
A New Translation Algorithm from Ladder Diagrams to Instruction Lists

Yan Yi, Zhang Hang Ping

* Institute of Intelligence & Software, Hangzhou Dianzi University,
Hangzhou, China, (e-mail:yybjyyj@163.com)

Abstract: A new algorithm for translating ladder diagrams into instruction lists is presented in this paper.
To perform this task a new class of digraphs called Fractal Series Parallel (FSP) digraphs is proposed for
the first time, which can represent the Boolean functions of a ladder diagram more intuitively and
concisely than binary trees. Our analysis is based on the fact that a General Series Parallel (GSP) digraph
can be transformed into a FSP digraph that is equivalent to the GSP one in Boolean function.

1. INTRODUCTION

Ladder diagrams (IDs) and instruction lists (ILs) are major
programming languages commonly used by Programmable
Logic Controllers (PLCs). (Karl-Heinz, 2001) A ladder
diagram consists of chart symbols, and expresses the control
logic with serial and parallel connections between chart
symbols. An instruction list is a set of instructions composed
of operation codes and operands, and is similar to assembly.

The interest of the translation algorithm we study is that a
ladder diagram cannot be executed directly by PLC, and a
feasible way is to translate it into an IL first and then translate
the IL to the native code. (Kim et al., 1999)

A translation method of row-by-row is mentioned (Chmiel et
al., 2002; Jong-il Kim et al., 1992), which goes horizontally
from left to right and begins analysis of next row when
vertical connection is reached. In addition, another solving
approach, which first translated a LD into a binary tree, and
then obtained the IL by traversing the binary tree, is
presented (Ge Feng et al., 2006; Kim et al., 1999).

Our main result is a new translation algorithm from a LD to
an IL based on Fractal Series Parallel (FSP) digraphs. FSP
digraphs provide a concise and intuitive form to describe the
structure of ladder diagrams and are beneficial to the logic
verification and the code optimization at the level of the IL
generation.

The remainder of this paper is divided into four sections. The
first one provides the definitions and elementary facts needed
to understand the translation procedure. In the second, the
definitions of FSP digraphs are outlined and shown correct.
The third section presents the detailed steps to transform a
LD to an IL using FSP digraphs. The last section presents our
conclusion and future work to be conducted.

2. BASIC DEFINITIONS AND RELATIONS

2.1 Graph theoretical definitions

Most of the graph theoretical terms used are standard (Diestel
Reinhard, 2003). Thus, the most commonly used terms and
those that may produce confusion are not redefined here
again.

A graph G = <V, E> consists of a finite set of vertices V
denoted by V (G) and a finite set of edges E denoted by E (G).
Edges are pairs of distinct vertices, if the edges of a graph are
unordered pairs the graph is undirected and if they are
ordered the graph is directed. We will abbreviate directed
graph as digraph. For the empty graph (φφ ,) we simply
writeφ .

In-degree of a vertex is the number of edges enters itself,
denoted by deg+(v). Similarly, out-degree of a vertex is the
number of edges leaves itself, denoted by deg-(v). A vertex v
of a digraph G is a source denoted by vs(G) if its in-degree is
zero, and is a sink denoted by vt(G) if its out-degree is zero.
A vertex is a split vertex if its in-degree is one or zero and
out-degree is greater than one. In contrast, a vertex is a join
vertex if its in-degree is greater than one and out-degree is
one or zero.

A path is a non-empty graph P = (V, E) with the form
V = {x0, x1, …, xk} and E = {x0 x1, x1 x2, …, xk-1 xk}, where the
vertex xi is distinct for all 0 ≤ i ≤ k.

We set G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2) and
G1∩G2 = (V1 ∩ V2, E1 ∩ E2). If G1 ∩ G2 = φ , then G1 and
G2 are disjoint. If V1 V and E⊆ 1 ⊆ E, then G1 is a subgraph
of G, written as G1 ⊆ G. The function
Sub (G, vs, vt) is defined to get the maximal subgraph with the
source vs and the sink vt from G.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 14804 10.3182/20080706-5-KR-1001.0751

If deg-(vs(G)) = n, then G can be represented by
BB1 ∪ B2B ∪ ... ∪ BBn where the Bi for all 1 ≤ i ≤ n is a
subgraphs of G called branch components, and are obtained
by (i) getting all different paths P1, P2, …, Pn by traversing
from the ith incident edge of the source to the sink, then (ii)
applying union operation on these paths, namely
P1 ∪ P2∪ … ∪ Pn.

