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Abstract: A new event-based feedforward control method for drug delivery system is presented.
Compared with the traditional time-based feedback control, the proposed method shows great
potential in dealing with measurement noise and unexpected disturbances. Instead of using time
to drive the planner, we determine the reference trajectory with an intelligent event, which is
directly derived from measurement. Therefore the proposed method inherits the advantages of
both feedback and feedforward. Applications in drug delivery demonstrate promising robustness
of this approach.

1. INTRODUCTION

Diabetes mellitus is to a disease in which the patient
has difficulty regulating glucose. Today, about 120 mil-
lion people worldwide suffer diabetes. The diabetes may
affect functions of many physiological systems, includ-
ing retinopathy (blindness), circulatory problems (sensory
loss, or even amputation), nephropathy (kidney failure)
and heart disease. It has been shown that intensive insulin
management can significantly lower the risk of developing
complications and slow the progress of existing compli-
cations. However, the dosage of insulin must be strictly
regulated because excess insulin can cause hypoglycemia
and insufficient insulin may cause hyperglycemia.

In early practice, open-loop or semi-open-loop methods
have been applied to mimic the insulin secretion of a
healthy pancreas. These products are unable to respond to
the unexpected change of blood glucose level (BGL), which
may arise from irregular food uptake or excessive exercise.
In recent years, micro glucose sensors and micro pump
shed a light on dealing this problem by developing a closed-
loop “Artificial Pancreas”. Some state feedback control
mechanisms, such as Kienitz [1993], Parker [1999], Bellazzi
[2001] and Hovorka et al [2004], have been proposed in last
decade. The performance of state feedback approaches rely
on the quality of feedback. However, the glucose sensors
are incapable of providing real-time glucose measurement
(usually every ten minutes). The long sampling time causes
the poor performance of the state observers. Moreover, the
sensor measurements have a long time lag and large noise,
which can also affect the qualify of feedback.

Hence, feedforward control becomes very promising in
practice. Feedforward controller is planned and calculated
offline, while feedback controller can still be applied to
compensate for the effect of disturbances and uncertainty,
although the feedback may not be very reliable. The most
intuitive feedforward design is to construct a nominal

input u directly from the inverse dynamics. There are
several important contributions based on nonlinear sys-
tems, including nonlinear output regulation by (Isidori and
Byrnes [1990]), stable inversion by (Devasia [1996]), and
causal inversion by (Graichen et al [2005]). The basic idea
is to plan a sufficiently smooth reference trajectory that
connects the initial and terminal setpoints, and then solves
the system equations to achieve the nominal input. Hence
the inversion-based feedforward approach is divided into
two parts: the planner and the controller.

However, in practice, unexpected disturbances often hap-
pen during the control process, such as blockage of the
infusion system, unplanned food intake. In this paper, we
propose a new approach called an event-based feedforward
controller, which combines the advantages of both feed-
back and feedforward control. In this approach, we design
the planning trajectory based on output feedback instead
of time. The event-based planner is a closed-loop planner,
which actively responds to the sensor measurement.

The rest of the paper is organized as follows. In next
section, a dynamics model of blood glucose via subcuta-
neous infusion is introduced. In section 3, the event based
inversion feedforward control method is introduced and
applied to the blood glucose model. Simulation results in
the final section demonstrate the simplicity and robustness
of the proposed mechanism.

2. DYNAMICS MODELLING OF BLOOD GLUCOSE
REGULATION VIA SUBCUTANEOUS INFUSION

The dynamics modelling of the considered drug delivery
system addresses three topics: subcutaneous sensor dy-
namics, subcutaneous insulin kinetics, and blood glucose
kinetics.

The dynamics of the subcutaneous sensor can be written
as Steil [2004]:
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τ
dS

dt
= −S + αG + OF (1)

where S stands for the sensor value, G represents the blood
glucose, OF is the offset current, and τ is the time delay
constant. The sensitivity of the sensor is characterized by
a constant co-efficient α.

