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Abstract: This paper addresses the QR decomposition and UD factorization based square-root
algorithms of the recursive least-squares (RLS) Wiener fixed-point smoother and filter. In the
RLS Wiener estimators, the Riccati-type difference equations for the auto-variance function of
the filtering estimate are included. Hence, by the roundoff errors, in the case of the small value of
the observation noise variance, under a single precision computation, the auto-variance function
becomes asymmetric and the estimators tend to be numerically instable. From this viewpoint,
in the proposed square-root RLS Wiener estimators, in each stage updating the estimates, the
auto-variance function of the filtering estimate is expressed in a symmetric positive semi-definite
matrix and the stability of the RLS Wiener estimators is improved. In addition, in the square-
root RLS Wiener estimation algorithms, the variance function of the state prediction error is
expressed as a symmetric positive semi-definite matrix in terms of the UD factorization method.

1. INTRODUCTION

In the single precision computation of the Kalman filter,
roundoff errors, due to large a priori uncertainty or small
value of the variance of the observation noise, cause numer-
ical instability of the filtering estimate Katayama [1983],
Grewal and Andrews [1993]. To overcome the numerical
difficulties, some computation methods of the Kalman
filter have been presented. One method, to reduce or avoid
the roundoff errors, is to declare the variables, concerned
with the Riccati-type difference equations in the Kalman
filter, by the double precision in the computer program for
the filtering estimate. In the roundoff computation of the
Kalman filter under the single precision, as the number of
iteration for updating the filtering estimate increases, the a
priori error variance function, i.e. the prediction error vari-
ance function, in the Kalman filter tends to be asymmetric.
Hence, in each stage updating the filtering estimate, it is
required to express the a priori error variance function in a
symmetric positive semi-definite matrix. Bucy and Joseh
[1968] demonstrated improved numerical stability by re-
arranging the Kalman filter for observational update. As
square-root algorithms, Potter square-root factorization
Battin [1964], Bierman UD factorization Bierman [1977],
square partitioned UD factorization Morf and Kailath
[1975], etc. Bellantoni and Dodge [1967], Andrews [1968],
Morf et al. [1978] are developed. In Morf and Kailath
[1975], for the Riccati recursion for the variance of the state
prediction error, so-called square-root array (or factored)
estimation algorithm that propagates square-root factors
of the variance function is proposed. Similarly, in Hassibi
et al. [2000], by the QR decomposition, the square-root
algorithm of the H-infinity filter is proposed.

⋆ This work was partially supported by Kagoshima University
including the financial aspect.

As an application of the QR decomposition, a square-
root algorithm is obtained on a linearized model of two-
dimensional shallow water equations for the prediction of
tides and storm surges Verlaan and Heemink [1997]. The
QR decomposition method is applied also to the recursive
least-squares (RLS) adaptive filter Cioffi [1990],Diniz
[2002] for possible implementation in systolic arrays.

As an alternative to the Kalman estimators, the RLS
Wiener fixed-point smoother and filter Nakamori [1995]
are known. This paper presents the QR decomposition
and UD factorization based square-root computation al-
gorithms of the RLS Wiener fixed-point smoother and
filter. In the RLS Wiener estimators of [Theorem 1],
the Riccati-type difference equations for the auto-variance
function of the filtering estimate are calculated directly.
However, by the roundoff errors, in the case of the small
value of the observation noise, under the single precision
computation, the auto-variance function becomes asym-
metric and the estimators tend to be numerically insta-
ble. From this viewpoint, in the calculation of the RLS
Wiener estimates, in each stage updating the estimates, it
is required that the auto-variance function of the filtering
estimate is expressed in a symmetric positive semi-definite
matrix.

