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Abstract: We consider a multi-production two-stage forward/reverse logistics system design problem 

where a fixed number of capacitated distribution/reclaiming centers are to be located with respect to 

capacitated suppliers  and retail locations  while minimizing the total costs, and take the random of 

demand/reclaiming into consideration. We also provide hybrid heuristic procedures for the solution of the 

problem, and develop transshipment heuristic to improve the duration of the hybrid approaches. Finally 

we present extensive computational results that show the high performance and effectiveness of the 

solution approaches. 

 

1. INTRODUCTION 

In general, a production forward/reverse logistics system 

design involves the determination of the best configuration, 

regarding location and size of the plants and 

distribution/reclaiming centers, their technology content, and 

product offerings and transportation decisions. In this paper, 

we consider a multi-production two-stage forward/reverse 

logistics system design problem where a fixed number of 

capacitated distribution /reclaiming centers are to be located 

with respect to capacitated suppliers and customers while 

minimizing the total costs.  DCs can be seen as breakbulk and 

consolidation locations where the consolidated product 

shipments from plants are sorted and combined for shipment 

to retail locations to satisfy the demand at these sites. 

Under these assumptions, we are interested in locating P  

DCs/RCs so that the total fixed location costs at the second 

level and the transportation costs at the stages is minimized 

without violating the capacity restrictions at the plant and DC 

levels. Thus, the problem considered in this paper involves 

strategic DC/RC location decisions and, mostly tactical, 

retailer-to-DC and DC-to-plant assignment decisions. 

Considerable attention has been devoted to these models for 

the location of plants and DCs. Several comprehensive 

reviews have been published in the last years (Geoffrion,et 

al.,1995;Erenguc,et al., 1997).  

This paper makes several contributions to the existing 

literature. First, we consider a two-stage multi-production 

forward/reverse logistics system design problem, and handle 

the random of demand/reclaiming. Second, we develop 

customized meta-heuristic approaches with memory 

components. Third, the mathematical model reflects the 

potential cost savings that are due to economies of scale. The 

heuristic solution approaches can easily accommodate such 

changes in models and are equally applicable under these 

operational characteristics. 

2.RELATED LITERATURE 

Solution approaches related to our problem are optimization 

algorithms within the framework of Benders � 

decomposition (Geoffrion, 1974), heuristics based on branch-

and-bound (Kaufman,et al., 1977; H. Ro,et al., 1984), and 

Lagrangian relaxation (Pirkul and Jayaraman, 1996, 1998). 
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However, these techniques consume extensive amounts of 

time and effort in finding optimal solutions for realistically 

sized problems. On the other hand, in (Syarif,et al., 2002; 

Keskin,et al., 2007 ), the genetic algorithms are shown to be 

effective in solving relatively large size problems, 

respectively.  

How ever, the common ground of above approaches is that 

they do not take reverse logistics into consideration, not to 

mention handling the random of damand/reclaiming. Our 

work integrates some assumptions of (Geoffrion,et al.,1974;  

Pirkul,et al., 1998) with (Keskin,et al., 2007). Geoffrion and 

Graves develop and implement a solution technique. There 

are several distinctions between the assumptions in 

(Geoffrion,et al., 1974) and our study. The first distinction is 

that Geoffrion and Graves include the restriction that 

customers cannot be served by more than one DC (single-

sourcing). Second, they employ four-index variables to 

represent the flow of products from plants to retailers through 

DCs. In our study, we employ seven-index variables for both 

stages that are connected via flow conservation at the DCs. 

Furthermore, in (Geoffrion,et al., 1974), each plant has a 

specific capacity dedicated to each product. In our work, we 

assume that each plant has an overall flexible capacity that 

can be utilized for different products via switch-overs.  

H.Pirkul and Jayaraman (1998) consider locating both 

capacitated plants and DCs by heuristic based on Lagrangian 

relaxation. However, some of their model assumptions are 

similar to ours. First, the capacity restrictions at the plants are 

not dedicated for each product. Second, they consider multi-

sourcing on the transportation links (plants to DCs and DCs 

to customers) as in our model. Third, they restrict, with an 

upper bound, the number of facilities and plants to be located. 

