AND
PROPERTIES

Based on Theorem 1, we now provide Theorem 2, which
states properly the property announced in the beginning
of the paper.

Theorem 2. Consider the linear time-varying dynamical
system (1), with A(t) stochastic. Assume Assumption 1
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is fulfilled. Then, the contraction rate towards consensus
can be bounded according to the following formula:

ρ ≤ ρTd
(α⋆, β⋆)

.
= λmax(ζTd

(α⋆, β⋆)) , (6)

with ζTd
, α⋆, β⋆ given in (4) and (5). �

Theorem 2 is demonstrated in Appendix. Recall that
stochasticity of A(t) implies that the nonnegative scalar
α, β, γ verify: α ≤ 1, β + γ ≤ 1.

Theorem 2 provides a tight estimate for the contraction
rate of (1) on the basis of the parameters α, β and γ,
and of the depth Td of the sequence of tree matrices.
We emphasize the fact that the result holds for time-
varying systems. Indeed, Theorem 2 is an inherently robust
result, as Assumption 1 allows for much uncertainty in
the definition of system (1). This robustness is meant
with respect to variations of the communication graph
(provided these variations don’t violate the set conditions
of Assumption 1), and with respect to variations of the
coefficients of the matrix A(t) (provided they respect the
quantitative constraints in Assumption 1).

A central fact is that the value in (6) does not depend upon
the number of agents involved in the network: rather the
depth of the graph is involved, which is quite natural.

Some properties of the estimate are now given in Theorems
3 and 4 (see Angeli et al. (2007) for a proof). They
are indeed useful to have a grasp on the asymptotic
behaviour of the contraction estimate, as well as on their
monotonicity properties; the latter are in agreement with
the increase of decrease of information available by varying
the parameters α, β and γ.

Theorem 3. Let α⋆, β⋆ ∈ (0, 1]. Then for any T ∈ N,
ρT (α⋆, β⋆) = λmax(ζT (α⋆, β⋆)) has the following proper-
ties.

• ρT (α⋆, β⋆) is the largest real root of the polynomial
equation
(

s − β⋆

α⋆

)T

+

(

s − β⋆

α⋆

)T−1

+ · · · + s − β⋆

α⋆
+ 1

=

(

1 − β⋆

α⋆

)

(

(

s − β⋆

α⋆

)T−1

+ · · · + s − β⋆

α⋆
+ 1

)

.

• For any T ∈ N, ρT (α⋆, β⋆) ≤ ρT+1(α
⋆, β⋆).

• For any T ∈ N, 1 − α⋆, β⋆ < ρT (α⋆, β⋆) < 1.

• ρT (α⋆, β⋆) ≤ α⋆ + β⋆ if and only if T ≤ α⋆

1−α⋆−β⋆ .

• ρT (α⋆, β⋆) → 1 when T → +∞, and more precisely

1 − ρT (α⋆, β⋆)

= (1 − α⋆ − β⋆)

(

α⋆

1 − β⋆

)T

+ o

(

(

α⋆

1 − β⋆

)T
)

.

�

The following result studies the variation of ρT as a
function of α, β, γ. When considering ρT as a function of
these quantities, we write ρT (α, β, γ), meaning ρT (α⋆, β⋆)
for α⋆(α, β, γ), β⋆(α, β, γ) defined as in (5).

Theorem 4. For any T ∈ N,

• the function (α⋆, β⋆) 7→ ρT (α⋆, β⋆) is nonincreasing
on the set {(α⋆, β⋆) ∈ [0, 1]2 : α⋆ + β⋆ ≤ 1};

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.5

2

2.5

3

3.5

4

α

 

 

T=3

T=2

T=4

Fig. 2. Ratios between spectral gaps

• the function (α, β, γ) 7→ ρT (α, β, γ) is nonincreasing
on the set {(α, β, γ) ∈ [0, 1]3 : β + γ ≤ 1};

• if β + γ = β′ + γ′, then ρT (α, β, γ) ≤ ρT (α, β′, γ′)
when β ≥ β′.

Moreover, for any T ∈ N,

• ρT (α, β, γ) = 1 if and only if α = 0 or γ = 0.
• ρT (α, β, γ) = β = 1 − γ if and only if α = β + γ = 1.

�

Notice that the estimates given in the last two points of
Theorem 4 are tight: they are reached for the following
stationary systems:

Case α = 0: A = Jn + e1e
T

n

Case γ = 0: A = In

Case α = β + γ = 1: A = βIn + (1 − β)(Jn + e1e
T

1)

5. DISCUSSION AND INTERPRETATION OF THE
RESULTS

It is interesting to compare our results with the classical
estimate ρ ≤ T

d

√
1 − αTd which is obtained by assuming a

lower-bound α on the diagonal entries as well as on the
non-zero entries of A(t). In our set-up this is obtained by
letting α = γ = β = α⋆ and β⋆ = 0. In order to have an
idea on the quality of the two estimates, we plot the ratio
of the spectral gaps,

1 − ρTd
(α⋆, 0)

1 − T
d

√

1 − α⋆Td

for Td = 2, 3, 4 in Fig. 2. As it is possible to see, the new
estimates are consistently tighter than the classic ones; in
the best case, viz. for α⋆ ≈ 0, the ratio of spectral gaps
approaches Td. So, the quality of the estimates actually
improves with respect to the classic bound, as the horizon
Td increases.

