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Abstract: The underlying topology of the network remaining connected frequently enough
during the evolution is a basic assumption seen in many previous works on coordinated control in
a network of multi-agent systems to guarantee the stability of the coordinated motion. However,
for a given set of initial conditions, this assumption is very difficult to verify. In particular,
connectivity of the initial network can not guarantee connectivity of the network during the
evolution. In this paper, we propose a coordinated control protocol, which combines the roles of
motion control and connectivity control. This protocol can enable the group to achieve velocity
alignment and a desired group shape while preserving connectivity of the network during the
evolution only if the initial network is connected. Moreover, we investigate the coordinated
control with a virtual leader.

1. INTRODUCTION

Recently, multi-agent distributed coordination problems
have attracted much attention among researchers studying
biology, physics, computer science and control engineering
Vicsek et al. [1995], Reynolds [1987], Olfati-Saber [2006].
This is partly due to broad applications of multi-agent
systems in many areas including cooperative control of
mobile robots, unmanned air vehicles (UAVs), and so on.
Over the years, many variants of distributed coordina-
tion control protocols have been proposed, which can be
roughly divided into three classes: i) protocols for single
integrator dynamics, which including first-order consensus
protocols Jadbabaie et al. [2003], Olfati-Saber and Murray
[2004], Ren and Beard [2005] and swarming algorithms
Gazi and Passino [2003, 2004]; ii) protocols for double
integrator dynamics, which including second-order consen-
sus protocols Ren and Atlkins [2007], Ren [2007], Lee and
Spong [2007] and flocking algorithms Olfati-Saber [2006],
Tanner et al. [2007]; iii) protocols for high-order integrator
dynamics, which including high-order consensus protocols
Ren et al. [2007].

Subjected to limited sensing and communication capa-
bilities of agents, the interaction topology among agents
may change over time. A basic assumption made in sta-
bility analysis of collective dynamics for most previous
works is that the underlying topology remaining con-
nected frequently enough during the evolution. However,
this assumption is very difficult to verify in practice. In
fact, connectivity of the initial network can not guarantee
connectivity of the network over time. This motives the
following question: can we design a distributed control
algorithm so that it enables the group to achieve the
desired coordinated motion while preserving connectivity?
? This work was partly supported by the NSF of PRC for Creative
Research Groups (60521002) and the NSF of P. R. China under
Grant No. 60674045 and 60731160629, and the Program of Shanghai
Subject Chief Scientist (07XD14017).

Distributed connectivity control of mobile network pro-
vides an effective method to preserve connectivity Spanos
and Murray [2004], Ji and Egerstedt [2006], Zavlanos and
Pappas [2005]. In Spanos and Murray [2004], a measure
of local connectivity of a network is introduced to achieve
global connectivity. In Ji and Egerstedt [2006], the network
stay connected by adding appropriate weights to the edges
in the network. Potential method is proposed for main-
tain connectivity of dynamic mobile network Zavlanos
and Pappas [2005]. However, most of these protocols were
designed for single integrator dynamics. In Zavlanos et al.
[2007], flocking algorithm combined with network con-
nectivity is proposed for double integrator dynamics to
achieve velocity alignment.

In this paper, we investigate the second-order consensus
problem. Previous algorithms Ren and Atlkins [2007], Ren
[2007], Lee and Spong [2007] rely on the connectivity
assumption of the network during the evolution, which
can not be guaranteed even if the initial network is
connected. We propose a coordinated control protocol for
double integrator dynamics, which combines the roles of
motion control and connectivity control. This protocol
can enable the group to achieve velocity alignment and
a desired group shape while preserving connectivity of the
network during the evolution only if the initial network
is connected. In addition, we investigate the coordinated
control with a virtual leader and show that all agents can
asymptotically attain the desired velocity when only one
agent in the team has access to the virtual leader.

2. PROBLEM STATEMENT

We consider N agents moving in an n−dimensional Eu-
clidean space. The motion of each agent is described by a
double integrator of the form

q̇i = pi
ṗi = ui, i = 1, · · · , N (1)

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 3725 10.3182/20080706-5-KR-1001.0732



Fig. 1. Indicator function σ(i, j)

where qi ∈ Rn is the position vector of agent i, pi ∈ Rn
is its velocity vector and ui ∈ Rn is the (force) control
input acting on agent i. Suppose that each agent has the
same influencing/sensing radius r. Let ε ∈ (0, r) be a given
constant. We call G(t) = (V,E(t)) a dynamic undirected
graph consisting of a set of vertices V = {1, 2, · · · , N}
indexed by the set of agents and a time varying set of
links E(t) = { (i, j)| i, j ∈ V } such that, i) initial links are
generated by E(0) = { (i, j)| ‖qi(0)− qj(0)‖ < r, i, j ∈ V },
ii) if (i, j) /∈ E(t−) and ‖qi(t)− qj(t)‖ < r − ε then, (i, j)
is a new link to be added to E(t), iii) if ‖qi(t)− qj(t)‖ ≥ r
then, (i, j) /∈ E(t). The symmetric indicator function
σ(i, j) = σ(j, i) ∈ {0, 1} determines whether or not there
is a link between agent i and agent j, what is defined as
(Fig. 1)

