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Abstract: The design of regulators is addressed for uncertain minimum phase linear systems
with known bounds, known upper bound on system order, known relative degree, known high
frequency gain sign and for exosystems with unknown order and unknown frequencies with
known upper bound. A new adaptive output error feedback control algorithm is proposed which
guarantees exponential convergence of the output error into a region which decreases with
the order of the unmodeled exosystem dynamics. Exponential regulation is obtained when the
regulator exactly models all of the exosystem excited frequencies, while asymptotic regulation
is achieved when the regulator overmodels the actual exosystem.

1. INTRODUCTION

The basic result from linear regulator theory states that
disturbances and/or reference signals generated by an ex-
osystem, whose eigenvalues do not coincide with the zeros
of a stabilizable and detectable linear system, can be re-
jected and/or tracked by an output error feedback control
which incorporates the exosystem itself (internal model
principle): it is remarkable that the system is not required
to be minimum phase (see Davison (1976); Francis and
Wonham (1976)). On the other hand, a fundamental result
from adaptive control theory states that arbitrary smooth
output reference signals with known time derivatives can
be asymptotically tracked even though the system is un-
certain, provided that the system order, the relative degree
and the high frequency gain sign are known and the system
is minimum phase (see for instance Sastry and Bodson
(1989); Marino and Tomei (1995)).

It is of course of interest to explore whether the regula-
tor theory may be extended to classes of models and/or
exosystems containing uncertain or unknown parameters.
For instance, as far as the regulator theory is concerned,
when disturbances contain sinusoidal terms it is not rea-
sonable to assume that their frequencies or their maximum
number are known, or, equivalently, that the exosystem
and its order are known. As far as the adaptive control
is concerned, the knowledge of the output reference signal
and its time derivatives is a restrictive assumption when
only the tracking error is available for measurements. It
would be desirable to bridge the gap between the two
theories and to develop a regulator theory for uncertain
linear systems leading to the design of regulators which, on
the basis of the tracking error, can track reference signals
and/or reject disturbances which are generated by a lin-
ear exosystem whose parameters and order are unknown.
Such a theory is very much needed in applications such
as noise cancellation, synchronization, active suspensions,
? This work was supported in part by Ministery of the University
and Research

excentricity compensation, learning control with periodic
references of uncertain period, pointing systems subject to
periodic disturbances. Some results in this direction have
been already developed. In Marino and Tomei (2003) it
is shown how to incorporate an adaptive internal model
in the regulator design using adaptive observers when the
exosystem is unknown: the system is required to be known
and the exact number of frequencies contained in the
reference and in the disturbance is assumed to be known.
In Marino and Santosuosso (2004) and Marino and Tomei
(2005) this last assumption is relaxed and only an upper
bound on the exosystem order is required. An indirect
adaptive approach is followed in Marino and Santosuosso
(2004) where the regulator design incorporates an adaptive
internal model whose order is identified on line. A direct
adaptive approach gives a simpler algorithm in Marino
and Tomei (2005) which does not require the identification
of the exosystem order and of the exosystem frequencies
but it is restricted to minimum phase systems. In Marino
and Tomei (2006) this approach has been extended to
uncertain plants. Related results for nonlinear systems
may be found in Ding (2003); Ye and Huang (2003).

The aim of this paper is to present a new adaptive reg-
ulator which is restricted to minimum phase systems but
allows for uncertain linear systems with known bounds,
known relative degree and high frequency gain sign and
for exosystems of any unknown finite order with uncertain
frequencies with known bounds. The main novelty is that
an upper bound on the system order is no longer required.
The proposed robust adaptive output error feedback con-
trol algorithm relies on an exosystem which may under-
model the actual exosystem generating the disturbances
and /or the output reference. It achieves asymptotic regu-
lation with bounded closed loop signals when the adaptive
regulator overmodels the actual exosystem which gener-
ates all disturbances and references. Exponential regula-
tion is obtained when the regulator exactly models the
excited frequencies of the actual exosystem. When the
adaptive regulator undermodels the actual exosystem the
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tracking error is exponentially reduced to a residual bound
which decreases as the order of the unmodeled exosystem
dynamics decreases: robustness is achieved with respect
to unmodeled exosystem dynamics. An example is worked
out and simulated to illustrate the proposed control algo-
rithm.

