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Abstract: Adaptive control of a three – tank - system laboratory model is presented. The objective 
laboratory model is a two input – two output (TITO) nonlinear system. It is based on experience with 
authentic industrial control applications. Two control algorithms utilizing polynomial theory and pole – 
placement were applied and compared. The first one is based on the traditional 1DOF (one – degree of 
freedom) configuration of the closed loop, the second one applies a decoupling method to suppress 
undesired cross – coupling. The algorithms implemented as self – tuning controllers are then used for 
control of the model. Results of real-time experiments are also included. Quality of control achieved by 
both methods is compared and discussed. 

 

1. INTRODUCTION 

Many technological processes require a simultaneous control 
of several variables related to one system. Each input may 
influence all system outputs. The three – tank – system in 
Fig. 1 is a typical multivariable nonlinear system with 
significant cross – coupling. The design of a controller able to 
cope with such a system must be quite sophisticated. There 
are many different methods of controlling MIMO (multi 
input – multi output) systems. One possibility is the serial 
insertion of a compensator ahead of the system to transform 
the multivariable system into a series of independent SISO 
loops (Wittenmark et al., 1987, Chien et al., 1990, Peng, 
1990, Krishnawamy et al., 1991). 

Here polynomial theory approach (Kučera, 1980, Kučera, 
1991) is used for the design of multivariable controllers. Two 
controllers are presented. The first one is based on traditional 
1DOF (one degree of freedom) configuration of the closed 
loop, the second one applies a decoupling method using a 
compensator to suppress undesired cross – coupling. 
Application of the designed methods for adaptive control of 
the three – tank – system is then presented. The algorithms 
were applied as self – tuning controllers. It was assumed, that 
the dynamic behaviour of the system could be described in 
the neighbourhood of a steady state by a discrete linear 
model. The recursive least squares method with the 
directional forgetting was used for the identification part of 
the self – tuning controllers. 

The paper is organised as follows: Section 2 contains 
description of the three – tank - system; Section 3 presents a 
mathematical model of the system which was used for the 
controllers design; Sections 4 and 5 describes designs of the 
1DOF and decoupling controllers; Section 6 describes the 
system identification method; Section 7 contains the 
experimental results; finally, Section 8 concludes the paper. 

2. THREE – TANK – SYSTEM  

The three – tank – system laboratory model can be viewed as 
a prototype of many industrial applications in process 
industry, such as chemical and petrochemical plants, oil and 
gas systems. The typical control issue involved in the system 
is how to keep the desired liquid level in each tank. The 
principle scheme of the model is shown in Fig 1. The basic 
apparatus consists of three plexiglass tanks numbered from 
left to right as T1, T3 and T2. These are connected serially 
with each other by cylindrical pipes. Liquid, which is 
collected in a reservoir, is pumped into the first and the third 
tanks to maintain their levels. The level in the tank T3 is a 
response which is uncontrollable. It affects the level in the 
two end tanks. Each tank is equipped with a static pressure 
sensor, which gives a voltage output proportional to the level 
of liquid in the tank. 

Hmax denotes the highest possible liquid level. In case the 
liquid level of T1 and T2 exceeds this value the 
corresponding pump will be switched off automatically. Q1 
and Q2 are the flow rates of the pumps 1 and 2. Two variable 
speed pumps driven by DC motor are used in this apparatus. 
These pumps are designed to give an accurate well defined 
flow per rotation. Thus, the flow rate provided by each pump 
is proportional to the voltage applied to its DC motor.  

There are six manual valves v1, v2...v6 that can be used to 
vary the configuration of the process or to introduce 
disturbances or faults. 

The pump flow rates Q1 and Q2 denote the input signals, the 
liquid levels of T1 and T2 are the output signals. 
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Fig. 1. Principal scheme of three – tank - system  

3.  MATHEMATICAL MODEL OF THE APPARATUS  

An analytical model of the three – tank - system based on 
physics and the equipment construction is presented in 
(AMIRA, 1996). All the parameters in this model have a 
particular physical denotation. The apparatus is a nonlinear 
system, as it was mentioned above. A possible method for 
control of nonlinear systems is using of self – tuning 
controllers. A suitable model for adaptive control of the real 
object is an input – output model (“black box model”). This 
is a standard approach in self tuning controller area. Instead 
of often tedious construction of a model from first principles 
and then calculating its parameters from plant dimensions 
and physical constants, general type of model is chosen (here 
it is in fact transfer function (1)) and its  parameters are 
identified from data. It is a model of the system behaviour 
and its parameters do not have a particular physical 
denotation. Of course, not all properties of the plant can be 
extracted from the data in this way but as a rule dominant 
properties are modelled, which is sufficient for a controller 
design. Advantages of this kind of model are its simplicity 
and accuracy in an operational range in which the input – 
output dependence is measured. In the framework of adaptive 
controllers it was chosen this kind of model. It was necessary 
to determine its structure in advance. The aim here was to 
find experimentally as simple structure of the model as 
possible, as it is mentioned bellow. The parameters are 
identified during the process of the recursive identification in 
virtue of the measured input and output signals.  