As shown in figure 1, the out-degree of G is three, so the
digraph G can be represented by BB1 ∪ B2B ∪ BB3

 where V(B1B) = {1, 2, 6} and E(BB1) = {(1, 2), (2, 6)},
V(B2B) = {1, 3, 5, 6} and E(BB2) = {(1, 3), (3, 5), (5, 6)},
V(B3B) = {1, 4, 5, 6} and E(BB3) = {(1, 4), (4, 5), (5, 6)}.

Fig. 1. A digraph G.

2.2 General Series Parallel digraphs

General Series Parallel digraphs have been extensively
studied because of its relationship with the networks
constructed by connections in series or in parallel of electrical
components (resistors, capacitors, etc.).

A ladder diagram can be represented by a GSP digraph in a
natural way. Each rung in the ladder diagram is represented
as a single GSP digraph, and the ladder logic symbols
constitute the vertices of the graph while the connections
between symbols are implemented as the edges of the graph
(Ngalamou et al., 2004). Figure 2 shows a ladder diagram
and its equivalent GSP digraph representation.

Fig. 2. Ladder Diagram and its equivalent GSP digraph
representation .Please note that S, V1, and V2 are the

virtual vertices with logic value TRUE.

A GSP digraph (Jacobo et al., 1979; Shih-Yih Wang et al.,
1992) is defined recursively as follows:

Definition 1: General Series Parallel digraphs

1) A digraph G is a GSP digraph if it consists of two
vertices v1, v2 joined by a single edge, and is called edge
GSP digraph. The Boolean function of G is written as
F (G) = F (v1) ∩ F (v2).

2) Let G1 and G2 be GSP digraphs.

(i) If vt(G1) = vs(G2), then a digraph G is a GSP digraph,
which is obtained from G1 and G2 by identifying the
sink of G1 with the source of G2. Such a connection is
called a series connection. The Boolean function of G
is written as F(G) = F(G1) ∩ F(G2).

(ii) If vs(G1) = vs(G2) and vt(G1) = vt(G2), a digraph G is
a GSP digraph, which is obtained from G1 and G2 by
identifying the source of G1 with the source of G2 and
the sink of G1 with the sink of G2. Such a connection
is called a parallel connection, and the Boolean
function of G is written as F (G) = F (G1) ∪ F (G2).
The source of G is called a corresponding split vertex
of the sink; similarly, the sink is called a
corresponding join vertex of the source.

3. THE THEORETICAL DEFINITIONS OF FSP
DIGRAPHS

Although GSP digraphs can represent ladder diagrams in a
natural way, it is difficult to obtain Boolean functions from
them. Given a GSP digraph G composed of other GSP
digraphs, if deg-(vs(G)) = n, the Boolean function of G can be
written as

UII
n

1 k

*
k)B())(())(()(

=

= FGvFGvFGF ts (1)

where BBk
* is obtained from branch component BkB by

eliminating its source and sink. There are two problems that
make us obtain the Boolean function of BBk

* difficult. First, we
cannot guarantee that B1B

*, B B2
*… and BnB

* are all disjoint,
namely may be B B1

* ∩ B2B
* ∩…∩ BBn

* ≠φ . Second, B1B
*,

BB2
*, …, and BnB

* may not be all the class of GSP digraphs.
Consequently, it is impossible to divide a GSP digraph into
two or more sub GSP digraphs that are simple enough to be
transformed into an IL and then combine the results of these
sub digraphs to obtain a complete solution to the original one.

As shown in figure 1, the Boolean function of G can be
written as F(1) ∩ F(6) ∩ (F(BB1

*) ∪ F(B2B
*) ∪ F(BB3

*)) where
V(B1B

*) = {2}, V(BB2
*) = {3, 5} and E(B2B

*) = {(3, 5)},
V(BB3

*) = {4, 5} and E(B3B) = {(4, 5)}, and the graphs BB2
* and

B3B
* are not disjoin.

