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Abstract: This paper investigates the static output-feedback mixed H2/H∞ control problem
of discrete-time Markovian jump systems from a novel perspective. Unlike traditional methods,
the closed-loop system is represented as an augmented form, in which input and gain-output
matrices are decoupled. By virtue of the augmented representation, new characterizations on
stochastic stability and H2/H∞ performance of the closed-loop system are established in terms
of matrix inequalities. Based on these, a sufficient condition with redundant matrices for the
existence of the mode-dependent controller is proposed, and an iteration algorithm is given to
solve the condition. An extension to the mode-independent case is provided as well.
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1. INTRODUCTION

Discrete-time Markovian jump linear systems (DMJLSs),
modeled by a set of discrete-time linear systems with
transitions among the models determined by a Markov
chain taking values in a finite set, have appealed to a lot
of researchers in the control community. This is due to
their widespread applications to model various practical
processes that experience abrupt changes in their structure
and parameters, possibly caused by phenomena such as
component failures or repairs, sudden environmental dis-
turbances, changing subsystem interconnections. Stability
of DMJLSs has been investigated thoroughly in Costa and
Fragoso [1993], and the equivalence of different second
moment stability has been established in Ji et al. [1991].
The linear quadratic optimal control problem for DMJLSs
has been studied in Chizeck et al. [1986] and Costa and
Fragoso [1995], and the filtering problem has been con-
sidered in Costa and Marques [2000]. Some results on the
H2 and H∞ control problems are available in Costa and
Marques [1998], Seiler and Sengupta [2003] and references
therein. As for robust stability analysis, we refer readers
to de Souza [2006] and references therein. More details on
DMJLSs can be found in Costa et al. [2005].

In the literature mentioned above, it is often assumed that
the system state is completely accessible to the controller.
However, in practice, this assumption may not be always
true, and only partial information through the measured
output is available. Therefore, it is necessary to consider
the more practical case that the system state is partially
accessible, i.e., the output-feedback case. Although Costa

? This work was supported in part by RGC HKU 7029/05P.

et al. [1997] proposed a non-convex cutting-plane algo-
rithm based on the output structural constraint approach
by Geromel et al. [1993] to solve the static output-feedback
H2 control problem of DMJLSs, it is not easy to apply due
to its nonlinearity and complexity. Apart from this work,
there are very few results on output-feedback control of
DMJLSs. This motivates us to seek an effective and easy-
to-use approach for output-feedback control of DMJLSs.

In this paper, we investigate the mixed H2/H∞ control
problem of DMJLSs via static output-feedback controllers
from a new point of view. The closed-loop system is repre-
sent as an augmented form with algebraic constraints. By
virtue of the augmented representation, new characteriza-
tions on stochastic stability and H2/H∞ performance of
the closed-loop system are established in terms of matrix
inequalities. Two advantages of our characterizations lie
in the decoupling of the input matrix and the gain-output
matrix, which enables us to parameterize the controller
matrix by free matrix, and the separation of the Lyapunov
matrix and the system matrix, which avoids imposing any
constraint on the Lyapunov matrix when the controller
matrix is parameterized. Based on these, a sufficient con-
dition with redundant matrix variables for the existence of
the mode-dependent controller is proposed, and an itera-
tive algorithm is given to solve the condition. An extension
to the mode-independent case is provided as well. When
Markovian jumps disappear, the obtained results are also
applicable to the usual deterministic discrete-time linear
systems.

Notation: Throughout this paper, for real symmetric ma-
trices X and Y, the notation X ≥ Y (respectively, X > Y )
means that the matrix X − Y is positive-semidefinite
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(respectively, positive-definite). I is the identity matrix
with appropriate dimension, and the superscript “T” rep-
resents the transpose. |·| denotes the Euclidean norm for
vectors and ‖·‖ denotes the spectral norm for matrices.
E {·} stands for the mathematical expectation with re-
spect to some probability measure. l2 refers to the space
of mean square summable infinite vector sequences with

norm |f |2 =
√

E
{∑∞

k=0 |f (k)|2
}

. The symbol # is used

to denote a matrix which can be inferred by symmetry.
Matrices, if their dimensions are not explicitly stated,
are assumed to have compatible dimensions for algebraic
operations.