2. MAIN RESULT

Consider the regulator problem for an observable mini-
mum phase system of constant known relative degree ρ

ẋ = Acx + ay +
1
β

bu + Pw, x ∈ Rn, u ∈ R

y = Ccx, y ∈ R
ẇ = Rw, w ∈ R2m+1

yr = qw (1)
in which n is the known upper bound on the unknown
system order n̄, the pair (Ac, Cc) is in observer canonical
form

Ac =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0

 , Cc = [ 1 0 · · · 0 ]

a = [a1, . . . , an]T , b = [0, . . . , 0, 1, bρ+1, . . . , bn]T are un-
known vectors, β > 0 is an unknown positive real and
P , R, q are unknown matrices; the polynomial sn−ρ +
bρ+1s

n−ρ−1 + · · · + bn has all roots with negative real
part. The unknown parameters of the system, grouped
in the vector α = [a1, . . . , an, 1

β , bρ+1, . . . , bn]T , belong to
the known region Ω1, α ∈ Ω1 ⊂ R2n−ρ+1. The distur-
bances Pw and reference signals to be tracked qw are both
generated by a linear exosystem ẇ = Rw, w ∈ R2m+1.
We assume that the spectrum of the matrix R of the
exosystem is {0,±jωi, 1 ≤ i ≤ m} with ωi unknown
distinct positive parameters and m an unknown integer
so that the characteristic polynomial of R is given by

s
m∏

i=1

(s2 + ω2
i ) 4= s(s2m + θ1s

2m−2 + · · · + θm) .

Let m̄ be an estimate of the unknown number m which will
be used by the controller. We assume that the unknown
parameters of the estimated exosystem, grouped in the
vector θ = [θ1, . . . , θm̄]T , belong to a known closed ball Ω2

centered at the origin of radius rΩ2 , θ ∈ Ω2 ⊂ Rm̄. The
regulator problem is stated in the following definition.
Definition 2.1. We say that the regulator problen is glob-
ally solvable for system (1) if there exists a dynamic
(adaptive) output error feedback control ν̇ = fν(ν, y−yr),
ν(0) = ν0, ν ∈ Rs+m̄, u = fu(ν, y−yr), such that all closed
loop signals are bounded and, for any initial condition
(x(0), w(0): (i) if m̄ > m, then limt→∞[y(t) − yr(t)] = 0;
(ii) if m̄ = m, then |y(t) − yr(t)| ≤ cae−cbt, ∀t ≥ 0; (iii) if
m̄ < m, then |y(t) − yr(t)| ≤ cae−cbt + ϕ(m − m̄), ∀t ≥ 0,
in which ϕ(·) is a class-k function and ca, cb are positive
reals depending on the initial conditions.
Theorem 2.1. Consider system (1). There exists an adap-
tive dynamic output error feedback control which globally
solves the regulator problem.

Proof. Consider first the case m̄ < m with ρ = 1. Since
system (1) is observable and minimum phase (and there-
fore stabilizable) and the eigenvalues of the exosystem are
on the imaginary axis, there exists a solution (π, c) to the
regulator matrix equations (see Davison (1976); Francis
and Wonham (1976); Wonham (1979))

πR = Acπ + aq +
1
β

bc + P

q = Ccπ (2)

so that defining xr = πw, ur = cw, we can write

ẋr = Acxr + ayr +
1
β

bur + Pw

yr = Ccxr .

The regulator error equations (x̃ = x − xr, e = y − yr)
become

˙̃x = Acx̃ + ae +
1
β

b(u − cw)

e = Ccx̃

ẇ = Rw, w ∈ R2m+1 . (3)

Without loss of generality, we can assume that the pair
(R, c) is observable [if this is not true, we may consider
only the observable part of (R, c) obtained by Kalman
decomposition] so that to generate ur we may equivalently
consider its observer canonical form

ẇc = Rcwc, wc ∈ R2m+1

ur = γcwc (4)

with

Rc =



0 1 0 · · · 0
−θ1 0 1 · · · 0
0 0 0 · · · 0
...