σ(i, j)[t+] ={
0, if(σ(i, j)[t−] = 0 ∩ r − ε ≤ ‖qij‖ < r) ∪ ‖qij‖ ≥ r
1, if(σ(i, j)[t−] = 1 ∩ r − ε ≤ ‖qij‖ < r) ∪ ‖qij‖ < r − ε

Therefore, there is a hysteresis in addition of new links in
G(t), which was firstly proposed in Ji and Egerstedt [2006].
This hysteresis is crucial in preserving connectedness of the
dynamical interaction network.

Our objective is to make all agents move with a common
velocity while keeping a desired group shape under the
assumption that initial network is connected. Specifically,
we want pi(t) − pj(t) → 0 and qi(t) − qj(t) → kij for
all i, j ∈ V , where kij ∈ Rn is an offset between the
agent i and agent j to make a certain desired group shape.
Here, we assume that this offset kij is constant and also
compatible in the sense that kim + kmj = kij for any
i, j,m ∈ V . We choose the control law ui for agent i to
be

ui = αi + βi (2)

where gradient-based term αi is designed to enforce a
desired group shape, and also to guarantee connectivity
preserving of the dynamic interaction network. In this
paper, for convenience and without loss of generality, we
assume that the desired group shape is given by q1(t) =
q2(t) = · · · = qN (t), which is the same as that of Ren
and Atlkins [2007], Ren [2007], Lee and Spong [2007].
Consensus term βi is used to regulate the velocity of each
agent to a common value. Furthermore, in the situation
where there is a virtual leader, the coordinated control
law should be designed to enable all agents asymptotic

tracking the virtual leader. In this case, we modify the
control law ui to

ui = αi + βi + γi (3)

where γi is the navigational feedback term. In this paper,
the virtual leader is a desired common constant velocity.

3. FUNDAMENTAL COORDINATED CONTROL
ALGORITHM

3.1 Main Result

We present explicit control input in Eq. (2), which is
described as:
ui = −

∑
j∈Ni(t)

∇qi
ψ(‖qi − qj‖)︸ ︷︷ ︸
αi

−
∑

j∈Ni(t)

aij(t)(pi − pj)︸ ︷︷ ︸
βi

(4)

where Ni(t) is the neighborhood region of agent i at time
t defined as

Ni(t) = {j|σ(i, j)[t] = 1, j 6= i, j = 1, · · · , N} (5)

The nonnegative potential ψ(‖qi − qj‖) is a function of dis-
tance ‖qi − qj‖ between agent i and agent j, which is differ-
entiable for ‖qi − qj‖ ∈ [0, r), such that, 1) ψ(‖qi − qj‖) →
∞ as ‖qi − qj‖ → r, 2) ∂ψ(‖qi−qj‖)

∂‖qij‖ ≥ 0 for ‖qi − qj‖ ∈

[0, r) and lim
‖qi−qj‖→0

(
∂ψ(‖qi−qj‖)

∂‖qij‖ · 1
‖qi−qj‖

)
is finite. One

example of such a potential function is

ψ(‖qij‖) =


‖qij‖m1

(r − ‖qij‖)m2
,

+∞ ,
m3 ,

‖qij‖ < r
‖qij‖ = r
‖qij‖ > r

(6)

where qij = qi − qj , integers m1 ≥ 2 and m2 ≥ 1, and
constant m3 ≥ 0. Note that the potential function in Ren
and Atlkins [2007], Ren [2007], Lee and Spong [2007] can
be written as

V (‖qi − qj‖) =
1
2
aij(t)(‖qi − qj‖)2 (7)

The main difference between potential functions (6) and
(7) is that the potential (6) tends to infinite when the
distance between agent i and agent j tends to r. This
property can guarantee no initial edges to be lost. The
adjacent matrix A(t) of the graph G(t) is defined as
aij(t) = aji(t) > 0 if (i, j) ∈ E(t) and aij(t) = 0 otherwise.
The corresponding Laplacian is L(t) = ∆(A(t)) − A(t),
where the degree matrix ∆(A(t)) is a diagonal matrix with
i−th diagonal element equals to