2. PRELIMINARIES

Consider the following class of discrete-time stochastic
systems, denoted T :

(T ) :


x(k + 1) = A(r (k))x(k) + B (r (k))u (k)

+Bw (r (k))w (k)
z (k) = C(r (k))x(k) + D (r (k))u (k)
y (k) = Cy(r (k))x(k)

(1)

where x(k) ∈ Rn, u(k) ∈ Rl, y (k) ∈ Rm, z(k) ∈ Rp,
w(k) ∈ Rq are the system state, control input, mea-
sured output, regulated output to be controlled and ex-
ogenous noise process, respectively, and A(r(k)) ∈ Rn×n,
B(r(k)) ∈ Rn×l, Bw(r(k)) ∈ Rn×q, C(r(k)) ∈ Rp×n,
D(r(k)) ∈ Rp×l, Cy(r(k)) ∈ Rm×n are the system ma-
trices of the stochastic jumping process {r(k), k > 0}; the
parameter r (k) represents a discrete-time, discrete-state
Markov chain taking values in a finite set S = {1, 2, . . . , s}
with transition probabilities

Pr {r (k + 1) = j |r (k) = i} = πij , (2)
where πij ≥ 0, and for any i ∈ S,

∑s
j=1 πij = 1. The

processes w (k) and r(k) are mutually independent. To
simplify the notation, M(r (k)) and MN (r (k)) will be
denoted by Mr(k) and MNr(k), respectively, and, for a set
of matrices Mi, i ∈ S, M̂i denotes

∑s
j=1 πijMj .

Definition 1.

(1) System T is said to be stochastically stable if, when
w(k) ≡ 0, u (k) ≡ 0, there exists a scalar M̃(x0, r0) >
0, for x (0) = x0 and r (0) = r0, such that

lim
ν→∞

E

{
ν∑

k=0

|x(k)|2
∣∣∣∣∣ x0, r0

}
≤ M̃(x0, r0).

(2) Assume that system T is stochastically stable.
The H∞ norm of system T with x (0) ≡ 0 and
u (k) ≡ 0, denoted as ‖T ‖∞, is defined as ‖T ‖∞ ,

supr0∈S sup0 6=w∈l2

|z|2
|w|2

.
(3) The H2 norm of system T with x (0) ≡ 0 and

u (k) ≡ 0, denoted as ‖T ‖2, is defined as ‖T ‖22 ,∑q
i=1

∑s
j=1 |zi,j |22, where zi,j represents the output

sequence generated by (1), i.e., (z (0) , z (1) , . . .),
when
(a) the input sequence is w = (w (0) , w (1) , . . .),

where w (0) = ei, the unit vector formed by
one at the ith position and zero elsewhere, and
w (k) = 0, for k > 0.

(b) r (0) = r (1) = j.

The static output-feedback controller under consideration
is of the form

u (k) = Kr(k)y(k). (3)
When static mode-dependent controller (3) is applied to
(1), the closed-loop system becomes

(Tcl) :
{

x(k + 1) = Aclr(k)x(k) + Bwr(k)w (t) ,
z (k) = Cclr(k)x (t) ,

(4)

where

Aclr(k) = Ar(k) + Br(k)Kr(k)Cyr(k),

Cclr(k) = Cr(k) + Dr(k)Kr(k)Cyr(k).

Our goal is to design a controller in (3) such that system
Tcl is stochastically stable and satisfies

‖Tcl‖∞ < γ∞, ‖Tcl‖2 < γ2,

where γ∞ > 0 and γ2 > 0 are prescribed scalars. Since
Kr(k) is embedded in the middle of two matrices, it is
hard to parameterize it by matrix variables. Hence, our
fundamental idea is to extract Kr(k) from the middle of two
matrices. To this end, we view the input u (k) as a state
component and choose

[
xT (k) uT (k)

]T
as a new state

variable. Then the closed-loop system can be re-written
as the following augmented form:{

Eξ (k + 1) = Ar(k)ξ (k) + Bwr(k)w (k) ,
z (k) = Cr(k)ξ (k) ,

where

ξ (k) =
[

x (k)
u (k)

]
, E =

[
I 0
0 0

]
,

Ar(k) =
[

Ar(k) Br(k)

Kr(k)Cyr(k) −I

]
, Br(k) =

[
Bwr(k)

0

]
,

Cr(k) =
[
Cr(k) Dr(k)

]
.