A general transfer matrix of a two inputs – two outputs 
system with cross coupling is expressed as 

 

( ) ( ) ( )
( ) ( )⎥⎦

⎤
⎢
⎣

⎡
=

zGzG
zGzG

z
2221

1211G                                           (1) 

 
( ) ( ) ( )zzz UGY =                                                                   (2) 
 

Where ( )zU  and ( )zY  are vectors of the manipulated 
variables (flow rates of liquid into tanks T1 and T2) and the 
controlled variables (liquid levels of T1 and T2). 

( ) ( ) ( )[ ]Tzuzuz 21 ,=U     ( ) ( ) ( )[ ]Tzyzyz 21 ,=Y                     (3) 
 

It is possible to assume that the dynamic behaviour of the 
system can be described in the neighbourhood of a steady 
state by a discrete linear model in the following form of the 
matrix fraction 

 

( ) ( ) ( ) ( ) ( )11
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1
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Where polynomial matrices [ ] [ ]1
22

1
22 , −− ∈∈ zRzR BA  are the 

left coprime factorization of matrix ( )zG  and 

matrices [ ] [ ]1
221

1
221 , −− ∈∈ zRzR BA  are the right coprime 

factorization of ( )zG . 

At first, the algorithms described bellow were designed for a 
model with polynomials of the first order. This model proved 
to be unsuitable for the process and the control algorithms 
failed. Consequently, the polynomial orders were increased 
and the algorithms were designed for a model with second 
order polynomials. This model proved to be effective. In case 
of the simple 1DOF controller a model with nondiagonal 
matrix ( )1−zA  was used. 

The model has sixteen parameters: 
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In case of decoupling control using the compensator the 
model was simplified by considering the matrix ( )1−zA  to be 
a diagonal type. 
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The reason for the simplification is explained in section 5. 
This assumption causes reduction of number of parameters. 
This model has twelve parameters. 

4.  DESIGN OF 1DOF CONTROLLER  

The 1DOF configuration of the closed loop system is 
depicted in Fig. 2. 

 
Fig. 2. Block diagram of 1DOF configuration 
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Similarly as it was for the controlled system, the transfer 
matrix of the controller takes the form of the following 
matrix fraction 

( ) ( ) ( ) ( ) ( )11
1

1
1

111 −−−−−− == zzzzzR PQQPG                             (8) 

Generally, the vector ( )1−zW  of input reference signals is 
specified as 

( ) ( ) ( )111 −−−= zzz w hFW                                                       (9) 

In case of control of the three – tank - system, the reference 
signals were considered as a class of step functions. In this 
case ( )1−zh  is a vector of constants and ( )1−zwF  is expressed 
as 
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The compensator ( )1−zF  is a component formally separated 
from the controller. It has to be included in the controller to 
fulfil the requirement on the asymptotic tracking. If the 
reference signals are step functions, then ( )1−zF  is an 
integrator. 

The control law (operator z-1 will be omitted from some 
operations for the purpose of simplification) is defined as  

EPQFU 1
11

1 -−=                                                                 (11) 

where E is a vector of control errors. Using matrix operations 
it is possible to modify this vector as  

( ) AWBQAFPPYWE 1
111

−+=−=                               (12) 

Asymptotic tracking of the reference signals is then fulfilled 
if FP1 is divisible by Fw. 

It is possible to derive the following equation for the system 
output 

( )YWQPBFAQEPBFAY −== −−−−−− 111111
              (13) 

and this can be modified   

( ) WPBQBQAFPPY 1
11

1
111

−−+=                                     (14) 

It is apparent, that the elements of the vector of the output 
signal have in their denominators the determinant of the 
matrix

11 BQAFP + . This determinant is the characteristic 
polynomial of a MIMO system.  The roots of this polynomial 
matrix are the ruling factors for the behaviour of a closed 
loop system. The roots must be inside the unit circle (of the 
Gauss complex plain), in order for the system to be stable. 
The conditions for BIBO (bounded input bounded output) 
stability can be defined by the following diophantine 
equation  