...
...

...
...

−θm 0 0 · · · 1
0 0 0 · · · 0

 , γc = [ 1 0 · · · 0 ] .

Since the order of the exosystem is not known, we assume
that its value is 2m̄ + 1 (m̄ < m, for the first part of the
proof) so that from (3), (4) and using m̄ in place of m, we
obtain

˙̃x = Acx̃ + ae +
1
β

b[u − w̄c1 − r(t)]

e = Ccx̃

˙̄wc = R̄cw̄c, w̄c ∈ R2m̄+1 (5)

in which

R̄c =



0 1 0 · · · 0
−θ1 0 1 · · · 0
0 0 0 · · · 0
...

...
...

...
...

−θm̄ 0 0 · · · 1
0 0 0 · · · 0


and
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wc1 = w̄c1 + r(t) (6)
with r(t) representing the unmodeled m − m̄ sinusoids.
Defining the change of coordinates

ηi = x̃i+1 − bi+1x̃1, 1 ≤ i ≤ n − 1 (7)
we have (η = [η1, . . . , ηn−1]T ),

ė = η1 + b2e + a1e +
1
β

(u − w̄c1 − r)

η̇ =


−b2 1 · · · 0

...
...

...
...

−bn−1 0 · · · 1
−bn 0 · · · 0

 η

+e


b3 − b2

2 + a2 − b2a1

...
bn − b2bn−1 + an−1 − bn−1a1

−bnb2 + an − bna1


4= Γη + de

˙̄wc = R̄cw̄c . (8)
The further change of coordinates

e = e, η = η, w̄ = −w̄c + βe



0
θ1

0
θ2

...
0

θm̄

0


(9)

transforms (8) into

[
βė
˙̄w

]
= Ac

[
βe
w̄

]
+



1
0
θ1

0
θ2

...
0

θm̄

0


[βη1 + β(b2 + a1)e + u − r]

η̇ = Γη + de (10)
Define the filtered transformation (ξi ∈ R2m̄+1)

ξ̇i = Dξi + [ 0 I2m̄+1 ]E2i+1u

µi = [ 1 0 · · · 0 ] ξi, 1 ≤ i ≤ m̄ (11)

z =
[

βe
w̄

]
−

 0
m̄∑

i=1

ξiθi

 , z ∈ R2m̄+2 (12)

with

D =


−d2 1 · · · 0

...
...

. . .
...

−d2m̄+1 0 · · · 1
−d2m̄+2 0 · · · 0



a Hurwitz matrix, I2m̄+1 the (2m̄ + 1)× (2m̄ + 1) identity
matrix and Ej a vector of suitable dimension with all zero
entries except for the jth element which is equal to 1. From
(11) and (12), we obtain

ż = Acz +
m̄∑

i=1

θiE2i+1[βη1 + β(b2 + a1)e]

+dµT θ + E1[u + βη1 + β(b2 + a1)e − r]

βe = Ccz (13)
with µ = [µ1, . . . , µm̄]T and d = [1, d2, . . . , d2m̄+2]T . Define
the linear change of coordinates

χi = zi+1 − di+1z1, 1 ≤ i ≤ 2m̄ + 1 . (14)
From (13) and (14), we have

βė = χ1 + u + β[η1 + (b2 + a1)e] + d2βe + µT θ − r
4= χ1 + u − r + c1e + βη1 + µT θ

χ̇ = Dχ + βe


d3 − d2

2
...

d2m̄+2 − d2d2m̄+1

−d2m̄+2d2

 −

 d2

...
d2m̄+2

 [u + β(η1

+(b2 + a1)e) − r] +
m̄∑

i=1

θiE2i[βη1 + β(b2 + a1)e]

4= Dχ + f1e + f2η1 − d̄u + d̄r (15)
with f1 and f2 unknown vectors, c1 unknown scalar and d̄
a known vector. Introduce the observer

˙̂χ = Dχ̂ − d̄u (16)
with error dynamics (χ̃ = χ − χ̂)