An advantage of this augmented representation lies in the
separation of Br(k) and Kr(k)Cyr(k), which enables us to
parameterize Kr(k) by matrix variables. It is noted that

if we choose
[
xT (k) yT (k)

]T
as a new state variable,

we may also obtain a similar augmented representation,
which we call dual augmented representation. In this pa-
per, we do not intend to present any results on dual
augmented representation, due to the page length consid-
eration, and further discussion on this issue will appear
in our future work. In addition, many dynamic output-
feedback synthesis problems can be reformulated as a
static output-feedback control design involving augmented
plants. Therefore, the approach presented in this paper is
applicable to the dynamic output-feedback case as well.

We end this section by giving several lemmas, which will
be useful in the sequel.
Lemma 1. (Seiler and Sengupta [2003]). Assuming system
Tcl is weakly controllable 1 , it is stochastically stable with
‖Tcl‖∞ < γ∞ if and only if there exist matrices Pi > 0
such that, for each i ∈ S,[

Acli Bwi

Ccli 0

]T [
P̂i 0
0 I

] [
Acli Bwi

Ccli 0

]
−

[
Pi 0
0 γ2

∞I

]
< 0.

1 System Tcl is said to be weakly controllable with respect to w (k)
if for every initial state/mode, (x0, r0), and any final state/mode,
(xf , rf ), there exists a finite time tc and an input w (k) such that
Pr[x(tc) = xf , r(tc) = rf ] > 0.
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Lemma 2. (Costa et al. [1997], Costa and Marques [1998]).
Assuming that system Tcl is stochastically stable, if Pi > 0
is the unique solution of the following equations:

AT
cliP̂iAcli − Pi + CT

cliCcli = 0, i ∈ S,

then ‖Tcl‖22 =
∑s

i=1 trace
(
BT

wiPiBwi

)
.

Lemma 3. If system Tcl is stochastically stable, then, for
any Qi ∈ Rn×n, i ∈ S, there exists a unique solution
Pi ∈ Rn×n, i ∈ S, such that Pi − AT

cliP̂iAcli = Qi.
Moreover, if Q1i ≥ Q2i ≥ 0 (> 0, respectively) and
P1i − AT

cliP̂1iAcli = Q1i, P2i − AT
cliP̂2iAcli = Q2i, then

P1i ≥ P2i ≥ 0 (> 0, respectively).

Lemma 3 is an analogue in the real number field of
Proposition 6 in Costa and Fragoso [1993]. Its proof can
be conducted in a similar way, and thus omitted here.

3. NEW CHARACTERIZATIONS ON STOCHASTIC
STABILITY AND H2/H∞ PERFORMANCE

3.1 Stochastic Stability and H∞ Performance (Bounded
Real Lemma)

On the basis of the proposed augmented system represen-
tation, we establish a new bounded real lemma for the
closed-loop system in the following theorem.
Theorem 1. Assuming that system Tcl is weakly control-
lable, it is stochastically stable with ‖Tcl‖∞ < γ∞, if and
only if there exist P1i = PT

1i , P4i = PT
4i , P2i, Q4i = QT

4i,
and scalars αi > 0 such that, for each i ∈ S,

Ω∞i = AT
i P̂iAi − E∞PiE∞ +QiLi + LT

i QT
i < 0, (5)

where

Ai =
[
Ai Bwi

Ci 0

]
, Li = [ Ai 0 ] , E∞ =

[
E 0
0 γ∞I

]
,

Pi =

 P1i PT
2i 0

P2i P4i 0
0 0 I

 > 0, Qi =

 0 −αiC
T
yiK

T
i Q4i

0 αiQ4i

0 0

 .

Proof: (Sufficiency) Define two nonsingular transformation
matrices as follows:

T1i =

[
I 0 0

KiCyi I 0
0 0 I

]
, T2 =

[
I 0 0
0 0 I
0 I 0

]
.