Burcu B. Keskin and Halit Uster consider a two-stage 

production/distribution system design problem. However 

they only take the forward logistics into consideration. 

3.THE MODEL 

We consider a multi-production two-stage forward/ reverse 

logistics system, in the first stage, the products are 

transported from plants to capacitated distribution centers 

(DCs); and, in the second stage, they are transported from 

DCs to retailer or customer. At the same time, some used 

products or returned products are transported from retailer or 

customer to reclaiming centers (RCs). For simplicity, the 

DCs are the RCs. We assume that product mixes and 

capacities at established plant locations as well as the demand 

for different products at retail locations are known, and there 

exists a set of DCs/RCs to be located with capacity 

limitations. There are multi-commodities flowing, the 

demand at the retailers is constant, it is specific for each 

retailer and each product, the demand quantity and the 

reclaiming quantity are independent variables.  

In this setting we determine how much of each product to 

transport from plants to DCs and from DCs to retailers, and 

how much reclaiming to transport from customers to RCs in 

such a way that the total transportation costs are minimized. 

We use the following notation in a mixed integer 

programming formulation of our problem. 

I     set of customers, mi ,...,1=  

J     set of potential DCs, nj ,...,1=  

K     set of plants, fk ,...,1=  

L     set of products, gi ,...,1=  

P     number of DCs to be located 

ilD   demand at customer Ii ∈  for product Ll ∈  

r

ilD    reclaiming at customer Ii ∈  for product Ll ∈  

jW
  capacity limit at DC Jj ∈  

r

jW
   capacity limit at reclaiming center in DC Jj ∈  

kB    capacity limit at plant Kk ∈  

ijlc
   unit transportation cost of product Ll ∈  from DC 
Jj ∈  to customer Ii ∈  

jklt
   unit transportation cost of product Ll ∈  from plant 
Kk ∈  to DC Jj ∈  

ijlr
   unit transportation cost of reclaiming product Ll ∈  

from customer Ii ∈  to DC Jj ∈  

r

lju
   unit disposal cost of product Ll ∈  in DC Jj ∈ while 

reclaiming quantity exceeds the capacity of reclaiming center 

s

lju
   unit opportunity cost of product Ll ∈  in DC Jj ∈  

while demand be satisfied partially  

c

lju
   unit storage cost of product Ll ∈  in DC Jj ∈  while 

distribution quantity exceeds the demand 

We also define three sets of decision variables: 

jz
   1 if DC and reclaiming center at location j  is used, 0 

o.w., Jj ∈  

ijlx
  amount of product Ll ∈  transported from DC Jj ∈  

to customer Ii ∈  

jkly
 amount of product Ll ∈  transported from plant 

Kk ∈  to DC Jj ∈  

r

ijlx
   amount of product Ll ∈  transported from customer 

Ii ∈  to DC Jj ∈  

d

ijlm
  amount of disposal product Ll ∈  while reclaiming 

quantity exceeds the capacity of reclaiming center 
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s

ijlm
  amount of the lack of product Ll ∈  while demand be 

satisfied partially 

c

ijlm
  amount of the surplus product Ll ∈  distribution 

quantity exceeds the demand 

Then, the problem can be formulated as follows: 

s

ijl
Jj Ll

s

lj

d

ijl
Jj Ll

r

lj

c

ijl
Jj Ll

c

lj
j

Ii Jj Ll

ijlijl

j

Jj Kk Ll

jkljklj

Ii Jj Ll

ijlijl

mumu

muzmr

zytzxc

∑ ∑∑ ∑

∑ ∑∑ ∑ ∑

∑ ∑ ∑∑ ∑ ∑

∈ ∈∈ ∈

∈ ∈∈ ∈ ∈

∈ ∈ ∈∈ ∈ ∈

++

++

+

   

S.t.   

