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Abstract: This paper presents the robust localization of an omnidirectional mobile robot using a 
regular polygonal array of optical mice that are installed at the bottom of a mobile robot. First, 
the basic principle of the proposed localization scheme is explained. Second, the velocity 
kinematics from a mobile robot to an array of optical mice is derived as an overdetermined linear 
system. Third, for a given set of optical mouse readings, the least squares velocity estimation of a 
mobile robot is obtained as the simple average. Fourth, the robustness of the proposed least 
squares velocity estimation against measurement noise, partial malfunction, and imprecise 
installation is analyzed.

1. INTRODUCTION

In the near future, personal service robots are expected 
to come into human daily life as supporters in 
education, leisure, house care, health care, and so on. 
Most of them built on mobile platforms require the 
capability of autonomous navigation in unknown and/or 
dynamic environments. The key ingredients for 
autonomous navigation are viable techniques for map 
building, obstacle detection/avoidance, localization 
(Murphy, 2000; Thrun et al., 2005). The concern of this 
paper is a robust localization method for an 
omnidirectional mobile robot as a platform of personal 
service robots.

Typical sensors used for the localization of a 
commercial mobile robot include encoders, ultrasonic 
sensors, and cameras (Borenstein et al., 1996). However, 
encoders are vulnerable to wheel slip, ultrasonic sensors 
require the line of sight, and cameras usually mandate 
heavy computation. There have been several attempts to 
employ the optical mice for the localization of a mobile 
robot (O'Hara, 2001; Sorenson et al., 2003; Lee et al., 
2004; Bonarini et al., 2004; Singh et al., 2004; Kim et 
al., 2006). In fact, the optical mouse is an inexpensive 
but high performance device with sophisticated image 
processing engine (Horn et al., 1981; Alden 2002). The 
velocity estimation of a mobile robot using a set of 
optical mice can overcome to some extent the 
aforementioned limitations of typical sensors. 

For the localization of an omnidirectional mobile robot 
on the plane, three variables including two positional 
coordinates and the steering angle need to be 
determined.  Since an optical mouse provides two 
positional information, the required number of optical 
mice should be more than or equal to two. Most of 
previous research (Sorenson et al., 2003; Lee et al., 
2004; Bonarini et al., 2004; Singh et al., 2004) use two 

optical mice, while only a single optical mouse is used 
in (O'Hara, 2001). However, few attempt has been made 
to use more than two optical mice except (Kim et al., 
2006).

In this paper, we present the robust localization of a 
mobile robot using the redundant number of optical mice 
arranged in a regular polygonal array. This paper is 
organized as follows. Section 2 explains the basic 
principle. Section 3 derives the velocity kinematics as an 
overdetermined system. Section 4 obtains the least 
squares velocity estimates as the simple average. 
Sections 5, 6, and 7 analyze the robustness of the 
proposed least squares velocity estimation against 
measurement noise, partial malfunction, and imprecise 
installation.
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Fig. 1. The basic principle of the proposed localization 
system.

2. BASIC PRINCIPLE

To explain the basic principle of the proposed 
localization method, let us consider a regular triangular 
array of optical mice attached at the bottom of a mobile 
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robot. Generally, the traveling pattern of a mobile robot 
can be specified in terms of the location of ICR 
(Instantaneous Center of Rotation) on the plane. For 
three different traveling patterns of a mobile robot, Fig. 
1 shows the linear velocities observed by a regular 
triangular array of optical mice. 

When a mobile robot is rotating with ICR apart from 
the center of a mobile robot as shown in Fig. 1a), three 
velocity vectors are different in both direction and 
magnitude. When a mobile robot is moving straight as 
shown in Fig. 1b), corresponding to the case of ICR at 
infinity, three velocity vectors become the same in both 
direction and magnitude. When a mobile robot is 
rotating with ICR coincident with the center of a mobile 
robot as shown in Fig. 1c), three velocity vectors 
become different in direction but the same in magnitude. 
Theses observations tells that a different traveling pattern 
of a mobile robot results in a set of different velocity 
readings of an array of optical mice. Reversely, it is 
possible to estimate the linear and angular velocities of 
a traveling mobile robot from the velocity readings of 
optical mice. 

