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Abstract: To avoid both the inconsistency of the Kalman filter and the performance conservation of the 
covariance intersection (CI) in the case of unknown correlations, an internal ellipsoidal approximation 
(IEA) method is proposed to fuse the local estimations. A numerical example of three-state radar tracking 
system is presented to illustrate the implementation and effectiveness of the proposed algorithm. From the 
simulation results in the cases that the sources are ( ) independent; ( ) correlated and the crossⅰ ⅱ -
covariance are exact known; and ( ) correlated ⅲ with unknown cross-covariance, it is obvious to see that 
the IEA method, like CI, circumvents the need for prior knowledge of the correlations but it gets better 
fusion accuracy than CI. 

 

1. INTRODUCTION 

The main idea of data fusion is to obtain an estimate of some 
unknown state variables, such as position, velocity and 
attitude, from the available noise-corrupted observations (Li, 
Zhu, & Han, 2000). The optimal fusion Kalman filter has 
widely been applied in many fields including guidance, 
defence, robotics, integrated navigation, industrial process 
automation, target tracking, and GPS positioning. It has been 
realized for many years that local estimates (track) have 
correlated errors (Bar-Shalom, 1981). How to counter this 
cross correlation, therefore, has been a central topic in data 
fusion. One problem with the Kalman filtering is that it 
requires either that the measurements are independent or that 
the cross-covariance is known (See Smith & Sameer, 2006). 
Unfortunately, even though under the assumption that the 
cross-covariance is known, the optimal KF-based approach 
scales quadratically with the number of updates, which 
makes it impractical (See Drummond, 1997). A common 
simplification is to assume the cross-covariance to be zero, 
i.e. the measurements are independent, though, in this 
situation, the KF produces nonconservative covariance. This 
leads to an artificially high confidence value, which can lead 
to filter divergence (Julier & Uhlmann, 1997). Recently 
proposed covariance intersection filtering (See Julier & 
Uhlmann, 1997) is based on convex combination of 
information matrices, i.e., inverse covariance matrices and 
the corresponding information states. The algorithm provides 
a general framework for information fusion with incomplete 
knowledge about the signal sources since it yields consistent 
estimates for any degree of cross correlation.  

Since covariance intersection filtering requires optimization 
of a nonlinear cost function and instead of underestimation of 
the actual covariance matrix as Kalman filter, the covariance 
intersection method overestimates it, which obviously results 
in a significant decrease in performance. Therefore, a largest 
ellipsoid algorithm has been proposed by Benaskeur (2002). 

The algorithm provided in (Benaskeur, 2002) solved the 
matrices orientation incompatibility problem in the case of 
two sensors. Unfortunately, it did not derive the fusion 
estimate correctly, and the estimation performance may 
degrade severely as described in section 4.  

In this paper, in order to avoid both the inconsistency of the 
optimal KF-based fusion algorithm and the performance 
conservation of the covariance intersection method, an 
Internal Ellipsoid Approximation (IEA) method is proposed 
to obtain the largest volume ellipsoid within the intersection 
of estimation covariances. Simulation example of applying to 
decentralized fusion is also presented to illustrate the 
effectiveness of the proposed algorithm. The remainder of the 
paper is organized as follows: the problem discussed and 
some previous results is stated in section 2; the main results 
in this paper, data fusion algorithm using internal ellipsoidal 
approximation are discussed in section 3, which is followed 
by a simulation example of three-state radar tracking system 
with two sensors. Conclusions are drawn in section 4, as well 
as future work is presented. 

2. PROBLEM STATEMENT AND PREVIOUS RESULTS 

2.1  Problem statement 

The system model is described by the following equations: 

)()()()()1( kkGkxkFkx ω+=+                             (1) 

)()()()( kvkxkHky iii += , i=1, 2, …, N                (2) 

where nkx R)( ∈ is the state, lky R)( ∈ the measurement 

of sensor i, nnkF ×∈ R)( the state transition matrix, 
mnkG ×∈ R)( the input matrix of process noise, and 

mk R)( ∈ω white noise with zero mean and covariance 
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matrix of 0)( ≥kQ . )(kvi are observers noises which 

correlated with )(kω , in this paper, the correlations are 
assumed to be not known or incomplete. 

