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Abstract: This paper discusses the stabilization controller designs for a class of networked
control systems with nonlinear perturbation. Under consideration of both network-induced delay
and the data packet dropout in the transmission, a state feedback controller and a static output
feedback controller are constructed, respectively. In addition, the effectiveness of our approach
is demonstrated by two numerical examples.

1. INTRODUCTION

Feedback control systems wherein the control loops are
closed through a real-time network are called networked
control systems (NCS). Recently, extensive research has
been devoted to NCS due to it’s great advantages, includ-
ing simpler installation, higher reliability, ease of system
diagnosis and maintenance and increased system agility.
See Hu [2003], Azimi-Sadjadi [2003], Liu [2003]. At the
same time, some new analytical challenges are raised be-
cause the insertion of the communication network in the
feedback control loop makes the analysis and design of
an NCS complex: conventional control theory must be
revalued before it can be applied to NCS. In an NCS, sev-
eral important issues needed to be treated, which include
the network-induced delay, data dropout and multiple-
packets transmission of plant output. The delay occurs
while exchanging data among the devices connected to the
shared medium, it may be constant, time varying, or even
random.

A basic problem in an NCS is its stability and stabiliza-
tion. Recently, much research work has been done on the
stability for networked control systems, see Zhang [2001],
Kim [2003], Nilsson [1998], Branicky [2002]. By means
of a hybrid systems technique, stability for NCS with
constant delays less than the sampling period reduces to
examine the Schur-ness of the corresponding matrix in
Zhang [2001]. The try-once-discard (TOD) control net-
work protocol is introduced and a criterion for global
exponential stabilization presented for an NCS in Walsh
[2002]. In Montestruque [2004], an NCS is addressed in
which transmission times are varying within a time interval
or driven by a stochastic process with identically indepen-
dently distributed and Markov-chain driven transmission
times. A new method for stabilization analysis for an NCS
is proposed. However, it can only be used to treat the
systems with sensor-to-controller delay case. Considering
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time varying delay, output feedback controller based LMI
is proposed to guarantee the system stability and reduce
the state error in Jung [2004]. In Yue [2004], state feedback
controller is designed under consideration of both the
networked-induced delay and data packed dropout, and
the feedback gain can be derived by solving a set of LMIs.
In Liu [2003], the problem of state feedback control of
networked systems with an uncertain plant is considered
and a necessary and sufficient condition for the robust
exponential stability of the closed loop system are derived.
However, most of previous work is based on discrete-time
model, and the information on the intersample behavior
may be lost when discretizing the continuous-time plant,
as pointed in Yue [2004]. In addition, the plants mentioned
above are linear and nonlinear plants are seldom addressed
in the literature.

The objective of this paper is to discuss the state and static
output feedback controller designs for a class of nonlinear
networked control systems. Some sufficient conditions for
stabilization for the systems is presented by means of
LMI. In addition, both state feedback controller and static
output feedback controller are constructed provided the
corresponding LMI is feasible.

Compared with the existing results in the literature, this
paper discusses the more general class of systems than
those in Yue [2004], Mu [2004]. In addition, our proposed
method is in the continuous-time domain and the inter-
sample behavior is considered. Moreover, a state feedback
controller design in Yue [2004] is a special case of this
paper. Finally, as shown by the numerical examples, our
results are less conservative than those in Zhang [2001],
Yue [2004].

Notation. Rn denotes the n−dimension Euclidean space,
Rm×n is the set of m× n real matrix, I is identity matrix
of appropriate dimensions, W ′ denotes transpose of matrix
W . ‖x‖ =

√
x′x, where x = ( x1 x2 · · · xn )

′ ∈ Rn.
Throughout this note, for symmetric matrices X and
Y , X ≥ Y (respectively, X > Y ): X − Y is positive
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semi-definite (respectively, positive definite), X ≤ Y
(respectively, X < Y ): X − Y is negative semi-definite

(respectively, negative definite). If

(

A ∗
B C

)

is a real

symmetric matrix, then ∗ denotes the entries implied by
symmetry. Matrices, if not explicitly stated, are assumed
to have compatible dimensions.

2. MODELLING OF NETWORKED CONTROL
SYSTEMS

Consider an NCS described by the following continuous
nonlinear system.

ẋ(t) = Ax(t) + Bu(t) + Hf(t, x(t), u(t)),

y(t) = Cx(t),
(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the
input, y(t) ∈ Rq is the output of the system; A, B, C
and H are constant matrices with appropriate dimensions;
f = f(t, x, u) is a vector-valued nonlinear function which
is regarded as a nonlinear perturbation and satisfies the
following quadratic inequality for all (t, x, u).

f ′(t, x, u)f(t, x, u) ≤
(

x
u

)′ (

M ′

N ′

)

( M N )

(

x
u

)

, (2)

where M and N are constant matrices with appropriate
dimensions.

