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Abstract: A new algorithm for translating ladder diagrams into instruction lists is presented in this paper. 
To perform this task a new class of digraphs called Fractal Series Parallel (FSP) digraphs is proposed for 
the first time, which can represent the Boolean functions of a ladder diagram more intuitively and 
concisely than binary trees. Our analysis is based on the fact that a General Series Parallel (GSP) digraph 
can be transformed into a FSP digraph that is equivalent to the GSP one in Boolean function.

 

1. INTRODUCTION 

Ladder diagrams (IDs) and instruction lists (ILs) are major 
programming languages commonly used by Programmable 
Logic Controllers (PLCs). (Karl-Heinz, 2001) A ladder 
diagram consists of chart symbols, and expresses the control 
logic with serial and parallel connections between chart 
symbols. An instruction list is a set of instructions composed 
of operation codes and operands, and is similar to assembly. 

The interest of the translation algorithm we study is that a 
ladder diagram cannot be executed directly by PLC, and a 
feasible way is to translate it into an IL first and then translate 
the IL to the native code. (Kim et al., 1999)  

A translation method of row-by-row is mentioned (Chmiel et 
al., 2002; Jong-il Kim et al., 1992), which goes horizontally 
from left to right and begins analysis of next row when 
vertical connection is reached. In addition, another solving 
approach, which first translated a LD into a binary tree, and 
then obtained the IL by traversing the binary tree, is 
presented (Ge Feng et al., 2006; Kim et al., 1999).  

Our main result is a new translation algorithm from a LD to 
an IL based on Fractal Series Parallel (FSP) digraphs. FSP 
digraphs provide a concise and intuitive form to describe the 
structure of ladder diagrams and are beneficial to the logic 
verification and the code optimization at the level of the IL 
generation. 

The remainder of this paper is divided into four sections. The 
first one provides the definitions and elementary facts needed 
to understand the translation procedure. In the second, the 
definitions of FSP digraphs are outlined and shown correct. 
The third section presents the detailed steps to transform a 
LD to an IL using FSP digraphs. The last section presents our 
conclusion and future work to be conducted. 

 

 

 

 

2. BASIC DEFINITIONS AND RELATIONS 

2.1 Graph theoretical definitions 

Most of the graph theoretical terms used are standard (Diestel 
Reinhard, 2003). Thus, the most commonly used terms and 
those that may produce confusion are not redefined here 
again.  

A graph G = <V, E> consists of a finite set of vertices V   
denoted by V (G) and a finite set of edges E denoted by E (G). 
Edges are pairs of distinct vertices, if the edges of a graph are 
unordered pairs the graph is undirected and if they are 
ordered the graph is directed. We will abbreviate directed 
graph as digraph. For the empty graph ( φφ , ) we simply 
writeφ . 

In-degree of a vertex is the number of edges enters itself, 
denoted by deg+(v). Similarly, out-degree of a vertex is the 
number of edges leaves itself, denoted by deg-(v). A vertex v 
of a digraph G is a source denoted by vs(G) if its in-degree is 
zero, and is a sink denoted by vt(G) if its out-degree is zero. 
A vertex is a split vertex if its in-degree is one or zero and 
out-degree is greater than one. In contrast, a vertex is a join 
vertex if its in-degree is greater than one and out-degree is 
one or zero. 

A path is a non-empty graph P = (V, E) with the form  
V = {x0, x1, …, xk} and E = {x0 x1, x1 x2, …, xk-1 xk}, where the 
vertex xi is distinct for all 0 ≤  i ≤  k. 

We set G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2) and  
G1∩G2 = (V1 ∩ V2, E1 ∩ E2). If G1 ∩ G2 = φ , then G1 and 
G2 are disjoint. If V1  V and E⊆ 1 ⊆  E, then G1 is a subgraph 
of G, written as G1 ⊆ G. The function  
Sub (G, vs, vt) is defined to get the maximal subgraph with the 
source vs and the sink vt from G. 
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If deg-(vs(G)) = n, then G can be represented by  
BB1 ∪ B2B  ∪ ... ∪ BBn where the Bi for all 1 ≤ i ≤ n is a 
subgraphs of G called  branch components, and are obtained 
by (i) getting all different paths P1, P2, …, Pn by traversing 
from the ith incident edge of the source to the sink, then (ii) 
applying union operation on these paths, namely  
P1 ∪ P2∪ … ∪ Pn.  