LlIiDmDx r

il

Jj

ijlil

Jj

ijl ∈∀∈∀≤= ∑∑
∈∈

,,,

,           (1) 

Jjzwmzwx j
r

j

Ii Ll

ijljj

Ii Ll

ijl ∈∀≤≤ ∑∑∑∑
∈ ∈∈ ∈

,,

,        (2) 

Jjyx
Kk Ll

jkl

Ii Ll

ijl ∈∀=∑∑∑∑
∈ ∈∈ ∈

,

,                        (3) 

KkBy k

Jj Ll

jkl ∈∀≤∑ ∑
∈ ∈

,

 ,                        (4) 

P=∑
∈Jj

jz
,                                                         (5) 

LlJjIizsx jijlijl ∈∀∈∀∈∀≤ ,,,
,  (6) 

KkJjzRy jjk

Ll

jkl ∈∀∈∀≤∑
∈

,,

,         (7) 

LlKkJj

Iimyx jkljklijl

∈∀∈∀∈∀

∈∀≥≥≥

,,

,,000 ,,

,       (8) 

Jjz j ∈∀∈ },1,0{ .                                     (9) 

In the objective function, the first term represents the costs 

from the DCs to the customers, and the second term is the 

costs from the plants to the DCs, the third term is the reverse 

costs from customers to the RCs, the fourth term represents 

the storage cost of superfluous product in DCs while 

distribution quantity exceeds the demand quantity, the fifth 

term represents the disposal cost of superfluous product in 

RCs while reclaiming quantity exceeds the capacity of 

reclaiming center, and the sixth term is the opportunity cost 

of the lack of demand  in DCs. 

Constraints (1) ensure that demand for each product l  at 

each customer i  is satisfied, and the reclaiming for each 

product l  is less than the capacity limitation of RC j . 

Constraints (2) and (4) ensure the capacity restrictions at the 

DCs, RCs and the plants, respectively. There is no specific 

capacity requirement for each product at the plants and DCs. 

Constraints (3) are for flow conservation at each DC. 

Constraint (5) specifies the number of DCs to be located. In 

constraint set (6), ijls  is given by min{ jil WD ,  } for 

JjIi ∈∈ ,  and Ll ∈ . These constraints state that a 

customer can only be assigned to an open DC. In constraint 

set (7), jkR  is given by min{ kj BW ,  } for Jj ∈  and 

Kk ∈ . They are added to obtain a stronger formulation and 

are implied by constraints (2), (4) and (5). Finally, constraints 

(8) and (9) are non-negativity and integrality constraints. 

4. HYBRID HEURISTIC SEARCH APPROACHES 

In order to determine the set of open DCs/RCs, we use scatter 

search and tabu search meta-heuristics in our solution 

procedures. Scatter search has been implemented in various 

optimization problems (M. Laguna et al., 2003).  

Our hybrid search heuristic operates on a binary vector z  

of size n , which represents the locations of the DCs/RCs. 

Given the locations of the DCs/RCs, i.e., an instance of z , 

we solve the corresponding capacitated transshipment 

problem to optimality. For a given solution vector z , we 

find its objective function value Z  by adding the optimal 

objective value of the capacitated transshipment problem. 

The parameters used in the scatter search are the population 

size max*2 h  where maxh  is the diversification parameter, 

and the number of quality and diverse solutions in the 

reference set, which are denoted by 1b  and 2b , respectively. 

The selection of the parameters has an important effect on the 

performance of the scatter search. We randomly select our 

initial seed solution, a binary vector z , as an input to the 

diversification generation method where we generate a 

population of diverse solutions. 

Step 1: Diversification. This step aims to produce trial 

solutions that differ from each other as significantly as 

possible. We summarize the ideas behind the procedure that 

we select in our implementation (Glover, 1997). Let iz  be 

the elements of a binary solution vector z . Given z  as 

the seed solution, the generator creates max*2 h  new 

solutions. According to Burcu B. Keskin and Halit Uster, the 

first maxh  solutions
max,...,1 hzz

 are generated using an 

incremental parameter k and the following 

expressions:
,1 11 hkhk

h zz ++ −=
.  hnk /,...,1,0= . The 

maximum value of the incremental variable k  changes for 

each value of h . The second maxh  solutions are obtained 

using the relation hZ−1  where h = 1,…,hmax. 