In this paper, we consider the case where the sensor is
clock-driven, the controller and actuator are event driven,
and the data are transmitted with a single packet. Under
consideration of both network-induced delay and the data
packet dropout in the transmission, the NCS can be
modeled as

ẋ(t) = Ax(t) + Bu(ikh) + Hf(t, x(t), u(ikh)),

y(t) = Cx(t),

t ∈ [ikh + τk, ik+1h + τk+1), k = 1, 2, · · · ,

(3)

where h is the sampling period, ik(k = 1, 2, · · ·) are
integers and {i1, i2, · · ·} ⊂ {1, 2, · · ·}, τk is networked
induced delay. Suppose t0 is the instant when the first
control signal reaches the plant and there exists a constant
η such that

(ik+1 − ik)h + τk+1 ≤ η, k = 1, 2, · · · . (4)

Remark 2.1. Since {i1, i2, · · ·} is a subset of {1, 2, · · ·},
thus the effect of data packet dropout is considered.
Specially, if {i1, i2, · · ·} = {1, 2, · · ·}, it means that no data
packet dropout occurs in the transmission.

Remark 2.2. If ik = k, then (4) implies h + τk+1 ≤ η, it
can conclude from this relation that faster sampling can
allow for a larger networked-induced delay. Moreover, for
the given sampling period h and constant η, we can also
determine the maximum allowable size of the delay.

3. STATE FEEDBACK CONTROLLER DESIGN

In this section, we assume that the sensor has the full state
vector available and consider the following form of linear
state feedback controller

u(t) = Kx(t), (5)

where K is the constant matrix gain to be determined.

Then the system (3) can be rewritten as

ẋ(t) = (A + BK)x(t) − BKe(t) + Hg(t, x(t), e(t)),

t ∈ [ikh + τk, ik+1h + τk+1), k = 1, 2, · · · ,

x(t) = φ(t), t ∈ [t0 − η, t0],

(6)

where e(t) = x(t) − x(ikh) , φ(t) is a continuous initial
function of the system. g(t, x(t), e(t)) = f(t, x(t),Kx(ikh))
satisfies

g′(t, x, e)g(t, x, e) ≤
(

x
e

)′ (

M ′ + K ′N ′

−K ′N ′

)

× (M + NK −NK )

(

x
e

)

,

(7)

Definition 3.1. The system (6) is said to be exponentially
asymptotically stable if there exist constants α > 0 and
β > 0 such that ‖x(t)‖ ≤ αsupt0−η≤s≤t0‖φ(s)‖e−βt,
t ≥ t0.

The purpose of this section is to find a controller in
the form of (5) such that the closed-loop system (6) is
exponentially asymptotically stable.

The following theorem presents a way to construct state
feedback controller law (5), in which sufficient condition is
presented by means of LMI .

Theorem 1. The system (6) is exponentially asymptoti-
cally stable if there exist positive matrices X > 0, S > 0
and a real matrix Y such that the following LMI holds











Ω1 ∗ ∗ ∗ ∗
−Y ′B′ −2γX + γS ∗ ∗ ∗

H ′ 0 −I ∗ ∗
AX + BY −BY H −γS ∗
MX + NY −NY 0 0 −I











< 0, (8)

where Ω1 = AX + XA′ + BY + Y ′B′, γ = η−1. Further-
more, the controller parameter K is given by

K = Y X−1.

Proof. Let P = X−1, Q = S−1, and multiplying both
sides of LMI (8) with diag{X−1, X−1, I, I, I}, and noticing
K = Y X−1, (8) is equivalent to











Ω2 ∗ ∗ ∗ ∗
−K ′B′P Ω3 ∗ ∗ ∗

H ′P 0 −I ∗ ∗
A + BK −BK H −γQ−1 ∗
M + NK −NK 0 0 −I











< 0, (9)

where Ω2 = PA + A′P + PBK + K ′B′P and Ω3 =
−2η−1P + η−1PQ−1P .