In the QR decomposition, concerned with the Riccati-type
difference equations, the prediction error variance function
of (17) is required as a priori information. Here, in terms of
the UD factorization of a matrix, whose elements includes
the information of the variance of the filtering estimate at
the previous stage, the system matrix and the variance of
the state vector, as shown in (20), the prediction error
variance function is expressed as a symmetric positive
semi-definite matrix. By the QR decomposition of a matrix
AT (k−1) in (22), the updated auto-variance function S(k)
of the filtering estimate of the state vector at time k is
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given by (30). However, in terms of the UD factorization
as (31), S(k) is represented by (32) as a symmetric matrix
and its positive semi-definiteness is assured. Hence, it is
considered that the proposed square-root RLS Wiener
estimators of [Theorem 2] improve the stability of the
RLS Wiener estimators of [Theorem 1].

In a numerical simulation example of section 4, the square-
root RLS Wiener estimation algorithms of [Theorem 2],
based on the QR decomposition and the UD factoriza-
tion, are compared, in estimation accuracy, with the RLS
Wiener estimation algorithms of [Theorem 1].

2. LEAST-SQUARES ESTIMATION PROBLEM

Let an m-dimensional observation equation be given by

y(k) = z(k) + v(k), z(k) = Hx(k) (1)

in linear discrete-time stochastic systems. Here, z(k) is a
signal, H is an m × n observation matrix, and x(k) is a
state vector. v(k) is white observation noise. Also, let the
state equation for the state vector x(k) be expressed by

x(k + 1) = Φx(k) + Γw(k), (2)

where Φ is a system matrix or a state-transition matrix and
w(k) is an r-dimensional white noise input. It is assumed
that the observation noise and the input noise are mutually
independent, the signal and the observation noise are also
independent and are zero mean. Let the auto-covariance
functions of v(k) and w(k) be given by

E[v(k)vT (j)] = RδK(k − j), R > 0, (3)

E[w(k)wT (j)] = QδK(k − j), Q > 0. (4)

Here, δK(k − j) denotes the Kronecker δ function.

Let Kx(k, j) = Kx(k − j) represent the auto-covariance
function of the state vector, and let Kx(k, j) be expressed
in the form of

Kx(k, j) =

{
A(k)BT (j), 0 ≥ j ≥ k,
B(k)AT (j), 0 ≤ k ≤ j,

(5)

in wide-sense stationary stochastic systems Nakamori
[1995]. Here, A(k) = Φk, BT (j) = Φ−jK(j, j) = Φ−jK(0),
where K(0) represents the variance of x(k).

Let a fixed-point smoothing estimate x̂(k, L) of x(k) be
expressed by

x̂(k, L) =

L∑

i=1

h(k, i, L)y(i), 1 ≤ k ≤ L, (6)

as a linear transformation of the observed value y(i),
1 ≤ i ≤ L. In (6), h(k, i, L) is a time-varying impulse
response function and k is the fixed point respectively.

Let us consider the estimation problem, which minimizes
the mean-square value

J = E[||x(k)− x̂(k, L)||2] (7)

of the fixed-point smoothing error. From an orthogonal
projection lemma Sage and Melsa [1971],

x(k) −

L∑

i=1

h(k, i, L)y(i) ⊥ y(j), 0 ≤ j, k ≤ L, (8)

the impulse response function satisfies the Wiener-Hopf
equation

E[x(k)yT (j)] =
L∑

i=1

h(k, i, L)E[y(i)yT (j)]. (9)

Here ’⊥’ denotes the notation of the orthogonality.

Substituting (1) and (3) into (9), we obtain

h(k, j, L)R = K(k, j)HT −

L∑

i=1

h(k, i, L)HKx(i, j)HT .

(10)

3. SQUARE-ROOT COMPUTATION OF RLS
WIENER ESTIMATORS

Under the linear least-squares estimation problem of the
signal z(k) in section 2, at first, [Theorem 1] shows
the RLS Wiener fixed-point smoothing and filtering al-
gorithms Nakamori [1995], which use the covariance in-
formation of the signal and observation noise.

[Theorem 1] Nakamori [1995]

Let the auto-covariance function Kx(k, k) of x(k) be
expressed by (5), and let the variance of white observation
noise be R. Then, the RLS Wiener algorithms for the fixed-
point smoothing and filtering estimates consist of (11)-(16)
in linear discrete-time stochastic systems.