Step 2: Feasibility. The trial solutions are generally infeasible 

due to violations of constraints (2) and constraint (5). First, it 

is likely some of these initial solutions will not satisfy 

constraint (5) since the number of open facilities can be lower 

or higher than the prespecified P -value. The simple rule to 

correct this infeasibility is to open facilities randomly among 

the unused ones if 
∑>

j

jZp
 and, otherwise, to close 

facilities randomly among the open ones until the total 
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number of open facilities is equal to P . Second, we need to 

consider the feasibility of a trial solution in terms of the total 

capacity it provides. If the total capacity provided is less than 

the total demand, we open a facility chosen randomly among 

the unused ones and close a randomly chosen open facility. 

We swap only a pair of facilities between the open and 

unused facility groups until the total capacity feasibility is 

obtained. Therefore, constraint (5) is not violated. We 

continue to correct infeasibilities due to constraints (2) and 

(5) until all of the trial solutions in the population are 

feasible. 

Step 3: Reference set construction. The reference set contains 

a set of good quality and most diverse solutions. The 1b  

quality solutions are selected based on the objective function 

values, i.e., the solutions with the lower total cost values are 

selected as the quality solutions. In order to find 2b  diverse 

solutions, we use the distance between two solutions as a 

diversity measure. We first include the quality solutions in 

the reference set. Then, in the population, we look for a 

solution that is not currently in the reference set and that 

maximizes the minimum distance to all solutions currently in 

the reference set. We include that solution in the reference set 

as the most diverse solution. We continue in this manner until 

we have chosen a total of 2b  diverse solutions. 

Step 4: Subset generator. We generate subsets of the 

reference set solutions that will later be combined into new 

solutions. We use three subset generators to obtain subsets of 

size 2, 3 and 4, known as Type II, Type III and Type IV, 

respectively. Subsets of Type II correspond to the pairs of 

solutions taken from the reference set. A Type III subset is 

formed by including the best quality solution and a pair of 

other solutions from the reference set. The third subset 

generator, Type IV, selects the two highest quality solutions 

from the reference set and joins them with pairs of the 

remaining solutions. 

Step 5: Solution combination. The trial solutions in each 

subset that are generated in the previous steps are combined 

into a new solution by taking a linear combination of the 

solutions it includes. We use the reciprocal of the objective 

values of the solutions as coefficients of the trial solutions. 

Therefore, a solution with a lower objective value receives a 

higher weight. Clearly, an element of a combined solution 

can be a fractional value. In order to obtain a legitimate 

solution, we round each element of the final solution to its 

closest binary value. 

Step 6: Reference set update. After obtaining a new solution, 

we determine whether this solution should be included in the 

reference set. First, if the objective value of the new solution 

is better (i.e., lower objective value) than any of the quality 

solutions in the reference set, we drop the worst solution 

among the quality solutions and add the new solution to the 

reference set. If this is not the case, we check the diversity of 

the new solution. We calculate the distance between the new 

solution and each solution in the reference set. If it is more 

diverse (the most distant) than any of the diverse solutions in 

the reference set, we drop the worst solution (with respect to 

the distance criteria) among the diverse solutions and add the 

new solution to the reference set. Finally, if the new solution 

does not satisfy these two conditions, then it is not eligible to 

be a member of the reference set. In which case, we move to 

the next subset to generate another new solution. If the 

reference set is updated, the algorithm goes back to Step 4 to 

generate new subsets. When the reference set cannot be 

updated further, the scatter search procedure is terminated. 

We implement a tabu search heuristics to improve the result. 

Step 7: Improvement with tabu search meta-heuristics.  Tabu 

search provides an opportunity to escape local optima and 

explore a larger subset of the solution space( Sun, 1998; 

Gendreau,at el,. 1994). 

As before, we represent a solution to our problem with a 

binary vector ),...,1( nzzz =  where Jjjz ∈∈ },1,0{  . Since tabu 

search uses a pair-exchange neighborhood over the sets of 

opened and unopened DC given by β  and φ , respectively. 

A move in this neighborhood corresponds to simultaneously 

changing the jz  value for a β∈j  to zero and the jz value 

for a φ∈j  to one. 

