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Abstract: In this paper, we propose a new hierarchical estimation approach for adaptive visual
tracking. This approach includes incremental appearance model and hierarchical estimation:
global estimation and local estimation. Local estimation is performed by the particle filter for
dealing with non-linearities and non-Gaussian statistics, and global estimation is performed by
Kalman filter to determine the scatter positions of particles for local estimation. By combining
these two estimations, the number of particles used in local estimation can be reduced in global
estimation, and it enables real-time tracking while maintaining or improving tracking abilities.
Experimental results show the effectiveness and robustness of the proposed approach compared
with those of existing tracking method.

1. INTRODUCTION

Visual tracking is essential feature in surveillance systems
as well as many computer vision applications. The imple-
mentation of visual tracking against real world is chal-
lenging problem due to intrinsic and extrinsic variations.
Intrinsic variation include appearance change, shape defor-
mation and pose variation of target object while extrinsic
variantion include illumination variation, camera motion,
dense and dynamic background clutter and occulusions.
In tracking algorithm, these variations inevitably result in
large unforeseen appearance changes which is the principal
cause of failure.
To overcome these problems, several kinds of tracking algo-
rithms have been proposed. Most of them can be classified
into two approaches: deterministic tracking and stochastic
tracking(Shaohua kevin Zhou et al. (2004)). Determinis-
tic tracking approaches usually reduce to an opmization
problem. Typically they perfom iterative search to mini-
mize appropriate cost function. Based on the definition of
the cost function many tracking methods have been de-
rived. Model-based tracking, Appearance-based tracking
and Mean-shift(D. Comaniciu et al. (2000)), EigenTrack-
ing(M. J. Black et al. (1996)) are exactly the case. The
EigenTracking approach essentially attempted to establish
a robust appearance model based on view-based eigenbasis
representation. Although their algorithm demonstrated
excellent empirical results and shows its robustness in
some appearance change, while it needs pre-training pro-
cess in advance before tracking and furthermore its ro-
bustness is only restricted in trained apperance variations
which do not support on-line updating.
On the other hand, stochastic tracking approaches often
consider as estimation problem, e.g., estimating the state
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space to model the underlying dynamics of the tracking
system. In early work, Kalman filter and its variants are
used to provide solutions. However, this method restricted
the model in Linear Gaussian case. For non-linear or non-
Gaussian problems, the particle filter, also known as se-
quential Monte Carlo algorithm(A. Doucet et al. (2001))
have gained prevalence in the tracking literature due to
the Condensation algorithm(M. Isard et al. (1996)). It is
one powerful methodology for maintaining non-Gaussian
distributions. While this algorithm is also vulnerable to
appearance or background change due to its fixed repre-
sentation of target object.
Recently, incremental or adaptive representation which
can model varying appearance manifold has become novel
approach. Lim et al. (2005) proposed incremental method
and Shaohua kevin Zhou et al. (2004) proposed adaptive
method. Both approaches adopt the integration of deter-
ministic and stochastic tracking methods. For determinis-
tic method, they use incremental or adaptive appearance
model instead of fixed appearance model and both of them
utilize particle filter in stochastic method. Lim et al. (2005)
adopt Gaussian dynamic model in his particle filter, which
is vulnerable to nonlinear motion. As the consequence,
it needs much more particles. Shaohua kevin Zhou et al.
(2004) proposed adaptive velocity motion model, where
the adaptive motion velocity is predicted using a first-
order linear approximation based on apprearance change.
In addition, they also use adaptive number of particles
in particle filter which makes it works more efficiently.
Though their adaptive velocity motion model is more
powerful than linear Gaussian dynamic model in handling
nonlinear motion, it uses first-order linear approximation
which is incapable of measuring acceleration term.
This paper addresses a solution to nonlinear motion in
visual tracking. We propose a hierarchical estimation ap-
proach which is consist of global estimation and local es-
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timation. Global estimation is performed by Kalman filter
to determine the initial position for potential particles,
while local estimation is in charge of dealing with non-
linearities and non-Gaussian statistics by using particle
filter. By hieararchically combining these two estimations,
our algorithm not only can significantly reduce particles
without loss of accuracy performance, but also gives real-
time tracking capability with improving its robustness.
This strategy is based on the phenomenon that most of
natural motion fit linear Gaussian model in global view,
global scale and nonlinear motion is usually restricted in
local view.
We have tested our algorithm on video sequences of human
faces with non-linear rapid moving. Experimental results
show the effectiveness of the proposed approach compared
with those of existing tracking methods.
This paper is organized as follows. We briefly review the
related literature on incremental appearance model and
particle filter in Section 2. We show the details of hierar-
chical estimation approach in Section 3, and experimental
results on several examples in Section 4. At last conclu-
sions are presented in Section 5.