As shown in figure 1, the out-degree of G is three, so the 
digraph G can be represented by BB1 ∪  B2B  ∪ BB3 

 where V(B1B ) = {1, 2, 6} and E(BB1) = {(1, 2), (2, 6)},          
V(B2B )  = {1, 3, 5, 6} and E(BB2) = {(1, 3), (3, 5), (5, 6)},          
V(B3B )  = {1, 4, 5, 6} and E(BB3) = {(1, 4), (4, 5), (5, 6)}. 

 
Fig. 1.  A  digraph G. 

2.2 General Series Parallel digraphs 

General Series Parallel digraphs have been extensively 
studied because of its relationship with the networks 
constructed by connections in series or in parallel of electrical 
components (resistors, capacitors, etc.). 

A ladder diagram can be represented by a GSP digraph in a 
natural way. Each rung in the ladder diagram is represented 
as a single GSP digraph, and the ladder logic symbols 
constitute the vertices of the graph while the connections 
between symbols are implemented as the edges of the graph 
(Ngalamou et al., 2004). Figure 2 shows a ladder diagram 
and its equivalent GSP digraph representation. 

 

Fig. 2. Ladder Diagram and its equivalent GSP digraph 
representation .Please note that S, V1, and V2 are the 

virtual vertices with logic value TRUE.  

A GSP digraph (Jacobo et al., 1979; Shih-Yih Wang et al., 
1992) is defined recursively as follows: 

Definition 1: General Series Parallel digraphs 

1) A digraph G is a GSP digraph if it consists of two 
vertices v1, v2 joined by a single edge, and is called edge 
GSP digraph. The Boolean function of G is written as  
F (G) = F (v1) ∩ F (v2). 

2) Let G1 and G2 be GSP digraphs. 

(i) If vt(G1) = vs(G2), then a digraph G is a GSP digraph, 
which is obtained from G1 and G2 by identifying the 
sink of G1 with the source of G2.  Such a connection is 
called a series connection. The Boolean function of G 
is written as F(G) = F(G1) ∩ F(G2). 

(ii) If vs(G1) = vs(G2) and vt(G1) = vt(G2), a digraph G is 
a GSP digraph, which is obtained from G1 and G2 by 
identifying the source of G1 with the source of G2 and 
the sink of G1 with the sink of G2. Such a connection 
is called a parallel connection, and the Boolean 
function of G is written as F (G) = F (G1) ∪ F (G2). 
The source of G is called a corresponding split vertex 
of the sink; similarly, the sink is called a 
corresponding join vertex of the source. 

 

3. THE THEORETICAL DEFINITIONS OF FSP 
DIGRAPHS 

Although GSP digraphs can represent ladder diagrams in a 
natural way, it is difficult to obtain Boolean functions from 
them. Given a GSP digraph G composed of other GSP 
digraphs, if deg-(vs(G)) = n, the Boolean function of G can be 
written as  

UII
n

1 k 

*
k )B())(())(()(

=

= FGvFGvFGF ts        (1) 

where BBk
* is obtained from branch component BkB  by 

eliminating its source and sink. There are two problems that 
make us obtain the Boolean function of BBk

* difficult. First, we 
cannot guarantee that B1B

*, B B2
*… and BnB

* are all disjoint, 
namely may be B B1

* ∩ B2B
* ∩…∩ BBn

* ≠φ . Second, B1B
*, 

BB2
*, …, and BnB

* may not be all the class of GSP digraphs. 
Consequently, it is impossible to divide a GSP digraph into 
two or more sub GSP digraphs that are simple enough to be 
transformed into an IL and then combine the results of these 
sub digraphs to obtain a complete solution to the original one. 

As shown in figure 1, the Boolean function of G can be 
written as F(1) ∩ F(6) ∩ (F(BB1

* ) ∪ F(B2B
* ) ∪ F(BB3

* )) where 
V(B1B

* ) = {2}, V(BB2
* )  = {3, 5} and E(B2B

* ) = {(3, 5)},          
V(BB3

* )  = {4, 5} and E(B3B ) = {(4, 5)}, and the graphs BB2
*  and 

B3B
*  are not disjoin. 

To overcome this problem, FSP digraphs are proposed. 
Before we give the definitions of FSP digraphs two functions 
about split and join vertices are outlined as follows:  
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The split vertex function : SG : V→{0, 1, 2, …, n - 1}. 
SG (v) = φ  if v is not a join vertex in G, otherwise the 
corresponding split vertex of v. 