We consider the problem that two information sources, 
10x  

and
20x , are to be fused together to yield the output 0x  and 

the fusion covariance P0. The only available information 
about the two sources are the statistical representation of 

10x̂ and
20x̂ , and the estimate covariance 

}~~{ˆ
10101
TxxEP =  and }~~{ˆ

20202
TxxEP =                               (3) 

The correlation between the two sources, stand by cross-
covariance 

}~~{ˆ
201012

TxxEP =                                                                (4) 

are unknown or incomplete, where the local estimation errors, 

10
~x and 

20
~x , are defined by 

111 000 ˆ~ xxx −= and 
222 000 ˆ~ xxx −=  

2.2  Previous results 

Several fusion methods compute a linear combination of the 
estimates 

10x and
20x , and analytically determine the 

covariance of the result. This leads to the optimal result when 
knowledge is available about the actual system statistics. 
Unfortunately, the knowledge is usually unachievable due to 
uncertainty in the cross-correlation. The Kalman filter, for 
instance, linearly combines estimates {

10x , P1} and {
20x , P2} 

into the fused estimates { 0x , P0} according to 

21 02010 xWxWx +=                                                            (5) 

TTTT WPWWPWWPWWPWP 221221110 221121
+++=       (6) 

Weights W1 and W2 minimize the trace of P0. Consistency of 
estimates {

10x , P1} and {
20x , P2} are enough to ensure 

consistency in Eq. (6) when 02112 == PP  (Jazwinski, 

1970). In this case, 1
2

1
1

1
0

−−− += PPP and the gains in Eq. (6) 

are 1
101
−= PPW and 1

202
−= PPW which correspond to the 

derivation of the Kalman gain in the Kalman filter (Chen et 
al., 2002; Uhlmann, 2003). Consistency in Eq. (6) is not 
assured when the actual correlation P12≠0. In this case, the 
overconfident estimation such as the Kalman filter method 
can lead to fusion divergence. What’s more, in the case that 
the correlations are unknown or incomplete, the optimal data 
fusion Klaman filters cannot be applied directly. 

As estimating the cross-covariance is computationally 
expensive, Covariance Intersection applies a convex 
combination of means and covariances in the inverse 
covariance space circumventing the need for knowledge of 
the cross-correlation. CI-based fusion for two information 
sources is given by (Julier & Uhlmann, 1997) 

111
0 21

)1( −−− −+= PPP ωω                                                 (7) 

2211 0
1

0
1

0
1

0 )1( xPxPxP −−− −+= ωω                                  (8) 

Parameter ω is used to minimize a fixed measure of fusion 
covariance size, say the trace or determinant of the fused 
covariance P0. 

Hurley (2002) gave an information theoretic proof of the CI 
technique and pointed out that CI is capable of fusing any 
probability density function, not just Gaussian distributions. 
But CI is pessimistic with the ellipse being larger than it 
needs to be; therefore, the largest ellipsoid algorithm 
(Benaskeur, 2002) avoids this by creating the largest ellipse 
that will fit within the intersection of the covariances (See Fig. 
2 in Benaskeur, 2002). Largest ellipsoid leads to tighter 
estimates than CI method since it underestimates the 
covariance rather than overestimating it, though this is less of 
an underestimate than the KF, so filter divergence is still 
avoid (Smith & Sameer, 2006).  

3. FUSION USING INTERNAL ELLIPSOIDAL 
APPROXIMATION 

The algorithm provided in (Benaskeur, 2002) solved the 
matrices orientation incompatibility problem in the case of 
two sensors, and the inscribed largest volume ellipsoid within 
the intersection of two ellipsoids can be computed. 
Unfortunately, it did not derive the computation of estimated 
fusion correctly, and the estimation performance may 
degrade severely, which motivates the fusion algorithm using 
internal ellipsoidal approximation that can be formulated in 
the following Algorithm.  

First, let us introduce the definition of regular generalized 
ellipsoids as below. 

Definition 1. Ellipsoid ),( 00 Pxε in nR with centre x0 and 
shape matrix P0 is the set 

}1)()(|{),( 00000

1

≤−−∈=
−

xxPxxRxPx Tnε      (9) 

where 00 >P might be standing for the covariance matrix of 
the estimation or fusion error. 

Since the estimate covariances of the two information sources 

10x  and
20x can be intuitively interpreted as two ellipsoids 

denoted as ),0( 1Pε , ),0( 2Pε , the intersection region 
represents an upper limit for the actual error covariance 
matrix, the design of proposed algorithm is based on the 
internal approximation of the intersection region of the 
covariance matrices. 
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Algorithm 1(Internal Ellipsoidal Approximation Fusion). 