2. PROBLEM STATEMENT

State-space approach in visual tracking requires estimation
of system state that changes over time using a observation
sequence(Arulampalam et al. (2002)), and usually con-
sists of dynamic model(or system model) and observation
model (or measurement model). In this approach, we can
assume that these models are available in a probabilistic
form that is suited for the Bayesian tracking. Then, visual
tracking problem is replaced as an inference problem with
a Markov model and hidden state variable, where Xt is
a set of state variables at time t, and Zt = {Z1, · · · , Zt}
is a observation set. If a observation Zt is given, we have
posterior probability as follows using Bayes’ rule.

p(Xt|Zt) =
p(Zt|Xt)p(Xt|Zt−1)

p(Zt|Zt−1)
. (1)

Applying Chapman-Kolmogorov equation to p(Xt|Zt−1),
sequential inference model is given as follows.

p(Xt|Zt) ∝ p(Zt|Xt)

∫

p(Xt|Xt−1)p(Xt−1|Zt−1)dXt−1.

(2)
Note that tracking process depends on the observation
model p(Zt|Xt) and dynamic model p(Xt|Xt−1), and a
particle filter is famous method to obtain the required
posterior probability using a set of samples(particles) with
propagating sample distribution.
For observation model, we represent observations using in-
cremental subspace update method suggested in Lim et al.
(2005). This method is based on R-SVD methods(G. H.
Golub and C. F. Van Loan (1996)), and update the eigen-
basis in on-line phase while updating the sample mean into
account. The generation number of particles in subspace
is inversely proportional to the distance from the subspace
center(i.e., sample mean) to the particles, and this distance
is decomposed into the distance-to-subspace,dt, and the
distance-within-subspace dw. The likelihood of the parti-
cles, p(Zt|Xt), are given by a Gaussian distribution.

p(Zt|Xt) = pdt
(Zt|Xt)pdw

(Zt|Xt), (3)

where pdt
(Zt|Xt) and pdw

(Zt|Xt) are also Gaussian. De-
tails to compute dt, dw and the likelihood of particle are
described in Lim et al. (2005).
To the best of our knowledge, the probability of state
transition is defined in previously, and the each state
variable of Xt is diffused independently from that of Xt−1

according to Gaussian distribution. That is,

p(Xt|Xt−1) = N (Xt; Xt−1, Ψ). (4)

Where, ψ is a diagonal matrix that includes variances of
state variables. In equation (4), each element of Xt−1 is
considered as mean position of diffusion. Namely, particles
are generated around the elements of Xt−1 according to
Gaussian distribution in probability sense, and estimation
error in the previous step can affect the estimation in the
next step. Increasing the number of particles can be the
method to reduce the estimation error rate, however it
requires large amounts of computation time. Considering
this fact, we modify the dynamic model as a hierarchical
structure: global estimation and local estimation. Details
are described in the next section.

3. HIERARCHICAL ESTIMATION FOR VISUAL
TRACKING

3.1 Concept of Hierarchical Estimation

A Kalman filter models the state of a system using a
Gaussian probability density function which propagates
over time(Gong et al. (2000)), and is paramiterized by a
mean and covariance. In this work, we use a second-order
Kalman predictor with µ = (µx,t, µ̇x,t, µ̈x,t, µy,t, µ̇y,t, µ̈y,t)

T ,
and it is applied for determining the initial particle posi-
tions of local estimation. We model the state of global
estimation as follows.