Fig. 2. A regular triangular array of optical mice with 
N=3.

3. VELOCITY KINEMATICS

Assume that N optical mice are installed at the vertices, 
P i, i= 1,…,N , of a regular polygon that is  centered at 
the center, O b , of a mobile robot traveling on the xy  
plane. Fig. 2 shows an example of a regular triangular 
array of optical mice with N= 3 . Let u x= [ 1 0 ]

t 
and u y= [ 0 1 ]

t be the unit vectors along the x axis 
and the y axis, respectively. The position vector, 
p i = [ p ix p iy ]

t
, i= 1,…,N , from O b to P i, can be 

expressed as

p i =  [ ]p ixp iy  =  
ꀎ

ꀚ

︳︳︳︳︳︳︳

ꀏ

ꀛ

︳︳︳︳︳︳︳

r cos {θ+ ( i-1)×
2π
N
}

r sin {θ+ ( i-1)×
2π
N
}

 (1)

where θ  represents the heading angle of a mobile robot 
with the forwarding direction aligned with p 1 , and r  

represents the distal distance of each optical mouse. Due 
to the regular polygonal arrangement of optical mice, it 
holds that

 ∑
N

i= 1
p ix =  ∑

N

i= 1
p iy =  0  (2)

regardless of the heading angle θ . For notational 
convenience, let q i, i= 1,2,3 , be the vector obtained 
by rotating p i by 90 o  counterclockwise.

In this paper, we assume that a mobile robot has the 
omnidirectional mobility on the xy  plane. Let
v b= [ v bx  v by ]

t and w b be the linear velocity and the 
angular velocity at the center O b  of a mobile robot, 
respectively. And, let v i= [ v ix v iy ]

t
, i= 1,…,N , be the 

linear velocity at the vertex P i, which corresponds to 
the velocity readings of the i th  optical mouse. Then, 
there holds the following velocity relationship:

v b + ω b q i = v i (3)

Premultiplied by u x

t and u y

t, (3) gives

u x
t
v b +  ω b u x

t
q i = u x

t
v i (4)

u y
t
v b  +  ω b u y

t
q i = u y

t
v i (5)

respectively. Referring to Fig. 2, (4) and (5) can be 
rewritten as

  v bx - wb×p iy =  v ix (6)
  v by + wb×p ix =  v iy (7)

From (6) and (7), the velocity mapping from a mobile 
robot to an array of optical mice can be represented as

A x ̇ = Θ ̇ (8)

where

ẋ = 
ꀎ

ꀚ

︳︳︳︳

ꀏ

ꀛ

︳︳︳︳

vbx 
vby 
ω b 

 (9)

Θ ̇ = 
ꀎ

ꀚ

︳︳︳︳︳︳︳︳︳︳︳︳

ꀏ

ꀛ

︳︳︳︳︳︳︳︳︳︳︳︳

Θ ̇ 1 
Θ ̇ 2 
⋯ 

Θ ̇N 
 ∈ R

2N×1
 with Θ ̇ i = [ ]v ix 

v iy 
 (10)

A = 

ꀎ

ꀚ

︳︳︳︳︳︳︳︳︳︳

ꀏ

ꀛ

︳︳︳︳︳︳︳︳︳︳

A1 

A2 
 ⋯ 
AN 

 ∈ R
2N×3  (11)

with

A i =  [ ] 1 0 -p iy 
0 1 p ix

 (12)

Note that the expression of A is quite simple as a 
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function of the position vectors, 
p i=[ p ix p iy ]

t, i=1,…,N. It should be mentioned that 
such simplicity of A  is effective for a general polygonal 
array of optical mice.

In the case of N=1 , (8) represents two equations of three 
unknowns, including two linear velocity components, v bx  
and v by , and one angular velocity component, w b . Thus, 
(8) becomes an underdetermined system, which implies 
that the mobile robot velocity cannot be uniquely 
determined from the optical mouse readings. However, for 
N≥2 , (8) becomes an overdetermined system consisting of 
2N  equations, for which the least squares solution can be 
sought. From now on, it is assumed that the number of 
optical mice in use is greater than or equal to two, that is, 
N≥2 .