Pre- and post-multiplying (5) by TT
2 TT

1i and its transpose
yields that

TT
2 TT

1iΩ∞iT1iT2

=

 AT
cliP̂1iAcli − P1i + CT

cliCcli AT
cliP̂1iBwi

BT
wiP̂1iAcli −γ2

∞I + BT
wiP̂1iBwi

BT
i P̂1iAcli − P̂2iAcli + DT

i Ccli BT
i P̂1iBwi − P̂2iBwi

AT
cliP̂1iBi −AT

cliP̂
T
2i + CT

cliDi

BT
wiP̂1iBi −BT

wiP̂
T
2i(

BT
i P̂1iBi −BT

i P̂T
2i − P̂2iBi

+P̂4i + DT
i Di − 2αiQ4i

)


< 0, (6)

which implies that

Ψi =
[

AT
cliP̂1iAcli − P1i + CT

cliCcli AT
cliP̂1iBwi

BT
wiP̂1iAcli −γ2

∞I + BT
wiP̂1iBwi

]
=

[
Acli Bwi

Ccli 0

]T [
P̂1i 0
0 I

] [
Acli Bwi

Ccli 0

]
−

[
P1i 0
0 γ2

∞I

]
< 0.

Therefore, according to Lemma 1, system Tcl is stochasti-
cally stable with ‖Tcl‖∞ < γ∞.

(Necessity) If system Tcl is stochastically stable with
‖Tcl‖∞ < γ∞, then according to Lemma 1, there exist
matrices P1i > 0 such that

Ψi < 0.

Now set P4i to be any positive definite matrices, P2i = 0,
Q4i = P̂4i, and αi > 0 to be sufficiently large scalars such
that
−zT

i Ψ−1
i zi + BT

i P̂1iBi + DT
i Di − (2αi − 1) P̂4i < 0, (7)

where

zi =
[

AT
cliP̂1iBi + CT

cliDi

BT
wiP̂1iBi

]
Then, directly manipulating together with (6), (7), and
Schur complement equivalence yields that

Ω∞i = T−T
1i T−T

2

 Ψi zi

zT
i

(
BT

i P̂1iBi + DT
i Di

− (2αi − 1) P̂4i

) T−1
2 T−1

1i

< 0.

This completes the proof. �

Remark 1. When the assumption of weak controllability
is not satisfied, the necessity of Theorem 1 may be lost,
but the sufficiency still holds. For the subsequent synthesis,
we only need to use the sufficiency of Theorem 1, since the
controller matrices are unknown before they are computed.

In the following theorem, we provide an equivalent char-
acterization of the bounded real lemma, which will play a
key role in the subsequent controller synthesis.
Theorem 2. (5) holds if and only if there exist P1i = PT

1i ,
P4i = PT

4i , P2i, Q4i = QT
4i, Hνi, Gνi, (ν = 1, 2, . . . , 6), and

scalars αi > 0 such that, for each i ∈ S, (
HiAi +AT

i HT
i − E∞PiE∞

+QiLi + LT
i QT

i

)
AT

i GT
i −Hi

GiAi −HT
i P̂i − Gi − GT

i

 < 0,

(8)
where Ai, Pi, Qi, Li, and E∞ are defined as in Theorem
1, and

Hi =

[
H1i 0 H2i

H3i 0 H4i

H5i 0 H6i

]
, Gi =

[
G1i 0 G2i

G3i Q4i G4i

G5i 0 G6i

]
.

Proof: (Sufficiency) By pre- and post-multiplying (8) by[
I AT

i

]
and its transpose, we obtain (5) immediately.