To overcome this problem, FSP digraphs are proposed.
Before we give the definitions of FSP digraphs two functions
about split and join vertices are outlined as follows:

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14805

The split vertex function : SG : V→{0, 1, 2, …, n - 1}.
SG (v) = φ if v is not a join vertex in G, otherwise the
corresponding split vertex of v.

The join vertex function : JG : V→{0, 1, 2, …, n - 1}.
JG (v) = φ if v is not a split vertex in G, otherwise the
corresponding join vertex of v.

A FSP digraph is defined recursively as follows:

Definition 2: Fractal Series Parallel digraphs

1) A digraph G of a single vertex is a FSP diagraph.

2) A digraph G consisting of two vertices joined by a
single edge is a FSP digraph.

3) Let G1 and G2 be FSP digraphs. If vt(G1) = vs(G2), a
digraph G obtained from G1 and G2 by identifying
vertex vt(G1) with vertex vs(G2) is a FSP digraph.

4) Let G1 and G2 be FSP digraphs; let vs1 and vt1 are
distinct vertices of G1; let vs2 and vt2 are distinct
vertices of G2. If vs1 = vs2 and vt1 = vt2, and one of the
following conditions (a), (b), (c), (d) is satisfied, then a
digraph G obtained from G1 and G2 is a FSP graph by
identifying vs1 with vs2 and vt1 with vt2.

(a)
 11)(

1 stG vvS = 11)(
1 tsG vvJ =

 22)(
2 stG vvS = 22)(

2 tsG vvJ =

(b)
 11)(

1 stG vvS = 11)(
1 tsG vvJ =

φ=)(22 tG vS φ=)(22 sG vJ

(c)
φ=)(11 tG vS φ=)(11 sG vJ

 22)(
2 stG vvS = 22)(

2 tsG vvJ =

(d)
φ=)(11 tG vS φ=)(11 sG vJ

φ=)(22 tG vS φ=)(22 sG vJ

Fig. 3. A FSP digraph G.

Our transformation algorithm from a FSP digraph to an IL is
based on the following facts:

Lemma 1: There is one-to-one relationship between a split
vertex and its corresponding join vertex in a FSP digraph,
namely a split vertex has only one corresponding join vertex
and a join vertex has only one split vertex too.

Proof: From the def. 2, we can see that parallel composition
only happens when (i) the source and sink all are not split and
join vertices, (ii) or source and sink are corresponding split
and join vertices of each other. This proves our lemma is
correct.

Lemma 2: The out-degree of a split vertex is as many as the
in-degree of its corresponding join vertex.

Proof: The increase of out-degree and in-degree is arisen by
parallel composition operation. Due to the one-to-one
relationship of split and join vertices, the out-degree of a split
vertex and the in-degree of its corresponding join vertex
increase together.

Lemma 3: Given a FSP digraph G composed of some other
FSP digraphs in parallel, if the out-degree of the source is n,
then BB1

*, B2B
*, …, and BBn

* are disjoint with each other.

Proof: If V(BBi
*) ∩ V(BjB

*) ≠ φ , then there exist a
corresponding join vertex of the source in the set of
V(BBi

*) ∩ V(BjB
*). Since the sink is also the corresponding join

vertex of the source, this proposition violates the lemma 1.
Therefore B1

*, B2
*, …, and Bn

* are disjoint with each other.

Lemma 4: Given a FSP digraph G composed of some other
FSP digraphs in parallel, if the out-degree of the source is n,
then BB1*, B2B *, …, and BBn* are all the class of FSP digraphs
(See equation 1).

Proof: Since BB1*, B2B *, …, and BBn* are disjoint with each
other, then G is composed of B1B , BB2, …, and BnB in parallel,
and BB1, B2B , …, and BBn are all the class of FSP digraphs. BiB

*
must connect the source and sink in series, otherwise it will
violate the lemma 1. Therefore BBi is composed of the source,
BiB

*, and the sink in series. According to the def. 2, we can
sure BBi

* is a FSP digraph.

Figure 3 shows a FSP digraph G, and BB1* = <（2）, φ >，
and B2B * = <{3, 4, 5, 6}, {(3, 4), (4, 6), (3, 5), (5, 6)> are all
the FSP digraphs.

4. THE ALGORITHM FOR TRANSLATING A LADDER
DIAGRAM TO AN INSTRUCTION LIST

Now we have finally collected enough facts to be able to
outline our procedure to translate a LD to an IL.