µt = Aµt−1 + wk−1, (5)

where, A is the block-diagonal matrix:

A =

(

B 0
0 B

)

B =





1 △ t △ t2/2
0 1 △ t
0 0 1



 (6)

with a measurement zk that is,

zk = Hxk + vk, (7)

where,

H =

(

1 0 0 0 0 0
0 0 0 1 0 0

)

. (8)

The random variables wk−1 and vk represent the process
and measurement noise respectively. Here, we assume
that wk−1 and vk have zero mean and are statistical
independent of each other with normal distributions

p(w) ∝ N (0, Q), (9)

p(v) ∝ N (0, R), (10)

where Q is process noise covariance and R is measurement
noise corvariance. Here, we assume they are constant.
Details for Kalman filters describe in Greg Welch and
Gary Bishop (2001) . For local estimation, we use the
six variables of affine transform to model the state evo-
lution from Xt−1 to Xt. Xt is defined like this: Xt =
(xt, yt, θt, st, αt, φt)

T , where xt, yt, θt, st, αt, φt denotes
x position, y position, rotation, angle, scale, aspect ratio
and skew direction respectively.
Local estimation begins with the result of Kalman filter.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4319



As described in equation (4), the likelihood of particle,
p(Zt|Xt), is determined by two distance based probabili-
ties pdt

(Zt|Xt) and pdw
(Zt|Xt). Given an predicted image

patch, Xt, the likelihood of a particle generated in incre-
mental subspace is parameterized by the result of Kalman
prediction(mean) with variance terms defined in Lim et al.
(2005).

p(Zt|Xt) =pdt
(Zt|Xt)pdw

(Zt|Xt)

=N (Zt; µ, UUT + εI)N (Zt; µ, UΣ−2UT ).
(11)

where the columns of U are eigenvectors, and Σ is the
diagonal matrix of singular values corresponding to the
column of U .

3.2 Effect of Hierarchical Estimation

When applying conventional particle filter for adaptive
visual tracking, the posterior density function is repre-
sented by a set of random particles in the incrementally
updating subspace. The particles with high weights have
been duplicated many times with high probabilities in
the resampling step, and tracking point is determined
as the maximum probability particle using equation (4).
As shown in Lim et al. (2005), this approach works well
even though the target objects undergo pose and lighting
changes by adaptation of model representation. However,
the errors in the estimation part of tracking system can
make the system adapt to inappropriate targets. Figure
1 shows the tracking failure which is caused by errors
in particle filter estimation. When the object moves too
fast to tracking, particles can be scattered at the remoted
region from ground truth data(‘�’). Increasing the number
of particles makes it possible that maximum probability
particle is located near ground truth data, however, it
degradates the tracking efficiency.
In this work, we reduce the estimation errors using hierar-
chical estimation. Figure 2 shows the tracking result based
on the hierarchical estimation using Kalman filter and
particle filter. First, the mean scatter position of particles
is predicted by Kalman filter which makes the particles
are scattered nearby real tracking position, and the par-
ticle which has maximum probability is determined as a
final estimation result(‘⋄’) at every frame. This is a kind
of ‘coarse-to-fine’ search that consists of global estima-
tion(Kalman filter) and local estimation(particle filter). By
including global estimation step, we can use the reduced
number of particles and improve the tracking accuracy and
efficiency.

4. EXPERIMENTAL RESULTS

4.1 Experimental Setup

For comparison with previous tracking approach, we per-
formed experiments on the public available sequences in
which target moves with several variations, such as oc-
clusion, pose and illumination changes. In addition, we
also performed experiment to demonstrate the property of
our tracking approach. All images are gray-scale images,
and the tracking area has been initialized manually in the
first frame. Each image patch for tracking is resized to
32 × 32 for adaptive subspace update. We computed the
Mean Square Error(MSE) between the estimated tracking
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Fig. 1. Result of particle filter estimation. The propagation
of particles in 5 sequences(♯285–♯289 frames) are
represented with ground truth data indicated by ‘�’.
The estimation result is indicated by ‘⋄’. 800 particles
are used at each propagation.
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Fig. 2. Result of hierarchical estimation. The propagation
of particles in 5 sequences(♯285–♯289 frames) are
represented with ground truth data indicated by ‘�’.
The estimation result is indicated by ‘⋄’, and the
scatter positions of particles are more suitalble for
estimation. 800 particles are used at each propagation.

results and the ground truth data to verify the tracking
performance. All experiments have been performed on a
standard 3.0GHz PC with 1GB RAM using MATLAB.