(Necessity) If there exist P1i > 0, P2i = 0, P4i > 0,
Q4i = P̂4i, and sufficiently large αi > 0 such that
(5) holds, then, by simple manipulating and Schur com-
plement equivalence, we can obtain that (8) holds with
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Hνi = 0, (ν = 1, 2, . . . , 6) , G2i = G3i = G4i = G5i = 0,
G1i = P̂1i, G6i = I. �
Remark 2. The major merit of the equivalent characteri-
zation is the separation of the Lyapunov matrices P1i and
the system matrices, which avoids imposing any constraint
on the Lyapunov matrices when Ki is parameterized. In
addition, by following the idea proposed in de Oliveira
et al. [1999], redundant matrices Hνi and Gνi are in-
troduced to reduce the conservatism and to improve the
solvability of the iterative calculation to be presented later.
Remark 3. It should be pointed out that, without loss
of generality, the matrices P4i and Q4i in Theorems 1
and 2 can be set to be mode-independent, i.e., P41 =
P42 = . . . = P4s and Q41 = Q42 = . . . = Q4s, and the
corresponding conditions are still necessary and sufficient.
In view of this feature, it is easy to design a mode-
independent controller for the case that the jump variable
r(k) is not available without imposing any restriction on
the Lyapunov matrices P1i, which may cause excessive
conservatism.

3.2 H2 Performance

Likewise, we first propose a new condition for H2 perfor-
mance, and then give an equivalent characterization.
Theorem 3. System Tcl is stochastically stable with ‖Tcl‖2 <
γ2 if and only if there exist X1i = XT

1i, X4i = XT
4i, X2i,

W4i = WT
4i , Λi = ΛT

i , and scalars βi > 0 such that, for
each i ∈ S,

s∑
i=1

trace (Λi) < γ2
2 , (9)

Ω2i = IT
upAT

i X̂iAiIup + IT
dnAT

i XiAiIdn

−E2iXiE2i +WiLi + LT
i WT

i < 0, (10)
where Ai and Li are defined as in Theorem 1, and

Xi =

 X1i XT
2i 0

X2i X4i 0
0 0 I

 > 0, Wi =

 0 −βiC
T
yiK

T
i W4i

0 βiW4i

0 0

 ,

Iup =
[
In+l 0

0 0

]
, Idn=

[
0 0
0 Iq

]
, E2i=

[
E 0
0 Λ1/2

i

]
.

Proof: (Sufficiency) By pre- and post-multiplying (10) by
TT

2 TT
1i and its transpose, we obtain that

TT
2 TT

1iΩ2iT1iT2

=

 AT
cliX̂1iAcli −X1i + CT

cliCcli 0
0 BT

wiX1iBwi − Λi

BT
i X̂1iAcli − X̂2iAcli + DT

i Ccli 0

AT
cliX̂1iBi −AT

cliX̂
T
2i + CT

cliDi

0(
BT

i X̂1iBi −BT
i X̂T

2i − X̂2iBi

+X̂4i + DT
i Di − 2βiW4i

)


< 0,

which implies that

AT
cliX̂1iAcli −X1i + CT

cliCcli < 0, (11)

BT
wiX1iBwi < Λi. (12)

Hence, the stochastic stability of system Tcl follows from
(11) immediately. On one hand, it follows from (11) that
there must exist some Fi ≥ 0 such that

X1i −AT
cliX̂1iAcli = CT

cliCcli + FT
i Fi. (13)

On the other hand, by Lemma 2,

‖Tcl‖22 =
s∑

i=1

trace
(
BT

wiSiBwi

)
,

where
Si −AT

cliŜiAcli = CT
cliCcli. (14)

Therefore, from (13), (14) and Lemma 3, we obtain that
X1i ≥ Si > 0, and thus

‖Tcl‖22 =
s∑

i=1

trace
(
BT

wiSiBwi

)
≤

s∑
i=1

trace
(
BT

wiX1iBwi

)
<

s∑
i=1

trace (Λi) < γ2
2 ,

where (12) is used.

(Necessity) If system Tcl is stochastically stable with
‖Tcl‖2 < γ2, then there exist Z1i > 0 and Si > 0 such
that

AT
cliẐ1iAcli − Z1i < 0 (15)

‖Tcl‖22 =
s∑

i=1

trace
(
BT

wiSiBwi

)
< γ2

2 , (16)

where Si satisfying (14). Now, define

X1i = Si + εZ1i,

Λi = BT
wiX1iBwi + δI,

where ε > 0 and δ > 0 are sufficiently small numbers such
that

s∑
i=1

trace
(
BT

wiSiBwi

)
+ ε

s∑
i=1

trace
(
BT

wiZ1iBwi

)
+

s∑
i=1

trace (δI)

< γ2
2 .