Algorithm 1: <Translation procedure for a LD to an IL>

Input: a ladder diagram

Output: the Boolean function of the ladder diagram

Step1: Represent the ladder diagram with a GSP digraph G.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14806

Step2: Transform G into a FSP diagram GT

Step3: Transform GT into Boolean function

For describing the algorithm concisely and conveniently, we
use Boolean function as the result of the translation process.
The IL will be obtained by replacing ‘∪’ and ‘∩’ with ‘OR’
and ‘AND’ respectively in the process of translation.

4.1 The algorithm for transforming GSP to FSP digraphs

The Boolean function of a FSP digraph can be depicted
concisely using equation 1, but FSP digraphs are unable to
represent all ladder diagrams directly.

We will solve the problem with two steps: first, we partition a
GSP digraph into series digraphs; this step is equivalent to
partition the GSP digraph into edge GSP digraphs and
connect them in series. Second, a FSP digraph equivalent to
the GSP one in Boolean function will be constructed by
connecting these series digraphs in parallel. A topology
transformation method is used when the parallel condition of
FSP digraphs is not satisfied.

Algorithm 2: <Transformation for a GSP to the FSP>

Input: a GSP digraph G

Output: a FSP digraph GT and the list LP composed of pairs
of corresponding split and join vertices in GT

Step1: Decompose G into series digraphs.

(i) A series digraph Gi will be gotten by traversing G with the
depth-first traversal from a source to a sink, and put the series
digraph into the list LS.

(ii) Remove the edges of series digraph Gi from G.

(iii) Remove the nodes whose degree is zero from G.

(iiii) Repeat the operations (i), (ii), and (iii) until G become
empty.

Step2: Reconnect series digraphs in parallel according to the
definitions of FSP digraphs.

Fetch a series digraph GT from the list LS

while the LS is not empty do

fetch a series digraph Gi from LS

if vs(Gi) ⊆ V(GT) and vt(Gi) ⊆ V(GT) then

if GT and Gi fail to satisfy the parallel connection
conditions of FSP digraphs at vertices vs(Gi) and vt(Gi)
then

Transform the topology of GT into a new digraph
denoted by GT

’, which can connect with Gi in
parallel to construct a new FSP digraph

obtain a new FSP digraph G’ from GT
’ and Gi with

parallel connection

else

obtain a new FSP digraph G’ from GT and Gi with
parallel connection

 end if

Let GT = G’

Put the pair of the source and sink of Gi into the list LP

end if

end while

Fig. 4 Series digraphs obtained by decomposing the GSP
digraph of fig. 2.

Fig. 5 The process of constructing the new FSP digraph by
connecting series digraphs in fig. 4.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14807

Figure 4 shows the series digraphs of the GSP digraph in
figure 2. Figure 5 shows the process of constructing the FSP
digraph GT by connecting series digraphs in figure 4 in
parallel.

As shown in figure 5(b), the parallel composition conditions
is not satisfied when GT and G3 connect in parallel at vertices
S and V1, since the corresponding join vertex of S is X3. A
new vertex S’ that is equivalent to S in Boolean function is
created and used as the split vertex of V1. Similarly, a new
vertex X13

’ identical to vertex X13 has been created when
connecting GT and G5 in parallel as shown in figure 5(d).

When GT and Gi with the source vs and the sink vt connect in
parallel, there are three possibilities:
 (i) tsG vvJ

T
≠)(φ=)(tG vS

T
,

(ii) φ=)(sG vJ
T

 ,

 (iii) .
stG vvS

T
≠)(

tsG vvJ
T

≠)(stG vvS
T

≠)(

For the possibility (i), a new vertex identical to vs should be
created in GT, as shown in figure 5(b). For the possibility (ii),
a new vertex identical to vt should be created in GT, as shown
in figure 5(d). Finally, for the third possibility, then two
vertices identical to vs and vt respectively should be created in
GT, as shown in figure 6.

Fig. 6 Two vertices created in transformation process.

 4.2 THE ALGORITHM FOR TRANSLATING A FSP
DIGRAPH TO AN INSTRUCTION LIST

We now consider the problem of implementing Step 3 of the
translation algorithm of a LD into an IL. The algorithm is
based on the Lemmas in the third section.