Step 1. Introduce two numbers 1β and 2β , which are 
invariant with respect to affine coordinate transformations of 
the space and play an important role in the computation of 
weights of the fusion. 

xPxxPx T

xPxxPx T

1
1

1

1
1

1,
1 1

2
1

2

min,min −

=

−

>=< −−
>=<=β                    (10) 

xPxxPx T

xPxxPx T

1
2

1

1
2

1,
2 1

1
1

1

min,min −

=

−

>=< −−
>=<=β                  (11) 

Note 1β and 2β  describe the position relationship of 

covariance ellipsoids ),0( 1Pε , ),0( 2Pε  with respect to each 
other, where 0 represents the origin of the n-dimension plane: 

(1) If 1,1 21 ≤≥ ββ , then ),0(),0( 21 PP εε ⊆  

(2) If 1,1 21 ≥≤ ββ , then ),0(),0( 21 PP εε ⊇  

(3) If 1,1 21 << ββ , then φεε ≠∩ ),0(),0( 21 PP , 

),0(),0( 21 PP εε ⊄ , ),0(),0( 12 PP εε ⊄  

Remark 1. The optimization problem in (10) and (11) is a 
Quadratic Programming (QP) problem with quadratic 
constraints, which can be solved using the function fmincon 
in MATLAB. It is shown that independently of the dimension 
of the space, the problem of finding these two numbers can 
be reduced to a one-dimensional optimization problem on an 
interval (Vazhentsev, 2000; Kurzhanski, 1991). Here we use 
the Lagrange multiplier approach to solve this optimization 
problem. Take (10) as an example, our goal is to find 1β  

under the equation restriction 11
2 =− xPxT , to minimize the 

performance index  xPxJ T 1
1
−= . Applying Lagrange 

multiplier method, we introduce an auxiliary function 

( )11
2 −+= − xPxJF Tλ                                                    (12) 

where λ  is a scalar weight considering that the performance 
index J is a scalar. Setting 0=∂∂ xF  and with some 
manipulations yield 

0][ 1
12 =+− xIPP λ                                                            (13) 

Considering the restriction 11
2 =− xPxT , we have the 

Lagrange multiplier λ  and the minimizing points x, as the 
eigenvalues and the normalized eigenvector of the matrix 

1
12
−− PP (using 1

2
−P  weighted norm) , respectively. 

Step 2. The fused estimate can be derived by 

)()(
21 0

1
220

1
11

11
22

1
110 xPxPPPx −−−−− ++= ωωωω    (14) 

where the weight coefficients 1ω and 2ω are 

),1min(),1min(1
),1min(1

),1min(),1min(1
),1min(1

21

1
2

21

2
1

ββ
β

ω

ββ
β

ω

⋅−
−

=

⋅−
−

=

                                (15) 

Step 3. Compute the fused covariance by solving the 
following equation (Vazhentsev, 2000). 

⋅+−−= −−− )1( 0
1

000
1

200
1

100 2211
xPxxPxxPxP TTT    

11
22

1
11 )( −−− + PP ωω                                              (16) 

Step 4. In the next sampling period, repeat the step 1-step 3, 
according the updated  {

10x , P1} and {
20x , P2}. 

 Remark 2. The fusion covariance 0P can be solved the 
following Linear Matrix Inequalities (LMIs) (Boyd & Ghaoui, 
1994; Ben-Tal & Nemirovski, 2001) 

1
00   detlog   minarg −= PP                                         (17) 

s.t.  0
0

010
0

0

0
2

≤
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−

I        P
        

    P    P

i

i

i

κ
κ , (i=1,2) 

where iκ  are nonnegative and 1
0  det −P  denotes the 

determinant of the matrix 1
0
−P . The fusion covariance 0P can 

also be computed from the matrix orientation problems as 
(Benaskeur, 2002), although the fused estimate there is 
deduced incorrectly. 

Remark 3. The consistency of the algorithm using IEA is 
granted by the Fig. 2 in (Benaskeur, 2002) graphically. 

Corollary 1. Two special cases are 

 (1) If 11 ≥β , 12 ≤β , then 0,1 21 == ωω , we have 

),(),( 1000 1
PxPx εε = ; 

(2) If 11 ≤β , 12 ≥β , then 1,0 21 == ωω , we have 

),(),( 2000 2
PxPx εε = . 

These are the same results as in Step 1 and can be derived 
readily from (12)-(16). 

4. SIMULATION RESULTS 

Consider the three-state radar tracking system with two 
sensors (Anderson & Moore, 1979; Julier & Uhlmann, 1997) 
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)()()( ttxHty iii υ+= , i=1, 2 

)()()( ttt iii ξωαυ +=  

where the sampling period T=0.1s, H1=[1, 0, 0], and H2=[0, 1, 
0]. The state [ ]Ttstststx  )(  )(  )()( &&&= , where  ),(ts ),(ts&  
and )( ts&& are the position, velocity and acceleration 

respectively of the target at time tT, respectively. )(tiυ , i=1, 
2 are the measurement noises of the two sensors, which are 
correlated with Gaussian white noise )(tω with zero mean 

and variance 2
ωσ . )(tiξ are Gaussian white noises with mean 

zeros and variance matrices 2
iξσ , and are independent of 

)(tω . 