˙̃χ = Dχ̃ + f1e + f2η1 + d̄r . (17)
Let u be defined as

u =−χ̂1 − µT θ̂ − ke

˙̂
θ = gProj(µe, θ̂) (18)

where g > 0 and k > 0 are the adaptation and the control
gains, and Proj(·, ·) is the smooth projection operator
defined as (see Pomet and Praly (1992))

Proj(ϕ, θ̂) = ϕ, if pr(θ̂) ≤ 0

Proj(ϕ, θ̂) = ϕ, if pr(θ̂) ≥ 0 and 〈grad pr(θ̂), ϕ〉 ≤ 0

Proj(ϕ, θ̂) =

[
I − pr(θ̂)grad pr(θ̂)grad pr(θ̂)T

‖grad pr(θ̂)‖2

]
ϕ,

if pr(θ̂) > 0 and 〈grad pr(θ̂), ϕ〉 > 0

with pr(θ̂) =
‖θ̂‖2−r2

Ω2
ε2r+2εrrΩ2

, and εr an arbitrary positive real.

If ‖θ̂(0)‖ ≤ rΩ2 then, ∀t ≥ 0: (a1) ‖θ̂(t)‖ ≤ rΩ2 + εr;
(a2) Proj(ϕ, θ̂) is Lipschitz continuous; (a3) ‖Proj(ϕ, θ̂)‖ ≤
‖ϕ‖; (a4) θ̃T Proj(ϕ, θ̂) ≥ θ̃T ϕ. Consider the Lyapunov
function (ε > 0)

V =
1
2
βe2 + ηT P1η + εχ̃T P2χ̃ +

1
2g

θ̃T θ̃ (19)
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with P1 and P2 the symmetric positive definite solutions
of ΓT P1 +P1Γ = −I, DT P2 +P2D = −I. From (10), (15),
(17) and (18), we have

V̇ = e(χ̃1 + c1e + βη1 + µT θ̃ − ke − r) − ηT η

+2ηT P1de − εχ̃T χ̃ + 2εχ̃T P2(f1e + f2η1 + d̄r)

−θ̃Proj(µe, θ̂) . (20)
Since

eβη1 + 2ηT P1De≤ 1
4
‖η‖2 + h1e

2

eχ̃1 + 2εχ̃T P2f1e≤
ε

4
‖χ̃‖2 + h2e

2

2εχ̃T P2f2η1 ≤
ε

4
‖χ̃‖2 + εh3‖η‖2

er ≤ 1
4
e2 + r2

2εχ̃T P2d̄r ≤ ε

4
‖χ̃‖2 + εh4r

2 (21)

with {h1, h2, h3, h4} = max α ∈ Ω1

θ ∈ Ω2

{(β +2‖P1D‖)2, 1
ε (1+

2ε‖P −2f1‖)2, 4‖P2f1‖2, 4‖P2d̄‖2}, recalling property (a4)
of Proj, from (20) and (21), we obtain

V̇ ≤−e2

(
k − c1 − h1 − h2 −

1
4

)
− ‖η‖2

(
1 − 1

4
− εh3

)
−1

4
ε‖χ̃‖2 + r2(1 + εh4) − ‖θ̃‖2 + ‖θ̃‖2 (22)

so that if

ε <
3

4h3
, k > c1M + h1 + h2 +

1
4

(23)

with c1M = maxα∈Ω1(c1), the inequality (22) implies

V̇ ≤−cvV + (1 + εh4)r2 + ‖θ̃‖2 (24)
where cv > 0 is a suitable real. Equation (24) in turn, since
r(t) and θ̃(t) are bounded [recall property (a1) of Proj], im-
plies that e(t), ‖η(t)‖, ‖χ̃(t)‖ are bounded. Consequently,
‖x̃(t)‖ is also bounded. With reference to (12), we note
that µi(t) may be equivalently generated by the following
filters with proper initial conditions (ξ̄i[j](t) ∈ R2m̄+1,
1 ≤ i ≤ m̄, j = 1, 2)