Fixed-point smoothing estimate of the signal z(k) at the
fixed point k: ẑ(k, L) = Hx̂(k, L)

Fixed-point smoothing estimate of the signal x(k) at the
fixed point k: x̂(k, L)

x̂(k, L) = x̂(k, L − 1) + h(k, L, L)

× (y(L) − HΦx̂(L − 1, L− 1)) (11)

Smoother gain: h(k, L, L)

h(k, L, L) = (Kx(k, k)(ΦT )L−kHT

− q(k, L − 1)ΦT HT )

× (R + HKx(k, k)HT

− HΦS(L − 1)ΦT HT )−1 (12)

q(k, L) = q(k, L − 1)ΦT + h(k, L, L)H

× (Kx(L, L)− ΦS(L − 1)ΦT ),

q(k, k) = S(k) (13)

Filtering estimate of the signal z(k): ẑ(k, k) = Hx̂(k, k)

Filtering estimate of x(k): x̂(k, k)

x̂(k, k) = Φx̂(k − 1, k − 1) + Kg(k)
×(y(k) − HΦx̂(k − 1, k − 1)), x̂(0, 0) = 0

(14)

Auto-variance function of the filtering estimate x̂(k, k):
S(k)

S(k) = ΦS(k − 1)ΦT

+Kg(k)H(Kx(k, k) − ΦS(k − 1)ΦT ),
S(0) = 0

(15)

Filter gain Kg(k)
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Kg(k) = (Kx(k, k)HT − ΦS(k − 1)ΦT HT )

× (R + HKx(k, k)HT − HΦS(k − 1)ΦT HT )−1

(16)

In the calculation of (12), for the matrix inversion (R +
HKx(k, k)HT−HΦS(k−1)ΦT HT )−1 to exist, since R > 0
from (3), the positive semi-definiteness HKx(k, k)HT −
HΦS(k − 1)ΦT HT ≥ 0 must be guaranteed. Similarly,
in the calculation of the Riccati-type difference equations
(15) for the variance function S(k) of the filtering estimate
x̂(k, k), HKx(k, k)HT − HΦS(k − 1)ΦT HT ≥ 0 must
be satisfied for the nonsingular matrix condition R +
HKx(k, k)HT − HΦS(k − 1)ΦT HT > 0 to be valid.

In the following, taking into account also of this point,
let us consider on the QR decomposition and UD factor-
ization based square-root algorithms of the RLS Wiener
estimators of [Theorem 1].

Let the prediction error variance function Kx(k, k) −
HΦS(k − 1)ΦT be represented by

K
x̃
(k − 1, k − 1) = Kx(k, k)− ΦS(k − 1)ΦT . (17)

From (16), (15) is written as

S(k) = ΦS(k − 1)ΦT + K
x̃
(k − 1, k − 1)HT

× (R + HK
x̃
(k − 1, k − 1)HT )−1HK

x̃
(k − 1, k − 1).

(18)

In [Theorem 1], from the function S(k − 1) etc., S(k) is
updated. In terms of a factorization of[

Kx(k − 1, k − 1) ΦS0.5(k − 1)
S0.5(k − 1)ΦT I

]

=

[
U1(k − 1) ΦS0.5(k − 1)

0 I

]

[
D1(k − 1) 0

0 I

]
×

[
UT

1
(k − 1) 0

S0.5(k − 1)ΦT I

]

=




U1(k − 1)D1(k − 1)UT

1
(k − 1)

+ΦS(k − 1)ΦT ΦS0.5(k − 1)

S0.5(k − 1)ΦT I



 ,

(19)

it is seen that K
x̃
(k − 1, k − 1) is given by

K
x̃
(k − 1, k − 1) = U1(k − 1)D1(k − 1)UT

1
(k − 1) (20)

as a symmetric positive semi-definite matrix.