When additional information is available, for instance
when the coefficient α, β, γ as given in (2) are known,
then contraction rate estimates become much tighter with
respect to their classical counterparts which are not able
to discriminate between inner loops of the root node and
inner-loops of individual agents, as well as strength of
inter-agent communication links. In order to carry out
a comparison, notice that under the assumption of a
prescribed α, β, γ tree matrix bounding from below A(t),
we may assume for the classical estimate the following
value of α := min{α, β, γ} which indeed is always smaller
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Fig. 3. Ratios of spectral gap: (a) T = 2, (b) T = 3, (c)
T = 4. The vertical axis is graduated in a log10 scale.

than α⋆ = min{α, γ}. Hence, the corresponding spectral
gaps satisfy:

1 − T
d

√

1 − min{α, β, γ}Td ≤ 1 − T
d

√

1 − min{α, γ}Td

so that, we may compare the classical estimate with the
new one by considering the following ratios:

1 − ρTd
(α⋆, β⋆)

1 − T
d

√

1 − min{α, β, γ}Td

≥ 1 − ρTd
(α⋆, β⋆)

1 − T
d

√

1 − α⋆Td

We plotted the function at the right-hand side of the
previous inequality in a log10 scale as a function of α⋆ and
β⋆. In general the ratio depends critically on the tree depth
Td, hence we only plot it for relatively small tree depths. In
particular the results shown in Fig. 3 were obtained. Notice
that the relative quality of the estimates again increases
with Td, and already for Td = 4 a significant portion of
parameters space lies in the area in which estimates differ
by a 104 factor. The dependence of ρTd

upon α⋆ and β⋆ is
shown in Fig. 4 for T = 2, 3, 4. This also clearly shows
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1
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β∗α∗

Fig. 4. The function ρTd
(α⋆, β⋆) for Td = 2, 3, 4 (from

bottom to top)
.

the different monotonicity properties highlighted in the
previous Section.

6. CONCLUSION

We provide a novel and tight estimate of the contraction
rate of infinite products of stochastic matrices, under the
assumption of prescribed lower bounds on the influence
between different sets of agents which naturally arise by
following the information spread along the interaction
graph. This improves previously known bounds and, when
additional information is assumed, exploits the additional
structure for tightening of several orders of magnitude the
previously available estimates. The other crucial factor
in determining the overall convergence rate is the time
Td needed to the information to propagate from some
root node (which may or may not play the role of a
leader) to the other nodes. The bound can be computed
as the Perron-Frobenius eigenvalue (the spectral radius) of
a positive Td-dimensional matrix, whose entries depend in
a relatively simple way on the parameters characterizing
the hypothetic lower bounds available. Some monotonicity
and asymptotic properties of the bound are also proved.
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Appendix A. PROOF OF THEOREM 2

All the factors in (3) being nonnegative, the order relation
is compatible with multiplication. One then obtains, for
all t ∈ N,

∆(t)≤





1 0Td×1

α⋆

0(Td−1)×1
ζTd

(α⋆, β⋆)





t

∆(0)

≤





1 0Td×1

α⋆

0(Td−1)×1
ζTd

(α⋆, β⋆)





t
(

0
1Td

)

∆Td+1(0) ,

where the fact that ∆1(t) ≡ 0 ≤ ∆k(t) ≤ ∆k+1(t) ≤
∆Td+1(t), 1 ≤ k ≤ Td + 1, have been taken into account.

One deduces that

∆(t) ≤
(

0Td×1

ζTd
(α⋆, β⋆)t

)

1Td∆Td+1(0)

and

∆Td+1(t) = e
(Td+1)T
Td+1 ∆(t) ≤ eTdT

Td
ζTd

(α⋆, β⋆)t1Td∆Td+1(0) ,

from which it ensues

lim sup
t→+∞

(

∆Td+1(t)

∆Td+1(0)

)1/t

≤ lim sup
t→+∞

(

eTdT

Td
ζTd

(α⋆, β⋆)t1Td

)1/t

≤ lim sup
t→+∞

∥

∥ζTd
(α⋆, β⋆)t

∥

∥

1/t
= λmax(ζTd

(α⋆(λ), β⋆(λ))) .

This yields (6) and achieves the proof of Theorem 2.
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