The join vertex function : JG : V→{0, 1, 2, …, n - 1}. 
JG (v) = φ  if v is not a split vertex in G, otherwise the 
corresponding join vertex of v. 

A FSP digraph is defined recursively as follows: 

Definition 2: Fractal Series Parallel digraphs 

1) A digraph G of a single vertex is a FSP diagraph. 

2) A digraph G consisting of two vertices joined by a 
single edge is a FSP digraph. 

3) Let G1 and G2 be FSP digraphs. If vt(G1) = vs(G2), a 
digraph G obtained from G1 and G2 by identifying 
vertex vt(G1) with vertex vs(G2) is a FSP digraph. 

4) Let G1 and G2 be FSP digraphs; let vs1  and  vt1 are 
distinct vertices of G1; let vs2   and vt2 are distinct 
vertices of G2. If vs1 = vs2 and vt1  = vt2, and one of the 
following conditions (a), (b), (c), (d) is satisfied, then a 
digraph G obtained from G1 and G2 is a FSP graph by 
identifying vs1 with vs2 and vt1 with vt2. 

(a)  
 11 )(

1 stG vvS = 11 )(
1 tsG vvJ =  

  22 )(
2 stG vvS = 22 )(

2 tsG vvJ =

(b)  
 11 )(

1 stG vvS = 11 )(
1 tsG vvJ =  

φ=)( 22 tG vS  φ=)( 22 sG vJ  

(c)  
φ=)( 11 tG vS  φ=)( 11 sG vJ   

  22 )(
2 stG vvS = 22 )(

2 tsG vvJ =

(d)  
φ=)( 11 tG vS  φ=)( 11 sG vJ  

φ=)( 22 tG vS  φ=)( 22 sG vJ  

 

 

Fig. 3.  A FSP digraph G. 

Our transformation algorithm from a FSP digraph to an IL is 
based on the following facts: 

Lemma 1: There is one-to-one relationship between a split 
vertex and its corresponding join vertex in a FSP digraph, 
namely a split vertex has only one corresponding join vertex 
and a join vertex has only one split vertex too. 

Proof: From the def. 2, we can see that parallel composition 
only happens when (i) the source and sink all are not split and 
join vertices, (ii) or source and sink are corresponding split 
and join vertices of each other. This proves our lemma is 
correct. 

Lemma 2: The out-degree of a split vertex is as many as the 
in-degree of its corresponding join vertex. 

Proof: The increase of out-degree and in-degree is arisen by 
parallel composition operation. Due to the one-to-one 
relationship of split and join vertices, the out-degree of a split 
vertex and the in-degree of its corresponding join vertex 
increase together. 

Lemma 3: Given a FSP digraph G composed of some other 
FSP digraphs in parallel, if the out-degree of the source is n, 
then BB1

*, B2B
*, …, and BBn

* are disjoint with each other.  

Proof: If V(BBi
*) ∩ V(BjB

*) ≠ φ , then there exist a 
corresponding join vertex of the source in the set of  
V(BBi

*) ∩ V(BjB
*). Since the sink is also the corresponding join 

vertex of the source, this proposition violates the lemma 1. 
Therefore B1

*, B2
*, …, and Bn

* are disjoint with each other. 

Lemma 4: Given a FSP digraph G composed of some other 
FSP digraphs in parallel, if the out-degree of the source is n, 
then BB1*, B2B *, …, and BBn* are all the class of FSP digraphs 
(See equation 1). 

Proof: Since BB1*, B2B *, …, and BBn* are disjoint with each 
other, then G is composed of B1B , BB2, …, and BnB  in parallel, 
and BB1, B2B , …, and BBn are all the class of FSP digraphs. BiB

* 
must connect the source and sink in series, otherwise it will 
violate the lemma 1. Therefore BBi is composed of the source, 
BiB

*, and the sink in series. According to the def. 2, we can 
sure BBi

* is a FSP digraph. 

Figure 3 shows a FSP digraph G, and BB1* = <（2）, φ  >，
and B2B * = <{3, 4, 5, 6}, {(3, 4), (4, 6), (3, 5), (5, 6)> are all 
the FSP digraphs. 

4. THE ALGORITHM FOR TRANSLATING A LADDER 
DIAGRAM TO AN INSTRUCTION LIST 

Now we have finally collected enough facts to be able to 
outline our procedure to translate a LD to an IL. 