Let a square matrix A(k − 1) be given by

A(k − 1) =

[
R0.5 HK0.5

x̃
(k − 1, k − 1)

0 K0.5

x̃
(k − 1, k − 1)

]
, (21)

and let its transpose be expressed in terms of a decompo-
sition of

AT (k − 1) = Q(k − 1)ℜ(k − 1), (22)

where Q(k − 1) is an orthogonal matrix with Q(k −
1)QT (k − 1) = QT (k − 1)Q(k − 1) = I, which is an m + n
identity matrix. Here, let ℜT (k − 1) be an m + n square
lower triangular matrix expressed by

ℜT (k − 1) =

[
X(k − 1) 0
Y (k − 1) Z(k − 1)

]
. (23)

From (22), since A(k − 1) = ℜT (k − 1)QT (k − 1), the
relationship A(k−1)Q(k−1) = ℜT (k−1) is valid. Namely,
the orthogonal matrix Q(k−1) transforms A(k−1) to the
lower triangular matrix ℜT (k − 1) as[

R0.5 HK0.5

x̃
(k − 1, k − 1)

0 K0.5

x̃
(k − 1, k − 1)

]
Q(k − 1)

=

[
X(k − 1) 0
Y (k − 1) Z(k − 1)

]
. (24)

From the calculation[
R0.5 HK0.5

x̃
(k − 1, k − 1)

0 K0.5

x̃
(k − 1, k − 1)

]
Q(k − 1)QT (k − 1)

×

[
R0.5 HK0.5

x̃
(k − 1, k − 1)

0 K0.5

x̃
(k − 1, k − 1)

]T

=

[
X(k − 1) 0
Y (k − 1) Z(k − 1)

] [
X(k − 1) 0
Y (k − 1) Z(k − 1)

]T

,

it follows that

X(k − 1)XT (k − 1) = R + HK
x̃
(k − 1, k − 1)HT , (25)

X(k − 1)Y T (k − 1) = HK
x̃
(k − 1, k − 1), (26)

Z(k − 1)ZT (k − 1) + Y (k − 1)Y T (k − 1)

= K
x̃
(k − 1, k − 1). (27)

From (25)-(27), it is found that

Z(k − 1)ZT (k − 1)

= K
x̃
(k − 1, k − 1) − Y (k − 1)Y T (k − 1)

= K
x̃
(k − 1, k − 1)

− Y (k − 1)XT (k − 1)(X(k − 1)XT (k − 1))−1

× X(k − 1)Y T (k − 1)

= K
x̃
(k − 1, k − 1) − K

x̃
(k − 1, k − 1)HT

× (R + HK
x̃
(k − 1, k − 1)HT )−1

× HK
x̃
(k − 1, k − 1). (28)

From (17), taking account of (15) and (16), we obtain

Z(k − 1)ZT (k − 1)

= K
x̃
(k − 1, k − 1) − ΦS(k − 1)ΦT

− (Kx(k − 1, k − 1) − ΦS(k − 1)ΦT )HT

× (R + H(Kx(k − 1, k − 1) − ΦS(k − 1)ΦT )HT )−1

× H(Kx(k − 1, k − 1) − ΦS(k − 1)ΦT )

= Kx(k − 1, k − 1) − S(k). (29)

Hence, the updated value S(k), at time k, is calculated by

S(k) = Kx(k − 1, k − 1) − Z(k − 1)ZT (k − 1). (30)

Also, in terms of a UD factorization of[
Kx(k − 1, k − 1) Z(k − 1)

ZT (k − 1) I

]

=

[
Ũ(k − 1) Z(k − 1)

0 I

]

×

[
D̃(k − 1) 0

0 I

] [
ŨT (k − 1) 0
ZT (k − 1) I

]

=




Ũ(k − 1)D̃(k − 1)ŨT (k − 1)

+Z(k − 1)ZT (k − 1)
Z(k − 1)

ZT (k − 1) I



 , (31)
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S(k) is given by

S(k) = Kx(k − 1, k − 1) − Z(k − 1)ZT (k − 1)

= Ũ(k − 1)D̃(k − 1)ŨT (k − 1) (32)

as a symmetric positive semi-definite matrix. Now, let us
summarize the above result in [Theorem 2].

[Theorem 2]

Let the auto-covariance function Kx(k, s) of x(k) be ex-
pressed by (5), and let the variance of white observation
noise be R. Then, the QR decomposition and UD factoriza-
tion based square-root RLS Wiener estimation algorithms
for the fixed-point smoothing and filtering estimates con-
sist of (33)-(41) in linear discrete-time stochastic systems.