By means of Schur Complement Lemma, LMI (9) is
equivalent to the following matrix inequality






PA0 + A′
0P + M ′

0M0 ∗ ∗ ∗
−K ′B′P + N ′

0M0 N ′
0N0 ∗ ∗

H ′P 0 −I ∗
A0 −BK H −γQ−1






< 0,(10)

where A0 = A + BK,M0 = M + NK, N0 = −NK. By
Schur Complements, LMI (10) is equivalent to Γ < 0,
where Γ is defined as
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Γ =

(

Γ11 ∗ ∗
Γ21 Γ22 ∗

H ′P + ηH ′QA0 −ηH ′QBK ηH ′QH − I

)

,(11)

where
Γ11 = PA0 + A′

0P + ηA′
0QA0 + M ′

0M0,

Γ21 = −K ′B′P − ηBK ′B′QA0 + N ′
0M0,

Γ22 = −2η−1P + η−1PQ−1P + ηK ′B′QBK + N ′
0N0.

(12)

In order to obtain the stability for system (6), we construct
the following Lyapunov functional candidate

V (t) = x′(t)Px(t) +

t
∫

t−η

t
∫

s

ẋ′(v)Qẋ(v)dvds. (13)

Then for t ∈ [ikh + τk, ik+1h + τk+1), we can get the
derivation of V (t) along with system (6)

V̇ (t) = 2x′(t)Pẋ(t) + ηẋ′(t)Qẋ(t) −
t

∫

t−η

ẋ′(s)Qẋ(s)ds.(14)

From (4), it can be seen that, when t ∈ [ikh + τk, ik+1h +
τk+1)

e′(t)Qe(t) =

t
∫

ikh

ẋ′(s)dsQ

t
∫

ikh

ẋ(s)ds

= ‖
t

∫

ikh

Q
1

2 ẋ(s)ds‖2

≤ (

t
∫

ikh

‖Q 1

2 ẋ(s)‖ds)2

≤ (t − ikh)

t
∫

ikh

‖Q 1

2 ẋ(s)‖2ds

≤ η

t
∫

t−η

ẋ′(s)Qẋ(s)ds

(15)

Combining (14) and (15), we have

V̇ (t) ≤ 2x′(t)Pẋ(t) + ηẋ′(t)Qẋ(t) − η−1e′(t)Qe(t)

≤ 2x′(t)Pẋ(t) + ηẋ′(t)Qẋ(t)

+η−1e′(t)[−2P + PQ−1P ]e(t)

−g′(t, x(t), e(t))g(t, x(t), e(t))

+

(

x(t)
e(t)

)′ (

M0

N0

)(

M0

N0

)′ (

x(t)
e(t)

)

=

(

x(t)
e(t)

g(t, x, e(t))

)′

Γ

(

x(t)
e(t)

g(t, x, e(t))

)

.

(16)

Then
V̇ (t) ≤ −λ‖x(t)‖2 − λ‖e(t)‖2,

where λ = λmin(−Γ).

Defining a new function as

W (t) = eεtV (t),

then using the similar analysis method developed in Mao
[1998], there exist a sufficiently small constant ε > 0 and
a constant α > 0 such that

V (t) ≤ α supt0−η≤s≤t0‖φ(s)‖e−εt, t ≥ t0. (17)

Noticing that

V (t) ≥ λmin(P )‖x(t)‖2, t ≥ t0, (18)

then we have

‖x(t)‖ ≤ µ supt0−η≤s≤t0‖φ(s)‖e− ε

2
t, t ≥ t0, (19)

where µ = (λ−1

min(P )α)
1

2 .

By Definition 3.1, system (6) is exponentially asymptoti-
cally stable, this completes the proof.

Remark 3.1. (3) is a generalized nonlinear networked con-
trol system, the following linear system is its spacial case.

ẋ(t) = (A + BK)x(t) − BKe(t),

t ∈ [ikh + τk, ik+1h + τk+1), k = 1, 2, · · · ,

x(t) = φ(t), t ∈ [t0 − η, t0].

(20)

Remark 3.2. Theorem 1 can be regarded as an extension
of Theorem 1 in Yue [2004], where the system (20) is
considered.

In Theorem 1, assume H = 0,M = 0 and N = 0, then the
following result presents a way to construct state feedback
controller law (5) such that system (20) is exponentially
asymptotically stable.

Corollary 2. The system (20) is exponentially asymptoti-
cally stable if there exist positive matrices X > 0, S > 0
and a real matrix Y such that the following LMI holds

(

Ω4 ∗ ∗
−Y ′B′ −2η−1X + η−1S ∗

AX + BY −BY −η−1S

)

< 0, (21)

where Ω4 = AX + BY + XA′ + Y ′B′. Furthermore, the
controller parameter K is given by

K = Y X−1.

4. STATIC OUTPUT FEEDBACK CONTROLLER
DESIGN

In this section, we consider a static output feedback
controller

u(t) = Gy(t), (22)

where G is the constant matrix gain to be determined. In
this case, the closed-loop system is given by

ẋ(t) = (A + BGC)x(t)−BGCe(t)+Hh(t, x(t), e(t)),

t ∈ [ikh + τk, ik+1h + τk+1), k = 1, 2, · · · ,
(23)

where h(t, x(t), e(t)) = f((t, x(t), GCx(ikh)).