The rapid acting insulin Lispro kinetics with continuous
subcutaneous infusion can be described by Shimoda’s
three-compartmental model (Shimoda [2003]) as follows:

Q̇1 =−kQ1 + u,

Q̇2 =−(ρ + o)Q2 + kQ1,

Q̇3 =−ke (Q3 − ib) + ρQ2,

I = (Q3 − ib)/Vi, (2)

where Q1 and Q2 are the insulin mass (mU/Kg) in the
intraperitoneal insulin pools, Q3 is the plasma insulin mass
(mU/kg). I is the plasma insulin concentration (mU/L),
and ib is the basal plasma insulin concentration. u is the
intraperitoneal insulin infusion rate (mU/Kg/min). k and
ρ are the transition rate constants (min−1), and o and ke

are degradation decay rates. The parameter Vi stands for
the plasma distribution volume (L/Kg).

The glucose kinetics model is proposed by Bergman [1981]
as the well-known “minimal model”.

Ġ =−XG + P1(Gb − G) + GI,

Ẋ =−P2X + P3(I − Ib), (3)

where G is the plasma glucose concentration, and Gb is the
basal value; I stands for the plasma insulin concentration,
GI is the intravenous glucose uptake and Ib is the basal
value. P1 is a coefficient for glucose effectiveness, and
P3/P2 measures the insulin sensitivity (Bergman [1981]).

Combining all three dynamics models by letting x1 = S −
OF , x2 = G, x3 = X, x4 = I, x5 = Q2, and x6 = Q1,
then we have a new six-order model for the drug delivery
system.

ẋ1 =−
1

τ
x1 +

α

τ
x2

ẋ2 =−x2x3 − P1(x2 − Gb) + GI

ẋ3 =−P2x3 + P3(x4 − ib)

ẋ4 = ρx5/Vi − ke(x4 − ib)

ẋ5 = kx6 − (ρ + o)x5

ẋ6 =−kx6 + u

y = x1 (4)

where the parameters are summarized in the following
table.

3. CONTROL MECHANISMS

3.1 Inversion-based feedforward

Consider a SISO nonlinear system

x1(mg/dL) sensor measured Plasma
glucose level

x2(mg/dL) plasma glucose level

x3(min−1) interstitial insulin

x4(mU/L) plasma insulin level

x5(mU/Kg) Insulin mass in intermedi-
ate site

x6(mU/Kg) insulin mass at the injec-
tion site

P1(min−1) glucose effectiveness
P3(min−1 /mU/L)

P2(min−1)
insulin sensitivity

Vi(L/Kg) plasma distribution volume

u(mU/Kg/ min) insulin infusion rate

Gb(mg/dL) basal plasma glucose level

ib(mU/L) basal plasma insulin level

OF (mg/dL) offset current

τ(min) time lag constant of sensor

α sensor sensitivity

GI(mg/dL) intravenous glucose infu-
sion

ke, o(min−1) insulin degradation rate

k, ρ(min−1) insulin transition rate

Table 1. Physical variables in the dynamics
models

ẋ = f(x) + g(x)u, x(0) = x0,

y = h(x), (5)

where state x ∈ Rn, input u ∈ R, and output y ∈ R. The
vector field f : Rn×R → Rn and the function h : Rn → R
are sufficiently smooth.

Inversion-based feedforward problem:

Assume the above system is completely reachable and sta-
bilizable. Given a sufficiently smooth reference trajectory
that connects initial and terminal setpoints (y(0), y(T )),
find a nominal control input ud and a reference state
xd such that ẋd = f(xd) + g(xd)ud and yd = h(xd).
Furthermore, ud and xd must satisfy boundary constraints.

Therefore, an inversion-based feedforward problem actu-
ally can be divided into two parts: planning a smooth
trajectory and finding the bounded nominal input.