Then, it follows that

BT
wiX1iBwi < Λi,

s∑
i=1

trace (Λi) < γ2
2 . (17)

Meanwhile, from (14) and (15), we have that

AT
cliX̂1iAcli −X1i + CT

cliCcli

= ε
(
AT

cliẐ1iAcli − Z1i

)
< 0. (18)

Combining (17)–(18), and following the same line as used
in the proof of Theorem 1, we obtain that (9) and (10)
hold. This completes the proof. �

Theorem 4. (9) and (10) hold if and only if there exist
X1i = XT

1i, X4i = XT
4i, X2i, W4i = WT

4i , Uνi, Vνi,
(ν = 1, 2, . . . , 6), and scalars βi > 0 such that, for each
i ∈ S,
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s∑
i=1

trace (Λi) < γ2
2 , (19)

 ViAiIup + IT
upAT

i VT
i

+IT
dnAT

i XiAiIdn

−E2iXiE2i+WiLi + LT
i WT

i

 IT
upAT

i UT
i − Vi

UiAiIup − VT
i X̂i − Ui − UT

i

 < 0,

(20)
where Ai, Xi, Wi, Li, and E2i

are defined as in Theorem
3, and

Vi =

[
V1i 0 V2i

V3i 0 V4i

V5i 0 V6i

]
, Ui =

[
U1i 0 U2i

U3i W4i U4i

U5i 0 U6i

]
.

The proof can be conducted by following the same line as
used in the proof of Theorem 2, and thus omitted here for
brevity.

4. CONTROLLER SYNTHESIS

We are now in a position to establish a sufficient condition
for the existence of desired mode-dependent controllers.
Theorem 5. If there exist P1i = PT

1i , P4i = PT
4i , P2i, Hνi,

Gνi, X1i = XT
1i, X4i = XT

4i, X2i, Uνi, Vνi, (ν = 1, 2, . . . , 6),
Mi, Li, Q4i = QT

4i, Λi = ΛT
i , and scalars αi > 0, βi > 0

such that, for each i ∈ S,[
P1i PT

2i
P2i P4i

]
> 0,

[
X1i XT

2i
X2i X4i

]
> 0, (21)

s∑
i=1

trace (Λi) < γ2
2 , (22)

Φ∞i (αi,Mi) =



Φ̂11i # # # # #
Φ̂21i Φ̂22i # # # #
Φ̂31i Φ̂32i Φ̂33i # # #
Φ̂41i Φ̂42i Φ̂43i Φ̂44i # #
Φ̂51i Φ̂52i Φ̂53i Φ̂54i Φ̂55i #
Φ̂61i Φ̂62i Φ̂63i Φ̂64i Φ̂65i Φ̂66i

 < 0

(23)

Φ2i (βi,Mi) =


Φ̌11i # # # # #
Φ̌21i Φ̌22i # # # #
Φ̌31i Φ̌32i Φ̌33i # # #
Φ̌41i Φ̌42i Φ̌43i Φ̌44i # #
Φ̌51i Φ̌52i 0 Φ̌54i Φ̌55i #
Φ̌61i Φ̌62i Φ̌63i Φ̌64i Φ̌65i Φ̌66i