The purpose of this section is to find a controller in
the form of (22) such that the closed-loop system (23)
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is exponentially asymptotically stable. Without loss of
generality, we assume that C ∈ Rq×n is full-row rank,
then the singular value decomposition of C is

C = U ( C0 0 ) V ′, (24)

where U ∈ Rq×q and V ∈ Rn×n are unitary matrices and
C0 ∈ Rq×q is a diagonal matrix with positive diagonal
elements in decreasing order.

Similarly to the case of state feedback, we have the
following result.

Theorem 3. The system (23) is exponentially asymptoti-
cally stable if there exist positive matrices X11 > 0, X22 >
0, S > 0 and a real matrix Z such that the following LMI
holds











Ψ11 ∗ ∗ ∗ ∗
Ψ21 Ψ22 ∗ ∗ ∗
H ′ 0 −I ∗ ∗
Ψ41 −BΨ0 H −η−1S ∗
Ψ51 −NΨ0 0 0 −I











< 0, (25)

where

Ψ11 = AX + XA′ + BΨ0 + Ψ′
0B

′, Ψ21 = −Ψ′
0B

′,

Ψ41 = AX + BΨ0, Ψ51 = MX + NΨ0,

Ψ22 =−2η−1X + η−1S, Ψ0 = ( Z 0 ) V ′

and X = V diag(X11, X22)V
′. Furthermore, the controller

gain G is given by

G = ZX−1

11 C−1

0 U ′. (26)

Proof. Using (26) yields

GCX = GU ( C0 0 ) V ′V diag{X11, X22}V ′ = Ψ0.

Therefore, we can conclude that the condition (8) in
Theorem 1 with Y = Ψ0 = GCX is satisfied. This
completes the proof of the Theorem 3.

5. NUMERICAL EXAMPLES

To illustrate the effectiveness of the design procedure, we
give two numerical examples.

Example 5.1. Consider the linear system in Yue [2004]

ẋ(t) =

(

0 1
0 0.1

)

x(t) +

(

0
0.1

)

u(t). (27)

In Yue [2004], by applying Algorithm 1 with ρ2 = 0.2 and
ρ3 = 20, it has been found that the maximum allowable
value of ηmax is 402 and the corresponding state feedback
gain is K = (−0.0025 −0.0118 ) . From Corollary 2, we
have

X =

(

50.7818 −0.8434
−0.8434 0.1866

)

,

S =

(

32.7938 −0.2797
−0.2797 0.1063

)

,

Y = ( 0.1002 −0.3401 )

and the maximum allowable value of ηmax is 802. In
this case, the state feedback gain K can be computed as
K = (−0.0306 −1.9610 ) . It is obvious that our result is
less conservative than that of Yue [2004]. When we choose
the initial conditions as x(0) = (−1 2 ), the sampling
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Fig. 1. The state responses of the closed-loop system.
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Fig. 2. The state responses of the closed-loop system.

period h = 0.2, ik = 2k(k = 0, 1, 2, · · ·), τk = 0.2sin(k),
the simulation results of the state responses are given in
Fig. 1.

Example 5.2. Considering the following system

ẋ(t) =

(

0 0.2
0 0.1

)

x(t) +

(

0.1 0.2
1 0.4

)

u(t)

+Hsin(Mx(t) + Nu(t)),

(28)

where
H = (−0.5 0.1 )

′
,

M = ( 0.2 −0.2 ) ,

N = (−0.1 0.1 ) .

Using Theorem 1, the following matrix solutions can be
obtained

X =

(

7.4248 1.3077
1.3077 1.8948

)

,

S =

(

3.9913 0.4685
0.4685 1.1549

)

,

Y =

(

2.1916 0.1349
−5.9820 −1.2584

)

and the maximum allowable value of ηmax is 804. In this
case, the state feedback gain K can be obtained as follows.

K =

(

0.3217 −0.1509
−0.7840 −0.1230

)

.

When we choose the same conditions as in Example 1, the
simulation results of the state responses are given in Fig.
2.

6. CONCLUSIONS

This paper discusses the issues of state feedback and static
feedback controller designs of for a class nonlinear NCS.
Based on the Lyapunov-Krasovskii functional method, a
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state feedback and a static feedback controller are con-
structed in terms of linear matrix inequalities. It is shown
that the approach presented in this paper is more effective
than those in the literature. Dynamic output feedback
approach for the given NCS is under investigation.
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