Assuming the initial and terminal setpoints are stationary,
(Piazzi and Visioli [2001]) construct a sufficiently smooth
trajectory as a polynomial

y(t) = y0 + (yT − y0)
∑2r+1

i=0
ai

(

t

T

)i

, t ∈ [0, T ], (6)

with the boundary conditions.

y(0) = y0, y(T ) = yT , y(i)|0,T = 0, i = 1, · · · , r,

where r stands for relative degree. A nonlinear system with
relative degree r can be transformed into the nonlinear
input-output normal form.

y(r) = α(y, ẏ, ..., y(r−1), η) + β(y, ẏ, ..., y(r−1), η)u, (7)

η̇ = p(y, ẏ, ..., y(r−1), η) + q(y, ẏ, ..., y(r−1), η)u, (8)

where α(·) = Lr
fh, β(·) = Lr

fLgh, pi(·) = Lr
fφη,i and

qi(·) = Lr
fLgφη,i, η = φη(x) ∈ Rn−r is a supplementary

state vector to complete the coordinate diffeomorphism
φ(x) = [y, ẏ, ..., y(r−1), η] = [ξ, η].
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From equation (7), we can solve a unique input in depen-
dence of ξ, y(r) and η.

ud = (y
(r)
d − α(ξd, η))/β(ξd, η) (9)

η̇ = q1(ξd, η) + q2(ξd, η)ud (10)

= q1(ξd, η) + q2(ξd, η)(y
(r)
d − α(ξd, η))/β(ξd, η),

= Q̄(ξd, y
(r)
d , η), (11)

The system (8) is called internal dynamics, which deter-
mines the stability of the inverse system, that is, whether
it is a minimum phase or non-minimum phase system.

The solution of the polynomial model is given by

y(t) = y0 + (yT − y0)
∑2r+1

i=r+1
ai

(

t

T

)i

, t ∈ [0, T ](12)

ai =
(−1)i−(r+1)(2r + 1)!

i · r!(i − (r + 1))!(2r + 1 − i)!
, (13)

i = r + 1, · · · , 2r + 1.

For example, let r= 6, y0 = 180, yT = 90, T = 120, and
then

[a7, · · · , a13]

= [1716,−9009, 20020,−24024, 16380,−6006, 924]

The reference trajectory is shown as a dashed line in Fig.
1.

0 20 40 60 80 100 120

100

120

140

160

180

Time t

z
(t

)

Fig. 1. The smooth transition of planning trajectory.

If the relative degree r = n, this special case is termed
as feedback linearizable system. This SISO system is also
a differentially flat output system (Fliess [1995]), which is
completely controllable (van Nieuwstadt [1996]). Then the
input-output normal form becomes

y(n) = α(y, ẏ, ..., y(n−1)) + β(y, ẏ, ..., y(n−1))u. (14)

Given the reference trajectory yd, ẏd, · · · , y
(n)
d , the inversion-

based feedforward control can be easily solved by

ud = (y
(n)
d − α(ξd))/β(ξd). (15)

If r 6= n, the system is partial feedback linearizable, the
feedforward control must solve the internal dynamics:

η̇ = Q̄(ξd, y
(r)
d , η), (16)

with 2(n − r) boundary conditions η(0) = η0 and η(T ) =
ηT . By (Graichen et al [2005])’s method, n − r unknown
parameters are introduced into the reference trajectory.

y(t) = y0 + (yT − y0)

[

∑2r+1

i=r+1
ai(p)

(

t

T

)i

+
∑n−r

i=1
pi

(

t

T

)i+2r+1
]

, (17)

where t ∈ [0, T ].

Then the internal dynamics (10) can be solved using the
MATLAB function bvp4c.

3.2 Event-based planner

A traditional planner predefines the desired reference tra-
jectory, which is a function of time. Unexpected distur-
bances are not considered in the process of planning. As
long as the reference trajectory is given, the planning will
not change until replanning occurs. Hence, the planning
trajectory loses all its reliability from the moment an
unexpected event happens, such as an unexpected intake
of sugar.

In recent years, the event-based planner was introduced by
Tarn [1996], Xi [1996]. The basic idea of event-based plan-
ning and control theory is to design a reference trajectory
with respect to an action reference parameter besides time,
called an event. An event is defined as a function of system
output measurement, so that the planning trajectory is
independent of running time. If an unexpected intake of
sugar happens, the blood glucose level will not decrease as
expected. And the event does not change either, since the
event depends on measurement. Therefore, the deviation
between the plan and real blood glucose level will not
increase as time goes. The scheme of event-based planning
and control is illustrated in Fig. 2. The event generator in
Figure 2b computes the event on-line based on system out-
put measurements. In this sense, the event-based planner
actually is closed-loop, while the traditional time-based
planner is open-loop.