4.2 Evaluation Comparison

Figure 3 shows some image frames in the Dudek sequence,
which is originally appeared in A. D. Jepson et al. (2001).
This sequence contains a moving face in front of cluttered
background, and it contains lots of activities which cause
appearance changes, such as a hand occluding the face for
a short time, taking the glasses on and off, and standing
up rapidly, etc.. Using this sequence, we have compared
the performance of our approach with that of other ap-
proach. Figure 4 illustrates the tracking failure of adap-
tive visual tracking with particle filter(Lim et al. (2005))
when standing up rapidly. The mean scatter position of
particles are determined as the previous tracking position,
and it is inadequate for tracking further even if using 800
particles. While the proposed approach with hierarchical
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Fig. 3. Image sequence for face tracking. A face moves
in front of cluttered background and contains vari-
antions in appearance. This sequence has provided
by Lim et al. (2005), and its original sequence is
provided by A. D. Jepson et al. (2001). The first row
illustrates a hand accluding the face for a short time,
and the second row illustrates standing up rapidly. In
addition, there are other appearance changes, such as
glasses on and off, etc..
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Fig. 4. Tracking results using particle filter with adaptive
subspace update by Lim et al. (2005). When a face
moves fast to the upper direction, tracking failure
occurs. In this experiment, we use 800 particles in
every frames, and achieve 4 frames/sec on our 3.0GHz
PC.

estimation can track the face only using 100 particles in
the same sequences, as shown in Figure 5. Note that our
approach achieves better tracking performance while using
the less number of particles. Our current implementation
runs at 20 frames/sec with 100 particles, and 4 frames/sec
with 800 particles without any code optimization. Figure
6 and Figure 7 illustrate the result comparison of MSE
estimation. Our hierarchical estimation performs better
than the previous particle filter based estimation in most
frames without concerning the number of particles. The
MSE results are given by as follows.

MSE(t) =
1

ngt

ngt
∑

1

(Xest(t) − Xtrue(t))
2 (12)

where, ngt is the number of ground truth data in a se-
quence, Xest(t) is the estimated position and Xtrue(t) is
the true position at time t. We used 7 ground truth data
for each sequence given by Lim et al. (2005).
Figure 8 and Figure 9 show the tracking results of our ap-

proach and previous approach using another public avail-
able sequence, respectively. This sequence contains drastic
illumination change combined with pose variantion. Only
using particle filter with subspace update model, we can
track a face until about 280 frames. However, when a
face moves fast with illumination change, tracking failure
occurs. While, our tracker successfully follows the face
robustly at that fast moving frames. Note that our hierar-
chical approach is useful in a case like that; a target moves
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Fig. 5. Tracking results of our approach. In this exper-
iment, we use 100 particles in every frames, and
achieve 20 frames/sec on our 3.0GHz PC.
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Fig. 6. Result comparison of MSE estimation using dudek
sequence. In these experiments, 800 particles are used
at every frames.
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Fig. 7. Result comparison of MSE estimation using dudek
sequence. In these experiments, 100 particles are used
at every frames.
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Fig. 8. Tracking results of our approach. This video se-
quence has been provided by Lim et al. (2005), and
shows that a person moves underneath a trellis with
large illumination changes. In their experiments, 600
particles are adopted, while we use 150 particles in
our experiment.
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Fig. 9. Tracking results of Lim’s original approach with
150 particles.

fast with other appearance changes. In these experiments,
we use 150 particles in both cases.

Final experiments are shown in Figure 10. This result
also shows that our tracker follows successfully with the
appearance changes in pose ,illumination and partial oc-
clusion. We use 150 particles in this experiment.
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Fig. 10. Comparison of Tracking results. This video se-
quence shows a small box moves quickly and ran-
domly. Left frames are the tracking results of Lim’s
approach with 50 particles, and right frames are those
of our approach with same number of particles.

5. CONCLUSION

The accuracy and efficiency of the particle filter estimation
depend on the particle propagation function for particle
allocation and the number of particles. Considering this
fact, in this paper, we proposed the hierarchical estimation
using Kalman filter and particle filter for adaptive visual
tracking. Particles are generated in Gaussian distribution
which mean is determined by the Kalman estimation,
and this method reduces the number of particles while
maintaining or improving tracking abilities. Our approach
is combined with incremental subspace update algorithm
to adapt the variation of tracking region, that the center
of subspace is determined by Kalman filter. We have
shown the accurracy and the efficiency of the proposed
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approach in several experiments using public available
image sequences.
We expect that the proposed estimation method can be
extended to the adaptive number of particles and pose
variance(out of plane) estimation hierarchically similar
with position estimation.
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