4. VELOCITY ESTIMATION

Typically, the velocity readings of an optical mouse 
suffer from two kinds of the inaccuracy caused by both 
systematic and nonsystematic errors (Borenstein et al., 
1996). Here, we assume that the calibration has been 
performed to compensate all systematic errors involved. 
Under this assumption, the measurement model of a 
array of optical mice can be expressed as

Θ̇ = A ẋ + n  (13)

where

n= [ n 1 n 2 … n 2N ]
t ∈ R

2N×1 (14)

with ni, i=1,…,2N, being independent zero mean 
measurement noise with constant covariance. 

From (13), the least squares estimation can be obtained 
by (Bar-shalom et al., 2001)

x̂̇  = B Θ̇ (15)

where

x ̇ˆ = 
ꀎ

ꀚ

︳︳︳︳︳︳

ꀏ

ꀛ

︳︳︳︳︳︳

v̂ bx 

v̂ by 

ω̂ b 

                         (16)  

B =  ( A
t
A )-1 A

t
 ∈ R

3×2N                  (17)

which is the generalized inverse of A . (15) represents 
the estimated velocity of a mobile robot from the noisy 
optical mouse readings which minimizes the quadratic 
error, given by || A ẋ - Θ̇ ||

2. Note that the lease 
squares estimation obtained above becomes equivalent to 
the maximum likelihood estimation under the additional 
assumption that the measurement noise n i, i=1,…,2N, 
are Gaussian  (Bar-shalom et al., 2001).

For a general polygonal array of optical mice, it can be 
shown that

A
t
A =  

ꀎ

ꀚ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀏ

ꀛ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

N 0 -∑
N

i=1
p iy 

0 N ∑
N

i=1
p ix 

- ∑
N

i=1
p iy ∑

N

i=1
p ix ∑

N

i=1
|| p i ||

2 

 (18)

Since

 1
N
×|| ∑

N

1
p i ||

2 <  ∑
N

1
 || p i ||

2 (19)

the inverse of A
t
A always exists independent of  the 

heading angle θ  of a mobile robot, which guarantees 
the observability of the measurement model, given by 
(13).

For a regular polygonal array of optical mice, for which 
(2) holds, we have

A
t
A = 

ꀎ

ꀚ

︳︳︳

ꀏ

ꀛ

︳︳︳

 N 0 0 
 0 N 0 
 0 0 Nr

2

 (20)

Using (1), (11), (12), and (20), (17) can be obtained by

B = [ ]B1 B2 … BN  ∈ R
3×2N (21)

where

B i = 
1
N

ꀎ

ꀚ

︳︳︳︳︳︳︳

ꀏ

ꀛ

︳︳︳︳︳︳︳

1 0
0 1

-
1
r
sin {θ+

( i-1)2π
N

}
1
r
cos {θ+

( i-1)2π
N

}  
                                              (22)

Finally, for given velocity readings of N optical mice,
Θ ̇= [ v 1x v 1y v 2x v 2y  … v Nx v Ny ] t, the linear and 

angular velocity components of a mobile robot,
x ̇ˆ = [ v̂ bx v̂ by ω̂ b ]

t, can be obtained, from (15), 
(21), and (22), as follows:

 

v̂ bx =
1
N ∑

N

i= 1
v ix

v̂ by =
1
N ∑

N

i= 1
v iy

ŵ b =
1
N ∑

N

i= 1
w i

 (23)

where

wi =                                                

1
r [- sin {θ+

( i-1)2π
N }×v ix+ cos {θ+ ( i-1)2π

N }×v iy]
 (24)

which represents the angular velocity experienced by  
the i

th  optical mouse. Regarding The velocity 
estimation based on (23), the following remarks need to 
be made. First, the angular velocity estimate, ŵ b, is 
dependent on the heading angle θ, while the linear 
velocity estimates, v̂ bx and v̂ by, are not. Second, each of 
three velocity estimates is determined as the simple 
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average of the corresponding velocity components read 
from all the optical mice. Such computational simplicity 
is attributed to the arrangement of optical mice in a 
regular polygonal array centered at the center of a 
mobile robot. 