˙̄ξi[1] = Dξ̄i[1] + β(E2i−1 − E2i(b2 + a1))e − βE2iη1

µi[1] = [ 1 0 · · · 0 ] ξ̄i[1], 1 ≤ i ≤ m̄

˙̄ξi[2] = Dξ̄i[2] + E2iur

µi[2] = [ 1 0 · · · 0 ] ξ̄i[2], 1 ≤ i ≤ m̄

µi = µi[1] + µi[2], 1 ≤ i ≤ m̄ (25)
by means of the relations

ξ̄i[1] + ξ̄i[2] = ξi − βE2ie, 1 ≤ i ≤ m̄ . (26)
Since ur(t) = w̄c1(t)+ r(t) and m̄ < m, ur(t) is a bounded
persistently exciting signal of order m̄ and (see Sastry and
Bodson (1989)) µ[2] = [µ1[2], . . . , µm̄[2]]T is a bounded
persistently exciting vector of order m̄. This fact implies
that (see Marino et al. (2001)) the solution of the matrix
differential equation

Q̇ =−Q + µ[2]µT [2], Q(0) = e−TpkpI (27)

with Tp and kp positive reals satisfying

t+Tp∫
t

µ[2](τ)µT [2](τ)dτ ≥ kpI, ∀t ≥ 0

is such that

sup
t≥0

‖µ[2](t)‖2I ≥ Q(t) ≥ kpe
−2TpI, ∀t ≥ 0 . (28)

Consider the function

W = V + p‖Qθ̃ − µ[2]βe‖2 + p1

m̄∑
i=1

ξ̄T
i [1]P2ξ̄i[1] (29)

where p and p1 are suitable positive reals yet to be defined.
Recalling (15), (18), (22), (24), (25) and (27), and since
(recall that µ[1], µ[2] and µ̇[2] are bounded)

2p[Qθ̃ − µ[2]βe]T [(−QgProj(µe, θ̂) − βµ̇[2]e − µ[2](c1

−k + β)e − µ[2]βη1 − µ[2]χ̃1]

≤ p

4
‖Qθ̃ − µ[2]βe‖2 + 4ph5

∥∥∥∥∥
[

e
η
χ̃

]∥∥∥∥∥
2

2p[Qθ̃ − µ[2]βe]T µ[2]r ≤ p

4
‖Qθ̃ − µ[2]βe‖2 + 4ph6r

2

2p[Qθ̃ − µ[2]βe]T µ[2]µT [1]θ̃

≤ p

4
‖Qθ̃ − µ[2]βe‖2 + 4ph7‖µ[1]‖2

2p1

m̄∑
i=1

ξ̄T
i [1]P2[β(E2i−1 − E2i(b2 + a1))e − βE2iη1]

≤ p1

2

m̄∑
i=1

‖ξ̄i[1]‖2 + 2p1h8

∥∥∥∥[
e
η1

]∥∥∥∥2

with h5 ≥ supt≥0{‖g‖Q‖µ(t) + βµ̇[2](t) + µ[2](t)(c1 −
k+β)‖2, ‖µ[2](t)β‖2, ‖µ[2](t)‖2}, h6 ≥ supt≥0{‖µ[2](t)‖2},
h7 ≥ supt≥0{‖µ[2](t)θ̃(t)‖2},

h8 ≥ ‖P2‖2β2

∥∥∥∥∥∥∥
 E1 − E2(b2 + a1) −E2

...
...

E2m̄−1 − E2m̄(b2 + a1) −E2m̄


∥∥∥∥∥∥∥

2

, its

time derivative is such that

Ẇ ≤−

∥∥∥∥∥
[

e
η
χ̃

]∥∥∥∥∥
2

(cv − 4ph5 − 2p1h8) − [Qθ̃ − µ[2]βe]2
5
4
p

−
m̄∑

i=1

‖ξ̄i[1]‖2(4ph7 +
p1

2
) + (1 + εh4 + 4ph6)r2 (30)