Fixed-point smoothing estimate of the signal z(k) at the
fixed point k: ẑ(k, L) = Hx̂(k, L)

Fixed-point smoothing estimate of the signal x(k) at the
fixed point k: x̂(k, L)

x̂(k, L) = x̂(k, L − 1) + h(k, L, L)

× (y(L) − HΦx̂(L − 1, L − 1)) (33)

Smoother gain: h(k, L, L)

h(k, L, L) = (Kx(k, k)(ΦT )L−kHT

− q(k, L − 1)ΦT HT )

× (R + HU1(L− 1)D1(L− 1)UT
1

(L− 1)HT )−1

= (Kx(k, k)(ΦT )L−kHT

− q(k, L − 1)ΦT HT )(X(L − 1)XT (L − 1))−1

(34)

Here, X(L − 1) is obtained similarly with the calculation
of X(k − 1) in (39) and X(L − 1)XT (L − 1) is a positive
definite matrix from (20) and (25).

q(k, L) = q(k, L − 1)ΦT

+ h(k, L, L)HU1(L − 1)D1(L − 1)UT
1

(L − 1),

q(L, L) = S(L) (35)

Filtering estimate of z(k): ẑ(k, k) = Hx̂(k, k)

Filtering estimate of x(k): x̂(k, k)

x̂(k, k) = Φx̂(k − 1, k − 1) + Kg(k)
×(y(k) − HΦx̂(k − 1, k − 1)), x̂(0, 0) = 0

(36)

Auto-variance function of the filtering estimate x̂(k, k):
S(k)

S(k) = Kx(k − 1, k − 1) − Z(k − 1)ZT (k − 1)

= Ũ(k − 1)D̃(k − 1)ŨT (k − 1), (37)

Here, Ũ(k − 1 and D̃(k − 1) are calculated by the UD
factorization of[

Kx(k − 1, k − 1) Z(k − 1)
ZT (k − 1) I

]
=

[
Ũ(k − 1) Z(k − 1)

0 I

]

×

[
D̃(k − 1) 0

0 I

] [
ŨT (k − 1) 0
ZT (k − 1) I

]
. (38)

Z(k−1) on the left hand side of (38) is obtained, in terms
of the orthogonal matrix Q(k − 1), with Q(k − 1)QT (k −
1) = QT (k−1)Q(k−1) = I, by the lower triangularization
as

[
R0.5 HK0.5

x̃
(k − 1, k − 1)

0 K0.5

x̃
(k − 1, k − 1)

]
Q(k − 1)

=

[
X(k − 1) 0
Y (k − 1) Z(k − 1)

]
,

K
x̃
(k − 1, k − 1) = Kx(k, k) − ΦS(k − 1)ΦT . (39)

Filter gain Kg(k)

Kg(k) = U1(k − 1)D1(k − 1)UT
1

(k − 1)HT

× (R + HU1(k − 1)D1(k − 1)UT
1

(k − 1)HT )−1

= U1(k − 1)D1(k − 1)UT
1

(k − 1)HT

× (X(k − 1)XT (k − 1))−1 (40)

Herein, X(k − 1) is calculated by (39).

K
x̃
(k − 1, k− 1) in (39) is UD factorized as K

x̃
(k − 1, k−

1) = U1(k − 1)D1(k − 1)UT
1

(k − 1).

Here, U1(k − 1) and D1(k − 1) are calculated by the UD
factorization of[

Kx(k − 1, k − 1) ΦS0.5(k − 1)
S0.5(k − 1)ΦT I

]

=

[
U1(k − 1) ΦS0.5(k − 1)

0 I

]

[
D1(k − 1) 0

0 I

]
×

[
UT

1
(k − 1) 0

S0.5(k − 1)ΦT I

]
. (41)

An alternative square-root estimation algorithms is ob-

tained by replacing S0.5(k − 1) with Ũ(k − 21)D̃0.5(k − 2)
in [Theorem 2].