Tabu move restrictions are employed to prevent cycling and 

re-visiting previously visited solutions. We classify a solution 

obtained by a pair-exchange as a tabu if it corresponds to 

closing a DC which was opened in a recent accepted solution 

in the course of the procedure. The recency refers to the fact 

that tabu status is not permanent for an open DC. We employ 

a tabu tenure that is equivalent to the number of iterations an 

open DC remains a tabu. In this study, we choose the fixed 

tabu tenure approach. 

The tabu search algorithm uses a tabu list T where 

),...,( 1 nTTT =  with each jT  representing the tabu tenure 

of DC Jjj ∈, . If jT  > 0 for some Jj ∈ , then the DC j  
is tabu. Any DC with a corresponding entry that is equal to 

zero in the tabu list is non-tabu. At each iteration, when a 

candidate solution results in opening a new DC j , jT  is 

assigned the tabu tenure and all other positive entries in the 

tabu list are decreased by one. This is a type of recency-

based, or short-term memory, since the tabu list shows how 

recently the solutions were visited. 

An aspiration criterion is used to overrule the tabu 

restrictions so that we can avoid escapes from attractive 

unvisited solutions. The aspiration criterion states that if a 

solution involving a tabu move has a better objective value 

than the best known solution, then the tabu status is 

disregarded. Otherwise, if the aspiration criterion is not 

satisfied, of course we continue to the next iteration with the 

best non-tabu solution. 

4.1 Solving problem with two-stage transshipment heuristic 

To improve the duration of the overall heuristic, we develop 

a two-stage transshipment heuristic for this problem after 

DCs being located by above heuristics. The heuristics help to 

reduce the total duration of the algorithm at least by half as 

reported in Section 5. Let Jj ∈ˆ  be the set of open DCs so 
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that Pj =ˆ . In this heuristic, we first solve the 

transportation problem between the DCs and the customers. 

Then, using the implied shipment requirements at the DCs as 

the demands for the DCs, we solve the transportation 

problem between the plants and the DCs. The algorithm of 

the two-stage transhipment heuristic is given in Display 1. 

Display 1. Pseudocode of the transshipment heuristic 

Input: LlKkjjIitcj jklijl ∉∈∈∈ ,,ˆ,,,,ˆ �

Output: ,,, ijljklijl myx d

ijlm , s

ijlm c

ijlm �

1:  Sort cijl in an increasing order. 

2:    for each cijl do 

3:       if Dil > 0 then 

4:           if Wj > Dil then 

5:              0,, ←−=← ililjjilijl DDWWDx  

6:           else 

7:              0,, ←−=← jjililjijl WWDDWx  

8:           end if 

9:      end if 

10:     if 0>r

ilD  then 

11:        if  r

il

r

j DW >  then 

12:          0,, ←−=← r

il

r

il

r

j

r

j

r

jijl DDWWDm  

13:        else 

14:           0,, ←−=← r

il

r

j

r

il

d

il

r

jijl DWDmWm  

15:        end if 

16:    end if 

17:    end for 

18:    Calculate .,, ljxF
Ii

ijljl ∀∀=∑
∈

 

19:   Sort tjkl in an increasing order. 

20:   for each tjkl do 

21:     if Fjl > 0 then 

22:       if Pk > Fjl then 

23:        

0

,

,

,

←−

−=←

= jljlk

jlkkjljkl

FFPm

FPPFy
c

il

 

24:      else 

25:         0,, ←−← = kjlkkjkl PFPmPy s

il
 

26:    end if 

27:   end if 

28:  end for�
 

5. COMPUTATIONAL RESULTS 

We employ C++ and traditional bit string code for solving the 

proposed problem. In order to test the performance and 

effectiveness of the heuristic approaches, we conduct a series 

of numerical studies as shown in Table 1 (Appendix A) on 

randomly generated problems ranging from small to 

moderately large sized ones according to schedule described 

above. We consider five sets of problems with 10 instances in 

each; thus we solve a total of 50 instances. We run the C++ 

algorithms on a Pentium IV 3.2 GHz machine with 1 GB 

memory. 

We summarize of the results for the hybrid heuristic 

approaches in Table 2 (Appendix A). i.e., the scatter search 

heuristic with, and without, the tabu heuristic improvement. 