Due to the simplicity of computation in the event gen-
erator, the event is actually calculated at the same rate
as the measurement. Therefore, the event-based and the
time-based planner can work at the same sampling rate.

Theorem 1. : If the nonlinear system (5) is asymptotically
stable with a time-based controller u(t)and the event s is
monotonically increasing (non-decreasing) of time t, i.e.,

ds

dt
> 0 (

ds

dt
≥ 0). (18)

Then this system is (asymptotically) stable under the same
controller u(s) based on the event.

Proof: If the original system is asymptotically stable with
a controller u(t), then there exists a Lyapunov function

V (t) > 0 and V̇ (t) < 0.

Furthermore,

dV (t)

dt
=

dV (s)

dt
=

dV (s)

ds

ds

dt
< 0 .

If the event s is monotonically increasing (non-decreasing)
with time t, i.e., ds/dt > 0 (ds/dt ≥ 0), then

dV (s)

ds
< 0 (

dV (s)

ds
≤ 0).

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5395



Hence, for the same controller u(s), this system is asymp-
totically stable (stable).

Event-based Planner
Feedback

Controller
Plant

y

+
-

u

Data-Driven

Action Reference

s y

Time-based Planner
Feedback

Controller
Plant

y

+
-

uy
d
(t)

t

y
d
(s)

Fig. 2. The time-based planner can be seen as an open-
loop planner, while the event-based is a closed-loop
planner.

3.3 Event-based feedforward

Fig. 3 is a diagram of the proposed control method. The
sensor measurement is directed to the event generator,
which translates the measurement into the event online.
The event-based planner decides the reference trajectory

yd, ẏd, · · · , ẏ
(r)
d in terms of the event. Then the input effort

is derived from a feedforward controller and a feedback
controller. Two control efforts are combined to determine
the suitable dosage of drug.

Event-based Planner

Differential

Flatness-based

Feedforward

Controller

Plant

Feedback Controller

Event Generator
s z

zu 

+-

̂u

+

+
u

Z, Z (1), . . . , Z (n)

Fig. 3. Diagram of event-based feedforward plus feedback
mechanism

Define event s as follows:

sk+1 =

{

sk + ∆yk, y0 − yk > sk

sk , y0 − yk ≤ sk

sk , yT − yk > 0
(19)

where s0 = 0, and ∆yk = |yk − yk−1|.

Since the time-based reference trajectory is monotonically
decreasing, then the event is monotonically increasing.
Hence, the stability of an event-based controller is the
same as the time-based case. However, when blood glu-
cose level (BGL) suddenly increases in the middle of the
control process, the event S will not change. The resulting
reference output trajectory remains constant until the
BGL comes back to the same level as when disturbance
happened. Then the event-based plan resumes from this
level.

Using polynomial regression, we can translate the time-
based plan (12) to the event-based plan, so that for
any feedback y, there exist unique reference trajectory

ẏd(s), · · · , ẏ
(r)
d (s).

In the blood glucose regulation model (4), the relative
degree r is equal to n. Hence, this is a flat output
system, and its nominal input can be directly computed
by equation (15).

ud = (y(n) − α(yd, ẏd, · · · , y
(n−1)
d ))/β(yd, ẏd, · · · , y

(n−1)
d ).

However, in the real case, no negative input is allowed,
so the negative part of the control should be set to zero.
Therefore, a PID feedback controller is applied here to
compensate for the effect of losing the negative part. The
two DOF control input becomes

u = w1Θ(ξd, vd, v̇d, . . . , v
(σ)
d ) + w2PID(e), (20)

where w1 and w2 are two constant coefficients.

3.4 Simulation Results

The simulation results are presented in Fig. 4. At the very
beginning, the blood glucose level is normal, and then 100
units of glucose are injected. Blood glucose concentration
increases to 182.5 mg/dL in 9 minutes. The basal blood
glucose level is assumed to be 85 mg/dL (dot dash line),
and the safe range must be above 75 mg/dL (dash line).