5. MEASUREMENT NOISE

The redundant number of optical mice helps to reduce 
the effect of the measurement noise accompanying the 
velocity readings from optical mice. Suppose that a 
mobile robot stands still without moving, that is, 
v bx= v by= 0.0 [m/ sec ]  and w b=0.0  [ rad/ sec ]. Now, 

the optical mouse readings come solely from unbiased 
random noise which are assumed to be independent and 
identical. For instance, the mean and the standard 
deviation of random noise are given respectively  by

E [v 1x] = E [v 2x] =  … = E [vNx] =  0
std [v 1x] = std [v 2x] =  … = std [vNx] =  σ

 (25)

For the mobile robot velocity estimation based on (23), 
it can be shown that for instance, 

E [v bx] = 0

std [v bx] =
σ
N

 (26)

(26) tells that the greater the number of optical mice, 
the smaller the velocity estimation error, under the same 
level of measurement noise. As the number of optical 
mice is  increased from N(≥2) to (N+1), the percent 
improvement in accurate velocity estimation is given by

PI = (1- N
N+1 )×100                        (27)

Note that the percent improvement is more significant 
for the smaller number of optical mice.

6. PARTIAL MALFUNCTION

The sucess of the velocity estimation based on (23) is 
heavily dependent on whether all the optical mice 
function properly. It is very important to detect and 
isolate malfunctioning optical mice, if any, from the 
velocity estimation. Here, we propose a simple but 
effective means to cope with the partial malfunction by 
using the redundant number of optical mice. The basic 
rationale is that the velocity estimation based on (23) 
can be considered as a process of building consensus 
among all the optical mice of equal privilege. 

For a given mobile robot velocity estimate, x ̇ˆ , the 
residual of the i th  optical mouse is given by (Golub, 
1996)

Δ Θ̇ i = Θ̂̇ i - Θ ̇ i (28)

where

Θ ̇ˆ i = A i x ̇ˆ (29)

which represents the expected velocity readings of the 
i
th optical mouse. For the i

th  optical mouse, we 
consider the magnitude of the residual Δ Θ̇ i, given by

 ρ i = || Θ̂̇ i - Θ̇ i || (30)

which represents the discrepancy between the expected 
and the actual velocity readings. Using (10), (30) can be 
expressed as

ρ i
2  =  ( v̂ ix- v ix)

2 + ( v̂ iy- v iy)
2 (31)

which can be easily computed. 

The residual magnitude ρ i can be interpreted as a 
measure of inconformity of the i th  optical mouse to 
the consensus reached by all the optical mice. If the 
degree of inconformity exceeds a prespecified threshold, 
then it would be reasonable to isolate the problematic 
optical mice in order to search for a new consensus 
among the remaining ones. Supposing that the k

th 
optical mouse is malfunctioning, the new velocity 
estimation can be made under

A = 

ꀎ

ꀚ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀏ

ꀛ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

A1 
 ⋯ 
A k-1 

A k+1 
 ⋯ 
AN 

 ∈ R
2(N-1)×3 (32)

B = [ ]B1 … B k-1 B k+1 … BN  ∈ R
3×2(N-1) (33)

which results in

v̂ bx =
1
N-1 ∑

N

i= 1, i≠k
v ix

v̂ by =
1
N-1 ∑

N

i= 1, i≠k
v iy

ŵ b =
1
N-1 ∑

N

i= 1, i≠k
w i

 (34)

Fig. 3. Partial malfunction: a) before remedy and b) 
after remedy. 

Notice that two velocity readings from the 
malfunctioning optical mouse are ignored simultaneously. 
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With Δ Θ ̇ i = [ Δv ix Δv iy ] t, Fig. 3a) illustrates a situation 
in which one optical mouse is suspected of malfunction 
out of a total of three optical mice. Fig. 3b) illustrates a 
situation in which the malfunctioning optical mouse is 
excluded from the new velocity estimation. It should be 
mentioned that the redundant number of optical mice 
contributes to the robustness of the velocity estimation 
against partial malfunction as well as measurement noise.