In this experiment, the scatter search parameters are 

2,1,10 21max === bbh , and the number of restarts is 6, 

i.e., each instance is solved five times, each starting with a 

different seed solution. We pick the best of the six runs for 

each instance as the heuristic solution, and the total duration 

of the six runs is considered as the overall runtime of the 

heuristic.  To show the effectiveness of the heuristic, we 

report the average optimality gap (%), maximum optimality 

gap (%), and the number of optimum solutions. To compare 

the speed of the hybrid heuristic approaches we provide, in 

each set, the average and maximum overall runtimes for the 

10 problems. The percentage optimality gaps are given by 

[100 * (Heuristic Obj. Value - Optimal Obj. Value)/Optimal 

Obj. Value], and the solution times are reported in seconds. 

For small and medium problem instances, data sets 1, 2 and 

5, the average gap between the hybrid heuristic approaches 

with and without improvement is less than 1%. For large 

instances, data set 3 and 4, the average gap can be as high as 

4.5% and the maximum gap as high as 6.5%. Moreover, in 50 

of the 90 cases, we find the optimum result. 

[ insert table 1 ] 

[ insert table 2 ] 

6. CONCLUSIONS 

We investigate a multi-production two-stage forward/reverse 

logistics system design problem. Although there have been a 

number of studies on our problems, there have not been 

sufficient studies involving solutions taking the opportunity 

cost, disposal cost and storage cost into consideration to 

handle the random of demand/reclaiming . This paper 

originated in an attempt to design effective and efficient 

hybrid heuristics approaches for the proposed problem, 

including scatter search and tabu search. We present scatter 

search and tabu search algorithms that perform very well 

even on large size problems. The scatter search heuristic 

combined with the tabu heuristic results in better optimality 

gaps and a high number of optimal solutions, thus, proving to 

be an effective method for solving the proposed problem. In 

our computational analysis, we observe the scatter search 

solutions can be improved by tabu heuristic. 

We also develop a transshipment heuristics  to reduce the 

total duration of the algorithm, and it can be easily adapted 

by changing the parameter Pk to Pkl to solve the problem 

when the plants have product specific capacities. 
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 Appendix A.  

Table1. Data sets optimum solution durations for test problems 

 K J Y X W M r

j
W

 
L C S P 

1 [3,6] [10,20] [40,50] [38,45] [40,45] [5,10] [5,10] 0 [2,17] [0,5] [1,5] 

2 [3,6] [10,20] [50,60] [55,65] [60,65] [5,10] [5,10] [5,15] 0 [0,5] [2,6] 

3 [3,6] [30,50] [70,90] [70,85] [75,85] [8,12] [5,10] 0 [0,15] [3,7] [3,9] 

4 [3,6] [30,40] [50,60] [50,65] [70,80] [8,12] [5,10] [0,15] 0 [3,7] [3,9] 

5 [3,6] [15,25] [40,45] [45,50] [40,48] [1,6] [5,10] [5,10] 0 [3,7] [0,1] 

 
Table2. Results for hybrid heuristics approaches 

Without tabu improvement With tabu improvement Data 

set Ave.gap Max.gap Ave.time Max.time No.opt Ave.gap Max.gap Ave.time Max.time No.opt 

Scatter search 

1 0.00 0.00 305.2 402.8 10 0.00 0.00 401.3 602.5 10 

2 0.26 .075 406.9 996.1 5 0.00 0.00 680.6 1153.2 8 

3 4.51 6.53 2256.4 5536.3 1 0.46 0.85 3482.6 6573.1 2 

4 1.59 3.02 2157.6 4963.7 6 .023 0.62 2833.4 5634.8 5 

5 0.12 0.63 598.6 1025.8 7 0.00 0.00 765.2 1268.5 8 

Two-stage transhipment heuristics 

1 0.04 0.25 60.1 116.3 8 0.00 0.00 69.5 146.8 10 

2 0.86 2.64 186.4 301.2 2 0.18 0.64 234.6 634.7 4 

3 1.43 3.28 387.3 826.4 1 0.59 1.44 528.3 968.6 1 

4 0.96 1.43 1063.2 2013.5 0 0.75 1.12 1684.2 2563.1 0 

5 0.00 0.00 98.6 265.3 10 0.00 0.00 171.5 368.4 10 
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