In the simulation, we setting 152 =ωσ , 52
1

=ξσ , 82
2

=ξσ . 
The initial state x(0)=[10, 1, 0], and P0=0.1I3, where I3 stands 
for 3-dimentional identity matrix. As comparison, the optimal 
fusion Kalman filter (Bar-Shalom, 1981; Sun & Deng, 2004), 
the CI fusion method, and the Largest Ellipsoid (LE) 
algorithm (Benaskeur, 2002) are included in the simulation, 
which is performed in three-fold. The Mean Square Error 

(MSE), computed by ∑
=

=
M

i
k

T
k ixix

M 1
)](~)(~[1MSE  where 

M is the number of Monte Carlo runs and )(~ ixk  the 
estimation error of the fused estimate in the ith run, is 
adopted as the performance criterion. 

4.1 The sensors are independent 

Setting 01 =α and 02 =α , 200 sampling steps are taken in 
this case. The results presented in Table 1 have been obtained 
via 100 Monte Carlo runs. 

Table 1. MSE in the case of independent sources 

 Optimal CI LE IEA 

Position 5.7647 9.3999 1.2017e+003 7.1284 

Velocity 2.3473 4.6089 4.4701e+004 3.3239 

Acceleration 2.5197 2.9775 786.1805 2.5442 

Ratio 1.0 1.5977 4.3915e+003 1.2224 

From Table 1, it is easy to see that in the case of independent 
sources, the optimal fusion Kalman filtering has the highest 
accuracy, while the proposed algorithm gets the results very 
close to the optimal fusion. As described before, the CI has 

some conservation to some extent, but the LE is non-
convergent, due to the incorrect computation of the centre of 
the largest volume inscribed ellipsoid. The ratio of the 
cumulated sum of the MSE of position, velocity, and 
acceleration is also listed in table 1, and table 2-3 as well. 

4.2 The correlations of the sources are exact known 

In the case of known correlations, we set 5.11 =α , 

and 0.32 =α . The results over 100 Monte Carlo runs are 
presented in Table 2. It is obvious that the proposed 
algorithm is nearly optimal; the difference between them is 
only 3.34%. The difference between CI and the optimal 
fusion algorithm is about 13.8%, which is much larger than 
3.34% in the case of known correlations, due to the little 
conservation of CI. It is also illustrated in Table 2 that the 
correct correlations do not significantly improve the fusion 
accuracy (Scala & Farina, 2000; Smith & Sameer, 2006). 

Table 2. MSE in the case of known correlations 

 Optimal CI LE IEA 

Position 13.9324 18.2349 2.1782e+004 16.6028

Velocity 12.2251 13.0761 1.3438e+005 12.1807

Acceleration 7.0191 6.4538 4.5819e+003 5.4997 

Ratio 1.0 1.1383 4.8450e+003 1.0334 

4.3 The correlations are unknown 

When the correlations are infeasible or uncertain, the optimal 
fusion Kalman filtering cannot be used directly owing to the 
optimality is obtained using the cross-covariance, a common 
simplification is to assume the cross-covariance to be zero, 
i.e. assuming the sources are independent. On the contrary, 
CI, LE and the proposed IEA algorithm circumvent the need 
for knowledge of the cross-covariances, and the proposed 
IEA algorithm gets much better fusion accuracy than the 
optimal and CI method, which can be seen from Table 3.  

Table 3. MSE performance with unknown correlations 

 Optimal CI LE IEA 

Position 14.7856 16.7418 752.5704 16.1701

Velocity 16.0640 11.4302 3.6567e+003 11.5083

Acceleration 11.7611 5.2704 123.2628 5.0498 

Ratio 1.0 0.7848 106.3717 0.7681 

 

5. CONCLUSIONS AND FUTURE WORK 

To avoid both the inconsistency of the Kalman filter and the 
performance conservation of the covariance intersection 
method in the case of unknown correlations, an internal 
ellipsoidal approximation method is proposed to fuse the 
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local estimation in the fusion centre. A numerical example of 
three-state radar tracking system with two sensors is provided 
to illustrate the practicability and effectiveness of the 
proposed algorithm. From the simulation results in the cases 
that the sources are (ⅰ) independent; ( )ⅱ  correlated and the 
cross-covariance are exact known; and ( )ⅲ  correlated but the 
cross-covariance are uncertain or unknown, it is obvious to 
see that the IEA method, like CI, circumvents the need for 
prior knowledge of the correlations but it gets better fusion 
accuracy than CI. When the correlations are exact known, the 
proposed algorithm is nearly optimal with less computation 
burden, especially with the increase of the sensors’ number 
due to the optimal fusion Kalman filter scales quadratically 
with the number of updates, making it impractical. 

Next the focuses will be concentrated on how to extend the 
results to more than 3 sensors cases and some explicit 
formulations are need to make the algorithm more applicable 
in the fusion settings. 
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