Algorithm 1: <Translation procedure for a LD to an IL> 

Input: a ladder diagram  

Output: the Boolean function of the ladder diagram  

Step1: Represent the ladder diagram with a GSP digraph G. 
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Step2: Transform G into a FSP diagram GT

Step3: Transform GT into Boolean function 

For describing the algorithm concisely and conveniently, we 
use Boolean function as the result of the translation process. 
The IL will be obtained by replacing ‘∪’ and ‘∩’ with ‘OR’ 
and ‘AND’ respectively in the process of translation. 

4.1 The algorithm for transforming GSP to FSP digraphs 

The Boolean function of a FSP digraph can be depicted 
concisely using equation 1, but FSP digraphs are unable to 
represent all ladder diagrams directly. 

We will solve the problem with two steps: first, we partition a 
GSP digraph into series digraphs; this step is equivalent to 
partition the GSP digraph into edge GSP digraphs and 
connect them in series. Second, a FSP digraph equivalent to 
the GSP one in Boolean function will be constructed by 
connecting these series digraphs in parallel. A topology 
transformation method is used when the parallel condition of 
FSP digraphs is not satisfied.  

Algorithm 2: <Transformation for a GSP to the FSP>  

Input: a GSP digraph G 

Output: a FSP digraph GT and the list LP composed of pairs 
of corresponding split and join vertices in GT

Step1: Decompose G into series digraphs. 

(i) A series digraph Gi will be gotten by traversing G with the 
depth-first traversal from a source to a sink, and put the series 
digraph into the list LS. 

(ii) Remove the edges of series digraph Gi from G. 

(iii) Remove the nodes whose degree is zero from G.   

(iiii) Repeat the operations (i), (ii), and (iii) until G become 
empty. 

Step2: Reconnect series digraphs in parallel according to the 
definitions of FSP digraphs. 

Fetch a series digraph GT from the list LS

while the LS  is not empty do 

fetch a series digraph Gi from LS  

if  vs(Gi) ⊆  V(GT) and vt(Gi) ⊆  V(GT) then 

if GT and Gi fail to satisfy the parallel connection 
conditions of FSP digraphs at vertices vs(Gi) and vt(Gi) 
then 

Transform the topology of GT into a new digraph 
denoted by GT

’, which can connect with Gi in 
parallel to construct a new FSP digraph 

obtain a new FSP digraph G’ from GT
’ and Gi with 

parallel connection 

else 

obtain a new FSP digraph G’ from GT and Gi with 
parallel connection 

 end if 

Let GT = G’

Put the pair of the source and sink of Gi into the list LP

end if 

end while 

 

 

Fig. 4 Series digraphs obtained by decomposing the GSP 
digraph of fig. 2. 

 

 

Fig. 5 The process of constructing the new FSP digraph by 
connecting series digraphs in fig. 4. 
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Figure 4 shows the series digraphs of the GSP digraph in 
figure 2. Figure 5 shows the process of constructing the FSP 
digraph GT by connecting series digraphs in figure 4 in 
parallel.  

As shown in figure 5(b), the parallel composition conditions 
is not satisfied when GT  and G3 connect in parallel at vertices 
S and V1, since the corresponding join vertex of S is X3. A 
new vertex S’ that is equivalent to S in Boolean function is 
created and used as the split vertex of V1. Similarly, a new 
vertex X13

’ identical to vertex X13 has been created when 
connecting GT and G5 in parallel as shown in figure 5(d). 

When GT and Gi with the source vs and the sink vt connect in 
parallel, there are three possibilities: 
 (i) tsG vvJ

T
≠)( φ=)( tG vS

T
, 

(ii) φ=)( sG vJ
T

 , 

 (iii) . 
stG vvS

T
≠)(

tsG vvJ
T

≠)( stG vvS
T

≠)(

For the possibility (i), a new vertex identical to vs should be 
created in GT, as shown in figure 5(b). For the possibility (ii), 
a new vertex identical to vt should be created in GT, as shown 
in figure 5(d). Finally, for the third possibility, then two 
vertices identical to vs and vt respectively should be created in 
GT, as shown in figure 6.  

 

Fig. 6 Two vertices created in transformation process. 

 

        4.2 THE ALGORITHM FOR TRANSLATING A FSP 
DIGRAPH TO AN INSTRUCTION LIST 

We now consider the problem of implementing Step 3 of the 
translation algorithm of a LD into an IL. The algorithm is 
based on the Lemmas in the third section.  