MBQPAF =+ 11                                                              (15) 

Where [ ]1
22

−∈ zRΜ  is a stable diagonal polynomial matrix. 
If the system has the same number of inputs and outputs, 

matrix M can be chosen as diagonal. This choice enables 
easier computation of controller parameters. 
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The degree of the controller polynomial matrices depends on 
the internal properness of the closed loop. The structure of 
matrices P1 and Q1 was chosen so that the number of 
unknown controller parameters equals the number of 
algebraic equations resulting from the solution of the 
diophantine equation. The method of the uncertain 
coefficients was used to solve the diophantine equation.  
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The solution of the diophantine equation results in a set of 
sixteen algebraic equations with unknown controller 
parameters. Using matrix notation the algebraic equations can 
be expressed in the following form 
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The controller parameters are obtained by solving these 
equations. 

5.  DESIGN OF DECOUPLING CONTROLLER 

There are several ways to control multivariable systems with 
internal interactions. One possibility is a serial insertion of a 
compensator ahead of the system (Wittenmark et al., 1987, 
Chien et al., 1990, Peng, 1990, Krishnawamy et al., 1991). 
The objective, in this case, is to suppress undesirable 
interactions between the input and output variables so that 
each input affects only one controlled variable. The block 
diagram for this kind of system is shown in Fig. 3 (R is a 
transfer matrix of a controller and C is a decoupling 
compensator). 
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Fig. 3. Closed loop with general decoupling compensator 
 
The resulting transfer matrix H is then determined by 

GCH =                                                                              (20) 
The decoupling conditions are fulfilled when the matrix H is 
diagonal. 

The matrix B can be written as  

x
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and then the matrix H as 

1
111 HACBAH −−− == xz                                                 (22) 

As it was mentioned above, the matrix A was chosen to be 
diagonal. The objective of this simplification is apparent from 
the equation (22). If the matrix A was assumed to be non – 
diagonal, it would have to be included into the compensator 
(AA-1=I) to obtain a diagonal matrix H. Then, the order of the 
controller and sophistication of the closed loop system would 
be increased. According to this assumption, the compensator 
C must be chosen so that multiplication of the matrix Bx and 
the compensator leads to a diagonal matrix H1. The 
compensator, which was applied for our algorithm, is the 
adjoint matrix Bx. 

( )xadj BC =                                                                       (23) 

The multiplication of the matrix Bx and the adjoint matrix Bx 
results in a diagonal matrix H1. The determinants of the 
matrix Bx represent the diagonal elements. 
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The closed loop system is shown in Fig. 4. 

  
Fig. 4. Closed loop with chosen decoupling compensator 
 
The compensator F is the integrator which must be included 
into the controller to fulfil the requirement on the asymptotic 
tracking as in the previous case with the simple 1DOF 
controller. 

It is possible to derive an equation for the system output, 
which can be modified by matrix operations to the form 

( ) WPQHQHAFPPY 111
1

1111
−+=                                    (25) 

To achieve stability in the closed loop system the following 
diophantine equation must be fulfilled 

MQHAFP =+ 111                                                            (26) 

The controller polynomial matrices were chosen in the 
following form 
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and the matrix M is 
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The solution of the diophantine equation defines a set of 
algebraic equations which were used to obtain the unknown 
controller parameters. 

For the purpose of a simplification, the det(Bx(z-1)) is defined 
as follows: 

( )( )
( )( ) ( ) ( )

( )6482
2

36457281
1

3571
1

2
1

1
23

1

det

det

bbbbz

bbbbbbbbzbbbbzB

zdbzdbdbzB

x

x

−+

+−−++−=

++=

−

−−

−−−

             (30) 

The algebraic equations have the form 
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The control law is described by the following matrix equation 

( ) EPQBFU 1
11

−= xadj                                                      (32) 

6.  SYSTEM IDENTIFICATION 

For control of the three – tank – system, the control 
algorithms were applied as self tuning controllers. They were 
incorporated into an adaptive control system with recursive 
identification. The recursive least square method proved to be 
effective for self-tuning controllers (Kulhavý, 1987; Bittanti 
et al., 1990) and was used as the basis for our algorithm. For 
our two-variable example it was considered the disintegration 
of the identification into two independent parts. 
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For the simple 1DOF controller with nondiagonal matrix A 
the parameter vectors are specified as shown below: 

( ) [ ]432143211 b,b,b,b,a,a,a,akT =Θ                                  (33) 