Algorithm 3: <Translation of a FSP digraph into an
instruction lists>

Input: a FSP digraph GT and the list LP composed of all pairs
of corresponding split and join vertices in GT.

Output: the Boolean function of GT

Step1: Sorting the list LP.

Let Q be an empty queue

Traverse GT with width-first search algorithm, and if a split
vertex is reached, then insert it into the top of Q

Reorder the elements of LP according its position in Q

Step2: Reduce GT with Boolean function.

while (the list LP is not empty)

fetch the top element denoted by (vs
i, vj

i) from the LP

for (k= 1; k<= deg- (vs
i); k++)

node = next vertex that is adjacent from vs
i

F’ = TRUE

while (node ≠ vj
i)

F’ = F’ ∩ F (node)

node = vertex that is adjacent from node

end while

F = F ∪ F’

end for

 F = F(vs
i) ∩ F(vj

i) ∩ F

create a new vertex with Boolean function F to replace
the subgraph Sub(GT, vs

i, vj
i)

end while

node = vs(G)

F = TRUE

while(node != vt(G))

F = F ∩ F(node)

node = vertex that is adjacent from node

end while

return F

When we apply the algorithm on the FSP digraph GT in
figure 5(d), the elements of Q are X8, V2, S’, and S; the
elements of the reordered LP is {X8, X13’}, {V2, X13}, {S’,
X3}, and {S, V1}. The reducing process is shown in figure 7,
and figure 8 shows the instruction lists of the final Boolean
function. It is important to point out here that the instruction
lists generated by the algorithm have some redundant and

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14808

needless instructions such as step 1, 2, 8, 11, 12, 13, 23 and
27 in figure 8, which is created by vertices S , S’, V1, V2,
and X13’. Yet, the redundant instruction can be removed
easily by recognizing these vertices in the translation process.

Fig. 7. The process of reducing GT in figure 5(d) with
Boolean function.

Fig. 8. The instruction list of the GT in figure 5(d).

5. CONCLUSIONS AND FUTURE WORK

In this paper, a complete translation algorithm from a LD to
an IL is presented, which use FSP digraphs to depict the
Boolean function of ladder diagrams.

FSP digraphs are the powerful model to describe the structure
of all networks constructed by connection in parallel or in
series of elements, and are more intuitive than binary tree.
Presently we are studying to optimize the ILs using FSP
digraphs.

The next step will extend the definitions of FSP digraphs and
make it support Sequential function charts, Logic block and
Petri Nets.

REFERENCES

Chmiel M, Hrynkiewicz E, Muszynski M. (2002) The way of
ladder diagram analysis for small compact programmable
controller. The 6th Russian-Korean International Symposium
on Science and Technology. Novosibirsk, Russia: IEEE
Electron Devices Society,: 169-173.

Diestel Reinhard.(2003) Graph Theory, Springer-Verlag.
New York

Ge Feng, Wu Ning. (2006). Transformation Algorithm
Between Ladder Diagram and Instruction List Based on AOV
Diagraph and Binary Tree. Journal of Nanjing University of
Aeronautics & Astronautics, Vol.38 NO.6.

Jong-il Kim, Jaehyun Park, Wook Hyun Kwon. (1992).
Architecture of a ladder solving processor for programmable
controllers. Microprocessors and Microsystems.

Jacobo Valdes, Robert E.Tat'jan, Eugene L.Lawler. (1979).
The recognition of Series Parallel digraphs. Journal ACM.

Karl-Heinz J, Tiegelkamp M. (2001). Programming
industrial automation systems. IEC61131-3, Springer-Verlag
Berlin

Kim H S, Kwon W H, Chang N. (1999). A translation
method for ladder diagram with application to a
manufacturing process. Proceedings of the IEEE International
Conference on Robotics and Automation. Detroit, Michigan:
Robotics and Automation Society: 793-798.

L.Ngalamou, L.Buchanan, L.Myers, V.Watt. (2004).
Architecture of a Retargetable Ladder Logic Diagrams Tool.
SICE Annual conference. Sapporo.

Shih-Yih Wang, Lih-Hsing Husu. (1992). Maximum and
minimum matchings for series-parallel networks. IEEE.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14809