By choosing p and p1 such that

p1 = 16ph7, p <
cv

4(h5 + 8h7h8)
(31)

from (30) we have, for suitable positive reals cwa
, cwb

,

W (t)≤W (0)e−cwa t +
cwb

cwa

sup
τ≥0

{r2(τ)} . (32)
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Since r(t) may be expressed as r(t) =
∑m−m̄

i=1 ri(t) with
ri(t) being the contributions of the m − m̄ unmodeled
exosystem modes, from (32) we obtain

e(t)≤
√

2
β

W (0)e−
cwa

2 t +

√
2cwb

βcwa

(m − m̄)
m−m̄∑
i=1

sup
τ≥0

|ri(τ)|

which implies (iii) in Definition 2.1. Now, consider the case
ρ > 1 and let system (1) be written as

˙̄x = Acx̄ + ay +
1
β

b̄u + Pw

y = Ccx̄ (33)

with b̄ = [0, . . . , 0, 1, b̄ρ+1, . . . , b̄n]T . Consider the filtered
transformation (λi > 0, 1 ≤ i ≤ ρ − 1)

φ̇ =


−λ1 1 0 · · · 0
0 −λ2 1 · · · 0
...

...
... · · ·

...
0 0 0 · · · −λρ−1

φ +


0
0
...
1

u

x1 = x̄1, xi = x̄i −
1
β

ρ∑
j=2

bi[j]φj−1, 2 ≤ i ≤ n. (34)

The vectors b[j] = [b1[j], . . . , bn[j]]T are recursively given
by

b[ρ] = b̄

b[j − 1] = Acb[j] + λj−1b[j], ρ ≥ j ≥ 2

b[1] = b = [1, b2, . . . , bn]T (35)

with bi, 2 ≤ i ≤ n solutions of sn−1 + b2s
n−2 + · · · +

bn = (sn−ρ + b̄ρ+1s
n−ρ−1 + · · · + b̄n)

∏ρ−1
i=1 (s + λi). From

(33) and (34), we obtain

ẋ = Acx + ay +
1
β

bφ1 + Pw

y = Ccx . (36)

In this case there exists a solution (π, c) to the regulator
equations

πR = Acπ + aq +
1
β

bc + P

q = Ccπ (37)

so that defining xr = πw, φ1r = cw, we can write

ẋr = Acxr + ayr +
1
β

bφ1r + Pw

yr = Ccxr (38)

and the regulator error equations are

˙̃x = Acx̃ + ae +
1
β

b(φ1 − cw)

ẇ = Rw, w ∈ R2m+1

e = Ccx̃ (39)

which may be equivalently written as

˙̃x = Acx̃ + ae +
1
β

b(φ1 − w̄c1 − r)

˙̄wc = Rcw̄c, w̄c ∈ R2m̄+1

e = Ccx̃ . (40)
By considering φ1 as an input, system (40) is in the form
(5) and, therefore, we can follow the same steps of the
relative-degree-one case (using φ1 in place of u in the filters
(12)) to obtain the ideal control

φ∗
1 =−χ̂1 − µT θ̂ − ke

˙̂χ = Dχ̂ − d̄φ1

ξ̇i = Dξi + [ 0 I2m̄+1 ]E2i+1φ1

µi = [ 1 0 · · · 0 ] ξi, 1 ≤ i ≤ m̄ . (41)

Defining φ̃1 = φ1 − φ∗
1, the error dynamics are given by

βė = χ̃1 + c1e + βη1 + µT θ̃ − ke + φ̃1 − r(t)
˙̃χ = Dχ̃ + f1e + f2η1 + d̄r(t)

η̇ = Γη + de

˙̃φ1 =−λ1φ1 + φ2 − φ̇∗
1

=−λ1φ1 + φ2 + ˙̂χ1 + µT ˙̂
θ + µ̇T θ̂ +

k

β
(χ̃1 + c1e

+βη1 + µT θ̃ − ke + φ̃1 − r)

φ̇2 =−λ2φ2 + φ3

...