Before BGL reaches a peak, a simple PD feedback con-
troller is applied. When BGL is at its peak, the event-based
planner takes effect and designs the reference trajectory.
The two DOF control will provide the majority of the
required control input, while the feedback control will
compensate for the deviation in the initial setpoint and
the lost negative part. If the initial value at the peak is
sufficiently close to the initial condition of the reference
trajectory, then by the theorem of the continuity and
existence of solutions, there exists a unique solution of in
the vicinity of the reference trajectory after applying the
two DOF control (Theorem 2.6, Khalil [1996]).

Case I: Event-based v.s. time-based, without disturbance
and noise (Fig. 4).

The glucose concentration (solid line) reaches the basal
level in 110 min, and stays in the safe range after then.
Considering the subcutaneous absorption time of insulin
analog, this convergence time is acceptable in practice.
The input has a maximum rate of 9 U/h, which is
below the capacity of insulin pump. Without disturbance,
two control methods do not have significant difference in
control performance and infusion dosage.

Case II: Event-based v.s. time-based, with disturbance,
with sensor noise (Fig. 5).

Assuming Gaussian white noise N(0, σ2), where σ = 3, is
applied in the sensor measurement, the robustness to the
sensor noise is tested for both approaches. Also a small
dosage of glucose was injected intravenously from 11 min
to 40 min as an unexpected disturbance. It is clear that
the event-based feedforward control is superior to the time-
based method. The event-based method converges in 150
min, while the time-based method converges in 250 min.
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Fig. 4. Event-based method v.s. time-based method in a
no disturbance & noise environment. The time-based
method is represented by the solid line, while the
event-based method is illustrated by the dotted line.
Both methods get into the safe range in 110 min.
Although control signals of the two methods are of
different shapes, the total dosages of drug are similar.
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Fig. 5. Event-based method v.s. time-based method with
disturbance 3 mg/dL from 11 min to 40 min and
Gaussian white noise N(0, 32). Event-based method
converges in 150 min, while time-based method con-
verges in 250 min.

Case III: Event-based, Different initial conditions (Fig. 6)

Different initial dosages of glucose (10 - 40 mg/dL) were
tested in the simulation. The proposed method is abso-
lutely robust for all the different cases. It is reasonable
that the larger initial dosage of glucose will result in the
longer control time (from 110 min to 150 min). And the
more insulin infusion is required (from 4 U/h to 15.5 U/h).

Case IV: Monte Carlo simulation for event-based method
under noise sensor measurement and random initial input
(Fig. 7)

Assume initial glucose infusion is a random variable with
uniform distribution in [10, 40], and the noise is another
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Fig. 6. Event-based control method with inputs of 10
(solid) , 20(dash), 30(dot), and 40(dot dash). All
trajectories go into the safe range within 110 min -
150 min.

random variable with Gaussian white noise N(0, 25). Ap-
plying Monte Carlo simulation of 100 trials, we can see all
trajectories reach basal blood glucose level in 110 - 160
min and no trajectory goes underneath the safe boundary
(75 mg/dL). It is evident that the proposed method is
very robust under the noise environment. In practice, it
is common for a truly normal person to have 160 min
convergence time given a large 40 mg/dl initial input and
110 min given a small 10 mg/dl initial input.
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Fig. 7. Monte Carlo simulation for event-based two DOF
control method.

The simulation parameters Shimoda [2003], Bergman
[1981] are listed in Table 2.

Table 2. Parameters used in simulation

P1 = 0.003082;
P2 = 0.02093;
P3 = 0.00001282;
Gb = 85;

ke = 0.267;
ib = 0;
Vi = 0.21;
k = 0.25;

τ = 1;
ρ = 1;

3.5 Conclusions

A new event-based feedforward approach to achieve blood
glucose regulation is presented in this paper. The approach
combines the advantage of both feedforward and feedback,
so that feedforward method can respond to the mea-
surement intelligently. Therefore, the proposed method
shows promising robustness to unexpected disturbances
and sensor noise compared with either pure feedback or
feedforward approach. This approach has great potential
in the drug delivery system for diabetes care.
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