 < 0

(24)
where

Φ̂11i = H1iAi + H2iCi + AT
i HT

1i + CT
i HT

2i − P1i

2αiM
T
i Q4iMi − 2αiC

T
yiL

T
i Mi − 2αiM

T
i LiCyi,

Φ̌11i = V1iAi + V2iCi + AT
i V T

1i + CT
i V T

2i −X1i

2βiM
T
i Q4iMi − 2βiC

T
yiL

T
i Mi − 2βiM

T
i LiCyi,

Φ̂21i = H3iAi + H4iCi + BT
i HT

1i + DT
i HT

2i + 2αiLiCyi,

Φ̌21i = V3iAi + V4iCi + BT
i V T

1i + DT
i V T

2i + 2βiLiCyi,

Φ̂22i = H3iBi + H4iDi + BT
i HT

3i + DT
i HT

4i − 2αiQ4i,

Φ̌22i = V3iBi + V4iDi + BT
i V T

3i + DT
i V T

4i − 2βiQ4i,

Φ̂31i = H5iAi + H6iCi + BT
wiH

T
1i, Φ̌31i = V5iAi + V6iCi,

Φ̂32i = H5iBi + H6iDi + BT
wiH

T
3i, Φ̌32i = V5iBi + V6iDi,

Φ̂33i = H5iBwi + BT
wiH

T
5i − γ∞I, Φ̌33i = BT

wiX1iBwi − Λi,

Φ̂41i = G1iAi + G2iCi −HT
1i, Φ̌41i = U1iAi + U2iCi − V T

1i ,

Φ̂42i = G1iBi + G2iDi −HT
2i, Φ̌42i = U1iBi + U2iDi − V T

2i ,

Φ̂43i = G1iBwi −HT
3i, Φ̌43i = −V T

3i ,

Φ̂44i = P̂1i −G1i −GT
1i, Φ̌44i = X̂1i − U1i − UT

1i,

Φ̂51i = G3iAi + G4iCi + LiCyi,

Φ̌51i = U3iAi + U4iCi + LiCyi,

Φ̂52i = G3iBi + G4iDi −Q4i, Φ̌52i = U3iBi + U4iDi −Q4i,

Φ̂53i = G3iBwi, Φ̂54i = P̂2i −G3i, Φ̌54i = X̂2i − U3i,

Φ̂55i = P̂4i − 2Q4i, Φ̌55i = X̂4i − 2Q4i,

Φ̂61i = G5iAi + G6iCi −HT
4i, Φ̌61i = U5iAi + U6iCi − V T

4i ,

Φ̂62i = G5iBi + G6iDi −HT
5i, Φ̌62i = U5iBi + U6iDi − V T

5i ,

Φ̂63i = G5iBwi −HT
6i, Φ̌63i = −V T

6i ,

Φ̂64i =−G5i −GT
2i, Φ̌64i = −U5i − UT

2i,

Φ̂65i =−GT
4i, Φ̌65i = −UT

4i,

Φ̂66i = I −G6i −GT
6i, Φ̌66i = I − U6i − UT

6i,

then, a mode-dependent control law
u (k) = Q−1

4i Liy (k) (25)
exists, and makes the closed-loop system stochastically
stable with ‖Tcl‖2 < γ2 and ‖Tcl‖∞ < γ∞.

Proof: It follows from Theorems 2 and 4 that a desired
control law exists if (8), (19), and (20) hold. For the
purpose of parameterization, Q4i in Theorem 2 and W4i in
Theorem 4 can be set to be equal without loss of generality,
i.e., Q4i = W4i, for i ∈ S. By expanding (8) and (20), and
noting that

−2CT
yiK

T
i Q4iKiCyi ≤−2

(
CT

yiK
T
i QT

4i

)
Mi

−2MT
i (Q4iKiCyi) + 2MT

i Q4iMi,

we obtain that (8), (19) and (20) hold if (22)–(24) hold,
where the parameterization Li = Q4iKi is used. �

When αi, βi, and Mi are fixed, (23) and (24) become
strict LMIs, which could be verified easily by conventional
LMI solver. According to the proof of Theorems 1 and
3, the larger the αi and βi, the higher the reduction in
conservatism of (23) and (24). If (21)–(24) do not hold
for sufficiently large αi > 0 and βi > 0, it is plausible
to conclude that a desired controller does not exist. As a
matter of fact, when Mi = Q−1

4i LiCyi, the left sides of (23)
and (24) are monotonic decreasing matrix functions with
respect to αi and βi, respectively, i.e., for α

(1)
i > α

(2)
i and

β
(1)
i > β

(2)
i ,

Φ∞i

(
α

(1)
i , Q−1

4i LiCyi

)
≤Φ∞i

(
α

(2)
i , Q−1

4i LiCyi

)
,

Φ2i

(
β

(1)
i , Q−1

4i LiCyi

)
≤Φ2i

(
β

(2)
i , Q−1

4i LiCyi

)
.