φ̇ρ−1 =−λρ−1φρ−1 + u . (42)
If ρ = 2, we define φ2 = u as

u = λ1φ
∗
1 − ˙̂χ1 − µ̇T θ̂ − µT ˙̂

θ

˙̂
θ = gProj((e + kφ̃1)µ, θ̂) (43)

so that by using the function V1 = V + 1
2βφ̃2

1 along with
the boundedness of θ̃(t), we can prove that all the signals
in the closed loop system are bounded, ∀t ≥ 0. Define the
filters to generate ξ̄i[j], j = 1, 2, as in (25) with φ1r in
place of ur. Then, by using the function

W1 = V1 + p‖Qθ̃ − µ[2]βe‖2 + p1

m̄∑
i=1

ξ̄T
i [1]P2ξ̄i[1] (44)

and choosing ε, k satisfying (23), p and p1 satisfying (31)
and λ1 sufficiently large, we have

Ẇ1 ≤−cw1aW1 + cw1b
r2 (45)

for suitable positive reals cw1a
and cw1b

, from which
property (iii) in Definition 2.1 may be obtained as in the
case ρ = 1. If ρ > 2, we can iterate the previous arguments
by using the techniques introduced in Marino and Tomei
(2000) to avoid the differentation of the operator Proj.
Now, assume that m = m̄ so that r(t) = 0 but ur(t) or
φ1r(t) in (25) (for ρ = 1 and ρ > 1, respectively) are
still persistently exciting signals. This fact implies that
exponential convergence to zero of e(t), η(t), χ̃(t), φ̃i(t)
and θ̃(t) is obtained through (32) and (45). If m < m̄,
then r(t) = 0 but ur(t) or φ1r(t) are no longer persistently
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exciting signals. The convergence to zero of e(t), η(t), φ̃i(t)
and χ̃(t) can be proved by using V , V1 (for ρ = 1 and
ρ = 2, respectively) and their time derivatives along with
Barbalat Lemma (see Marino and Tomei (1995)). ut

3. EXAMPLE

Consider the system ẋ1 = x2 +a1x1 + 1
β u+w1, ẋ2 = 1

β b2u,
e = x1 + w2, in which:

w1(t) =
{

sin(θ1t) + 0.2 sin(θ3t), t < 50 s
sin(θ1t), t ≥ 50 s

w2(t) =
{

sin(θ2t), t < 100 s
0, t ≥ 100 s .

The parameters θi > 0, i = 1, 2, a1, b2 > 0, β > 0
are unknown constants with known bounds, while for the
unknown frequencies θi, 1 ≤ i ≤ 3, we use an estimated
exosystem of dimension 4. Following the design outlined in
Section II (with slight modifications due to the fact that
the spectrum of R is in this case {±jω1,±jω2}, i.e. zero
is not included), the resulting control is given by

ξ̇1 = Dξ1 + [ 0 u 0 0 ]T , µ1 = ξ11

ξ̇2 = Dξ2 + [ 0 0 0 u ]T , µ2 = ξ21

˙̂χ = Dχ̂ − d̄u

˙̂
θ1 = gProj(µ1e, θ̂1),

˙̂
θ2 = gProj(µ2e, θ̂2)

u =−ke − χ̂1 − µ1θ̂1 − µ2θ̂2 (46)
with

D =

−d2 1 0 0
−d3 0 1 0
−d4 0 0 1
−d5 0 0 0

 , d̄ = [ d2 d3 d4 d5 ]T .

Note that for 0 ≤ t < 50 s, the true exosystem is of 6th
order so that the controller undermodels the exosystem; for
50 ≤ t < 100 s, the true exosystem is of dimension 4 as the
estimated one; for t > 100 s, the true exosystem is of 2nd
order so that the controller overmodels the exosystem. The
unknown parameters of the system are: a1 = 1, b2 = 0.5,
β = 0.5, while the parameters of the controller have been
chosen as: k = 5, g = 1000, d2 = 6, d3 = 13, d4 = 12,
d5 = 4. All initial conditions of the system and of the
controller have been set to zero. The results are illustrated
in Figs. 1 and 2. In Fig. 1 are reported the time histories
of the output regulation error e(t), the control input u(t)
and the estimates of the parameters θ̂1(t) and θ̂2(t), while
in Fig. 2 are represented the state variables [x1(t), x2(t)],
the disturbance w1(t) and the output reference −w2(t).
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