7. IMPRECISE INSTALLATION

In practice, it may be rather difficult to install optical 
flow sensors in a regular polygonal array symmetric 
with respect to the center of a mobile robot without 
installation error. Let us examine the sensitivity of the 
velocity estimation based on (23) to imprecise 
installation of optical flow sensors. Suppose that the 
position error vector, δp i, of the i th optical flow sensor 
is described by

δp i =  [ ]δp ix
δp iy

 (35)

where δp ix and δp iy, i=1,…,n, represent the deviation 
from the vertices of a regular polygon due to imprecise 
installation.

In the presence of installation error, the velocity 
kinematics, given by (8), can be expressed 

 ( A + δA )( x ̇ + δ x ̇ ) = Θ̇ + δ Θ̇ (36)

where

δ x ̇ =  ꀎ
ꀚ

︳︳︳︳

ꀏ

ꀛ

︳︳︳︳

δvbx
δvby
δ ω b

 ∈ R
3×1 (37)

δA = 

ꀎ

ꀚ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀏ

ꀛ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

0 0 -δp 1y 
0 0 δp 1x
0 0 -δp 2y 
0 0 δp 2x

⋯ ⋯ ⋯

0 0 -δpNy
0 0 δpNx

∈ R
2N×3 (38)

(38) represents the perturbation on A owing to 
imprecise installation, and (37) represents the resulting 
error in velocity estimation of a mobile robot.

Premultiplied by ( A + δA ) t, (36) becomes

( A
t
+ δA

t
 )( A + δA )( x ̇ + δ x ̇ ) =    

( A
t
+ δA

t
 )( Θ ̇ + δ Θ̇ ) (39)

Assuming that the installation error and the resulting 
estimation error are small enough, we have

δA
t
δA ≃ 0 2×2 (40)

( δA
t
A + A

t
δA ) δ x ̇ ≃ 0 2 (41)

δA
t
δ Θ ̇ ≃ 0 2 (42)

Under the assumption of (40), (41), and (42), (39) can 
be approximated as

P ẋ + P δ x ̇ + δP ẋ = A
t
Θ̇ + δA

t
Θ̇ + A

t
δ Θ̇ 
 (43)

or

P δ ẋ + δP ẋ = δA
t
Θ̇ + A

t
δ Θ̇ (44)

where

P = A
t
A = 

ꀎ

ꀚ

︳︳︳

ꀏ

ꀛ

︳︳︳

 N 0 0 
 0 N 0 
 0 0 Nr

2

 (45)

δP = δA
t
A + A

t
δA

=

ꀎ

ꀚ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀏ

ꀛ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

0 0 -∑
N

i=1
δp iy 

0 0 ∑
N

i=1
δp ix 

- ∑
N

i=1
δp iy ∑

N

i=1
δp ix 2×∑

N

i=1
(p ixδp ix+ p iyδp iy) 

 (46) 

Finally, from (44), the effect on the least squares 
velocity estimate owing to imprecise installation of 
optical flow sensors can be approximated by

δ x ̇ ≃ δ x ̇ 1  + δ x ̇ 2  + δ x ̇ 3 (47)

where

δ x ̇ 1 = - P
-1
δP x ̇ (48)

δ x ̇ 2 = P
-1
δA

t
Θ ̇ (49)

δ x ̇ 3 = P
-1
A
t
δ Θ ̇ (50)

8. CONCLUSION

In this paper, we proposed the robust localization of an 
omnidirectional mobile robot using a regular polygonal 
array of optical mice that are installed at the bottom of 
a mobile robot. First, the basic principle of the proposed 
method was explained. Second, the velocity kinematics 
from a mobile robot to an array of optical mice was 
derived as an overdetermined system. Third, for a given 
set of optical mouse readings, the least squares velocity 
estimate of a mobile robot was obtained as the simple 
average. Fourth, the robustness analysis of the proposed 
least squares velocity estimation against measurement 
noise, partial malfunction, and imprecise installation was 
made.
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