4. A NUMERICAL SIMULATION EXAMPLE

Let a scalar observation equation be given by

y(k) = z(k) + v(k). (42)

Let the observation noise v(k) be zero-mean white Gaus-
sian process with the variance R, N(0, R). Let the auto-
covariance function K(·) of the signal z(k) be given by

K(0) = σ2,

K(m) = σ2{α1(α
2

2
− 1)αm

1
/[(α2 − α1)(α1α2 + 1)]

−α2(α
2

1
− 1)αm

2
/[(α2 − α1)(α1α2 + 1)]}, m > 0, (43)

α1, α2 = (−a1 ±
√

a2

1
− 4a2)/2,

a1 = −0.1, a2 = −0.8, σ = 0.5. (44)

By referring to Nakamori [1997], the observation vector
H , the variance Kx(k, k) of the state vector x(k) and the
system matrix Φ in the state equation for the state vector
are expressed as follows:

H = [ 1 0 ], Kx(k, k) =

[
K(0) K(1)
K(1) K(0)

]
,

Φ =

[
0 1

−a2 −a1

]
, K(0) = 0.25, K(1) = 0.125. (45)

If we substitute (44) and (45) into the RLS Wiener
estimation algorithms in [Theorem 1] and the square-
root estimation algorithms obtained by replacing S0.5(k−

1) with Ũ(k − 21)D̃0.5(k − 2) in [Theorem 2], we can
calculate the fixed-point smoothing estimate, at the fixed
point, and the filtering estimate of the signal recursively.
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Fig. 1. Signal z(k) and the fixed-point smoothing estimate
ẑ(k, k + 5) in single precision by the square-root RLS
Wiener estimation algorithms in [Theorem 2] vs. k
for the white Gaussian observation noise N(0, 0.52).

Table 1 Mean-square values of filtering errors by the
square-root RLS Wiener filtering algorithm of [Theorem
2] in single precision and by the RLS Wiener filtering
algorithm of [Thorem 1] in double precision.

Observation

noise

MSV of

filtyering errors

by [Theorem 1]

MSV of

filtyering errors

by [Theorem 2]

N(0, 0.12) 0.0989 0.0989
N(0, 0.32) 0.2103 0.2151
N(0, 0.52) 0.3150 0.32265
N(0, 1) 0.4494 0.4575

Table 2 Mean-square values of filtering errors, in the
case of the computation to the efficient 4 decimal places,
by the square-root RLS Wiener filtering algorithm in
[Theorem 2] and by the RLS Wiener filtering algorithm
in [Theorem 1].

Observation

noise

MSV of

filtyering errors

by [Theorem 1]

MSV of

filtyering errors

by [Theorem 2]

N(0, 0.12) 0.0937 0.1005
N(0, 0.32) 0.2602 0.2151
N(0, 0.52) 0.5101 0.3225
N(0, 1) 1.0401 0.4574

Fig.1 illustrates the signal z(k) and the fixed-point
smoothing estimate ẑ(k, k + 5) in single precision by
the square-root RLS Wiener estimation algorithms in
[Theorem 2] vs. k for the white Gaussian observation
noise N(0, 0.52). Fig.2 illustrates the mean-square val-
ues (MSVs) of the fixed-point smoothing errors z(k) −
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(f) MSV for N(0,0.25) by current method

(g) MSV for N(0,0.49) by current method

(h) MSV for N(0,1) by current method

Fig. 2. Mean-square values of the fixed-point smoothing
errors z(k) − ẑ(k, k + Lag) vs. Lag, 1 ≤ Lag ≤ 10,
by the RLS Wiener estimation algorithms, in single
precision, of [Theorem 2] and, in double precision,
of [Theorem 1] for the observation noises N(0, 0.32),
N(0, 0.52), N(0, 0.72) and N(0, 1).