Hence, we can set αi and βi to be large values. The
remaining problem is how to select Mi. It can be seen from
the proof of Theorem 3 that the left sides of (23) and (24),
Φ∞i (αi,Mi) and Φ2i (αi,Mi), achieve their minima only
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if Mi = Q−1
4i LiCyi. Therefore, we adopt a simple iterative

algorithm to solve the condition of Theorem 5.

Algorithm:

(1) Set ν = 1 and αi, βi to be sufficiently large values (for
example, αi = βi = 104, for each i ∈ S). Select initial
values M

(ν)
i , i = 1, 2, . . . , s, such that system T with

u (k) = M
(ν)
i x (k) (denoted as Tsf ) is stochastically

stable with ‖Tsf‖2 < γ2 or ‖Tsf‖∞ < γ∞.
(2) For fixed αi, βi, and M

(ν)
i , solve the following convex

optimization problem with respect to L
(ν)
i , Q

(ν)
4i ,

P
(ν)
1i > 0, P

(ν)
4i > 0, P

(ν)
2i , X

(ν)
1i > 0, X

(ν)
4i > 0, X

(ν)
2i ,

H
(ν)
τi , V

(ν)
τi , G

(ν)
τi , U

(ν)
τi , (τ = 1, 2, . . . , 6).

Minimize γ(ν) subject to, for each i ∈ S, (21), (22)
and

Φ∞i

(
αi,M

(ν)
i

)
< γ(ν)I,

Φ2i

(
αi,M

(ν)
i

)
< γ(ν)I.

If a γ
(ν)
ltz ≤ 0 is found during solving the convex

optimization problem, then the system is output-
feedback stabilizable, and a controller law can be
obtained as (25). STOP.

(3) Denote γ
(ν)
∗ as the optimal value of γ(ν). If∣∣∣γ(ν)

∗ − γ
(ν−1)
∗

∣∣∣ ≤ δ,

where δ is a prescribed tolerance, then go to next step,
else update M

(ν+1)
i as

M
(ν+1)
i =

(
Q

(ν)
4i

)−1

L
(ν)
i Cyi,

and set ν = ν + 1, then go to Step 2.
(4) A desired control law may not exist. STOP.
Remark 4. The convergence of the iteration is not guar-
anteed. However, it can be shown easily that the sequence
γ

(ν)
∗ is monotonic decreasing with respect to ν, i.e., γ

(ν)
∗ ≤

γ
(ν−1)
∗ . If γ

(ν)
∗ does not converge to a positive number,

then, after a sufficiently large number of iterations, γ
(ν)
∗

will always be negative, which means that the system is
output-feedback stabilizable. Therefore, the case that the
iteration is non-convergent is trivial.

Remark 5. Initial values M
(1)
i are H2 or H∞ state-

feedback controller matrices, which can be found by exist-
ing approaches Ji et al. [1991], Costa et al. [1997]. It should
be pointed out that the optimum of the converged value
γ

(∞)
∗ is affected by the initial values M

(1)
i , αi, and βi, and

the optimization of M
(1)
i , αi, and βi will be investigated

in the future.

By setting P4i, X4i, and Q4i to be mode-independent, as
stated in Remark 3, we give a sufficient condition for the
existence of mode-independent controllers.
Theorem 6. If there exist P1i = PT

1i , P4, P2i, Hνi, Gνi,
X1i = XT

1i, X4, X2i, Uνi, Vνi, (ν = 1, 2, . . . , 6), Mi, L,
Q4, and scalars αi > 0, βi > 0 such that, for each
i ∈ S, (21)–(24) hold, then a mode-independent control
law u (k) = Q−1

4 Ly (k) exists, and makes the closed-
loop system stochastically stable with ‖Tcl‖2 < γ2 and
‖Tcl‖∞ < γ∞.

5. CONCLUSION

The mixed H2/H∞ control problem of discrete-time
Markovian jump systems via static output-feedback con-
trollers has been solved by employing an augmented sys-
tem representation. New characterizations on stochastic
stability and H2/H∞ performance of the closed-loop sys-
tem are established in terms of the new representation
and the matrix inequality technique. Based on these new
results, a sufficient condition with redundant matrix vari-
ables for the existence of the mode-dependent controller is
proposed, and an iterative algorithm is given to solve the
condition. An extension to the mode-independent case is
provided as well.
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