( ) [ ]876587652 b,b,b,b,a,a,a,akT =Θ  
and the data vector is 

( ) ( ) ( ) ( )[ ,ky,ky,kykT 1211 2112,1 −−−−−−=−φ               (34) 

( ) ( ) ( ) ( ) ( )]2121,2 22112 −−−−−− k,uk,uk,ukuky  
For the configuration with the compensator the vectors have 
the following forms: 

( ) [ ]4321211 b,b,b,b,a,akT =Θ                                               (35) 

( ) [ ]8765432 b,b,b,b,a,akT =Θ  
( ) ( ) ( )[ ,ky,kykT 211 111 −−−−=−φ                                     (36) 

( ) ( ) ( ) ( )]2121 2211 −−−− k,uk,uk,uku  
( ) ( ) ( )[ ,ky,kykT 211 222 −−−−=−φ                                   (37) 

( ) ( ) ( ) ( )]2121 2211 −−−− k,uk,uk,uku  
The parameter estimates are updated using the recursive least 
square method with adaptive directional forgetting. 

7.  EXPERIMENTAL EXAMPLES 

The model was connected with a PC equipped with a control 
and measurement PC card. The Matlab and the Real Time 
Toolbox were used to control the system. 

For the experiments presented in this paper, the three – tank – 
system was configured in such a way that the valves v3 and 
v5 were closed and the remaining valves were open. 

The best sampling period T0=5 s was found in virtue of many 
experiments. Another problem was finding of suitable poles 
of the characteristic polynomial. In comparison with 
controllers for SISO control loops, where it is often possible 
to assume influence of particular poles to behaviour of the 
closed loop, pole – placement of multivariable controllers is 
much more complicated. The right side matrices, obtained 
from a number of experiments, are denoted as follows: the 
right side matrix for the case without the compensator - M1 
and the right side matrix for controller with the compensator 
– M2 
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In Fig. 4 and Fig. 5 are shown time responses of the control 
when the initial parameter estimates were chosen without any 
a-priori information: 

( ) [ ]4.03.02.01.04.03.02.01.001 ,,,,,,,T =Θ                                  (40) 

( ) [ ]8.07.06.05.0,8.07.06.05.002 ,,,,,,T =Θ  
and 

( ) [ ]4.03.02.01.02.01.001 ,,,,,T =Θ                                        (41) 

( ) [ ]8.07.06.05.03.02.002 ,,,,,T =Θ  

The reference signals contain frequent step changes in the 
beginning of experiments to activate input and output signals 
and improve the identification. The controlled variables y1 
and y2 are liquid levels of tanks T1 and T2. The manipulated 
variables u1 and u2 are flow rates of liquid into the tanks. As 
w1 and w2 are denoted desired liquid levels in particular tanks 
(reference signals). 

Subsequent experiments were carried out in such a way that 
initial parameter estimates were set as the last parameter 
estimates obtained in the ends of the previous experiments. 

 
Fig. 5. Control of the laboratory model using 1DOF 
controller 

 
Fig. 6. Control of the laboratory model using 2DOF 
controller 
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Fig. 7. Control of the laboratory model using 1DOF 
controller – experiment with steady parameters 
 
The initial conditions of the recursive identification were also 
modified by reducing of diagonal elements of the square 
covariance matrix, which represent variances of the identified 
parameters, from 1000 to 10. Because the system is nonlinear 
and the identified parameters were valid only for particular 
steady states, the reference signals were set to the same 
values as it was in the ends of the previous experiments. 
Time responses of these experiments are shown in Fig. 6 and 
Fig. 7. 

 
Fig. 8. Control of the laboratory model using 2DOF 
controller – experiment with steady parameters 
 

8.  CONCLUSIONS 

According to the theoretical assumptions, the controller with 
the compensator should reduce interactions between the 
control loops. From the results in Fig. 5 - Fig. 8 it is obvious 
that similar results were achieved with both controllers from 
this point of view (overshoots of one controlled variable 
caused by step changes of the reference signal of the other 
one were comparable). This is caused by fact that the 

decoupling controller is based on inversion of the controlled 
plant. Such controllers are sensitive to differences between 
the model and the plant. According to the achieved 
experimental results the main merit of the decoupling 
controller lies in much better courses of manipulated 
variables. Increments of manipulated variables between 
individual sampling intervals are smaller.  

 The control tests executed on the laboratory model provide 
very satisfactory results, despite of the fact, that the non–
linear dynamics was described by a linear model. The 
objective laboratory model simulates technological processes, 
which frequently occur in industry. The laboratory tests 
proved that the examined methods could be implemented and 
used successfully to control such processes. 
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