ẑ(k, k + Lag) vs. lag, 1 ≤ Lag ≤ 10, by the RLS Wiener
estimators of [Theorem 1] and the square-root RLS
Wiener estimators for the observation noises N(0, 0.32),
N(0, 0.52), N(0, 0.72) and N(0, 1). In Fig.1 and graphs
(e), (f), (g) and (h), in Fig.2, the square-root estimates
are computed in single precision by MATLAB 7.4. Also,
the QR decomposition and the UD factorization Oguni
and Dongarra [1988] are computed based on the single
precision programs. In graphs (a), (b), (c) and (d) in
Fig.2, the fixed-point smoothing estimate is calculated
in double precision. As shown in Fig.2, the MSVs of
the fixed-point smoothing errors by the square-root RLS
Wiener estimators are less than those by the RLS Wiener
estimators of [Theorem 1] in the case of the observa-
tion noises N(0, 0.52) for 7 ≤ Lag ≤ 10, N(0, 0.72) for
2 ≤ Lag ≤ 10, and N(0, 1) for 2 ≤ Lag ≤ 10. Table
1 shows the MSVs of the filtering errors by the square-
root RLS Wiener filtering algorithm in single precision
and by the RLS Wiener filtering algorithm of [Theorem
1] in double precision. From Table 1, it is seen that the
both filtering algorithms show the almost same estimation
accuracies. Fig.3, in the case of the computation to the
efficient 4 decimal places, illustrates the MSVs of the fixed-
point smoothing errors by the estimators of [Theorem 1]
and the square-root estimators. Graphs (a), (b), (c) and
(d) are computed by the estimators in [Theorem 1] and
graphs (e), (f), (g) and (h) are computed by the square-
root estimators. For lag = 1, the MSV by the square-root
RLS Wiener fixed-point smoother are smaller than that
by the RLS Wiener fixed-point smoother for respective
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Fig. 3. Mean-square values of the fixed-point smoothing
errors z(k)− ẑ(k, k + Lag) vs. Lag, 1 ≤ Lag ≤ 10, by
the RLS Wiener estimation algorithms, in the case
of the computation to the efficient 4 decimal places,
of [Theorem 2] and, in the double precision, of
[Theorem 1] for the observation noises N(0, 0.32),
N(0, 0.52), N(0, 0.72) and N(0, 1).

observation noise. Table 2, in the case of the computation
to the efficient 4 decimal places, shows the MSVs of the
filtering errors by the square-root RLS Wiener filtering
algorithm of [Theorem 2] and by the RLS Wiener fil-
tering algorithm in [Theorem 1]. As the variance of the
observation noise becomes large, in comparison with the
MSV calculated under the double precision, the MSV of
the filtering errors by the filter in [Theorem 1] has a
tendency to increase. However, the proposed square-root
filter, in the case of the computation to the efficient 4
decimal places, has almost the same estimation accuracy
with the filter of [Thorem 1] under double precision.
Here, the MSVs of the fixed-point smoothing and filtering
errors are calculated by

∑
2000

k=1
(z(k)−ẑ(k, k+Lag))2/2000

and
∑

2000

k=1
(z(k) − ẑ(k, k))2/2000 respectively.

For references, the AR model, which generates the signal
process, is given by

z(k + 1) = −a1z(k) − a2z(k − 1) + w(k + 1), (46)

E[w(k)w(s)] = QδK(k − s), Q = 0.25. (47)

5. CONCLUSION

This paper, to reduce or avoid the roundoff errors, pro-
posed the QR decomposition and UD factorization based
square-root algorithms of the RLS Wiener fixed-point
smoother and filter. The numerical simulation results by
MATLAB 7.4, for the single precision computation, have
shown that the proposed square-root RLS Wiener esti-

mation algorithms have a tendency to improve estimation
accuracy for relatively large variance of the observation
noise in comparison with the RLS Wiener estimation algo-
rithms under double precision cercumstances. Hence, the
proposed square-root estimators have feasible estimation
characteristics in comparison with the RLS Wiener esti-
mation algorithms in [Theorem 1], which calculate the
Riccati-type difference equations directly.

Double-precision variables use 64 bits (8 bytes) of memory
storage and the values are accurately represented to 15
decimal places. The proposed square-root filtering algo-
rithm is superior in estimation accuracy with less memory
in the case of the computation to the efficient 4 decimal
places, to the RLS Wiener filtering algorithm.
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