Algorithm 3: <Translation of a FSP digraph into an 
instruction lists> 

Input: a FSP digraph GT and the list LP composed of all pairs 
of corresponding split and join vertices in GT. 

Output: the Boolean function of GT

Step1: Sorting the list LP. 

Let Q be an empty queue 

Traverse GT with width-first search algorithm, and if a split 
vertex is reached, then insert it into the top of Q 

Reorder the elements of LP  according its position in Q 

Step2: Reduce GT with Boolean function. 

while (the list LP  is not empty) 

fetch the top element denoted by (vs
i, vj

i) from the LP  

for (k= 1; k<= deg- (vs
i); k++) 

node = next vertex that is adjacent from vs
i

F’ = TRUE 

while (node ≠ vj
i)  

F’ = F’ ∩ F (node) 

node = vertex that is adjacent from node 

end while 

F = F ∪ F’  

end for 

     F = F(vs
i ) ∩ F(vj

i ) ∩ F 

create a new vertex with Boolean function F to replace 
the subgraph Sub(GT, vs

i, vj
i) 

end while 

node = vs(G) 

F = TRUE 

while(node != vt(G)) 

F = F ∩ F(node) 

node = vertex that is adjacent from node 

end while 

return F 

When we apply the algorithm on the FSP digraph GT  in 
figure 5(d), the elements of Q are X8, V2, S’, and S; the 
elements of the reordered LP is {X8, X13’}, {V2, X13}, {S’, 
X3}, and {S, V1}. The reducing process is shown in figure 7, 
and figure 8 shows the instruction lists of the final Boolean 
function. It is important to point out here that the instruction 
lists generated by the algorithm have some redundant and 
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needless instructions such as step 1, 2, 8, 11, 12, 13, 23 and  
27 in figure 8, which is created by vertices  S , S’, V1, V2, 
and X13’. Yet, the redundant instruction can be removed 
easily by recognizing these vertices in the translation process.  

 

Fig. 7. The process of reducing GT  in figure 5(d) with 
Boolean function. 

 

Fig. 8. The instruction list of the GT  in  figure 5(d). 

5. CONCLUSIONS AND FUTURE WORK 

In this paper, a complete translation algorithm from a LD to 
an IL is presented, which use FSP digraphs to depict the 
Boolean function of ladder diagrams.  

FSP digraphs are the powerful model to describe the structure 
of all networks constructed by connection in parallel or in 
series of elements, and are more intuitive than binary tree. 
Presently we are studying to optimize the ILs using FSP 
digraphs.  

The next step will extend the definitions of FSP digraphs and 
make it support Sequential function charts, Logic block and 
Petri Nets. 

REFERENCES 

Chmiel M, Hrynkiewicz E, Muszynski M. (2002) The way of 
ladder diagram analysis for small compact programmable 
controller. The 6th Russian-Korean International Symposium 
on Science and Technology. Novosibirsk, Russia: IEEE 
Electron Devices Society,: 169-173. 

Diestel Reinhard.(2003) Graph Theory, Springer-Verlag. 
New York 

Ge Feng, Wu Ning. (2006). Transformation Algorithm 
Between Ladder Diagram and Instruction List Based on AOV 
Diagraph and Binary Tree. Journal of Nanjing University of 
Aeronautics & Astronautics, Vol.38 NO.6. 

Jong-il Kim, Jaehyun Park, Wook Hyun Kwon. (1992). 
Architecture of a ladder solving processor for programmable 
controllers. Microprocessors and Microsystems. 

Jacobo Valdes, Robert E.Tat'jan, Eugene L.Lawler. (1979). 
The recognition of Series Parallel digraphs. Journal ACM. 

Karl-Heinz J, Tiegelkamp M. (2001). Programming 
industrial automation systems. IEC61131-3, Springer-Verlag 
Berlin 

Kim H S, Kwon W H, Chang N. (1999). A translation 
method for ladder diagram with application to a 
manufacturing process. Proceedings of the IEEE International 
Conference on Robotics and Automation. Detroit, Michigan: 
Robotics and Automation Society: 793-798. 

L.Ngalamou, L.Buchanan, L.Myers, V.Watt. (2004). 
Architecture of a Retargetable Ladder Logic Diagrams Tool. 
SICE Annual conference. Sapporo. 

Shih-Yih Wang, Lih-Hsing Husu. (1992). Maximum and 
minimum matchings for series-parallel networks. IEEE. 

     

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14809