∑N
j=1,j 6=i aij(t) Godsil

and Royle [2001]. The corresponding n−dimensional graph

Laplacian is defined as
_

L(t) = L(t) ⊗ In, where In is the
identity matrix of order n and ⊗ stands for the Kronecker
product. This multi-demensional Laplacian satisfies the
following sum of squares property Olfati-Saber [2006]:

zT
_

L(t)z =
1
2

∑
(i,j)∈E

aij(t) ‖zj − zi‖2 (8)

where z = col(z1, z2, · · · , zN ) ∈ RNn and zi ∈ Rn for all i.
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Fig. 2. Example of inter-agent artificial potential function
ψ(‖qij‖) (m1 = 2, m2 = 1 and m3 = 0)

Denote the position and velocity of the center of mass
(COM) of all agents in the group as

q̄ =
∑N
i=1 qi
N

, p̄ =
∑N
i=1 pi
N

The sum of artificial potential energy and the total kinetic
energy is defined as follows:

Q =
1
2

N∑
i=1

(
∑

j∈Ni(t)

ψ(qij) + pTi pi) (9)

Clearly, Q is a positive semi-definite function.

Theorem 1 Consider a system of N mobile agents with
dynamics (1), each steered by protocol (4). Suppose that
the initial network G(0) is connected and the initial energy
Q0 is finite. Then the following hold:

i) G(t) will be connected for all t ≥ 0;
ii) All agents asymptotically converge at the same posi-

tion and move with the same velocity;
iii) The velocity of the COM p̄(t) will be invariant for all

t ≥ 0.

3.2 Proof of the Theorem

A. Proof of part i)

Assume that G(t) switches at time tk(k = 1, 2, · · ·). In
each time-interval [tk−1, tk), G(t) is a fixed graph. The
time derivative of Q in [tk−1, tk) is

Q̇ = −pT [L(t)⊗ In]p (10)

Because L is a positive semi-definite matrice Horn and
Johson [1987], Q̇(t) ≤ 0 in [tk−1, tk), which implies that

Q(t) ≤ Q(tk−1) for t ∈ [tk−1, tk) (11)

In particular, Q(t) ≤ Q0 for [t0, t1). Since the definition
of potential function lim‖qij(t)‖→r ψ(‖qij(t)‖) = ∞ , no
edge-distance will tend to r for t ∈ [t0, t1), which implies
that no edge will be lost at time t1. Hence, new edges
must be added in the interaction network at switching time
t1. Note that the hysteresis ensures that if finite links are
added toG(t) , then the associated potentials are bounded.
Thus, Q(t1) is bounded. Similar to the aforementioned
analysis, we can get that no edge-distance will tend to
r for t ∈ [tk−1, tk), which implies that no edge will be lost

at time tk, and Q(tk) is bounded. Since G(0) is connected
and no edges in E(0) will be lost, G(t) will be connected
for all t ≥ 0.

B. Proof of part ii) and iii)

Assume there are mk(0 < mk ≤ (N(N−1)
2 − (N−1)) ∆= M)

new links that are added to the interaction network at time
tk. From (9) and (11), we have Q(tk) ≤ Q0 + (m1 + . . .+
mk)ψ(‖r − ε‖). Since there are at most M new links that
may be added to G(t), we have k ≤ M and Q(t) ≤ Q0 +
Mψ(‖r − ε‖) ∆= Qmax for all t ≥ 0. Hence, the set

Ω =
{

_
q ∈ Dg, p ∈ RNn

∣∣∣Q(_
q , p) ≤ Qmax

}
(12)

is positively invariant, where _
q = col(q11, · · · , q1N , · · · , qN1,

· · · , qNN ), Dg =
{

_
q ∈ RN

2n
∣∣∣ ‖qij‖ ∈ [0, r),∀(i, j) ∈ E(t)

}
and p = col(p1, p2, · · · , pN ). Since G(t) is connected for
all t ≥ 0, ‖qij‖ < (N − 1)r for any i and j. Since
Q(t) ≤ Qmax, we have pTi pi ≤ 2Qmax, and then ‖pi‖ ≤√

2Qmax. Therefore, the set Ω is compact. It follows from
LaSalle’s invariant principle Khalil [2002] that if the initial
conditions of the system lie in Ω, its trajectories will
converge to the largest invariant set inside the region
S = {_

q ∈ Dg, p ∈ RNn
∣∣∣ Q̇ = 0}. From (10), we have

Q̇ = −pT [L(t)⊗ In]p = −pT (L(t)⊗ In)p = 0 (13)

which implies that p1 = · · · = pN .

It follows from the control protocol (4) and the symmetry
of ψ(‖qij‖) and A(t) that

ū = ˙̄p =
∑N
i=1 ui
N

= 0 (14)

which implies that the velocity of the COM will be
invariant for all t ≥ 0.

In steady state, p1 = · · · = pN = p̄, and then ṗi = ˙̄p =
0,∀i ∈ V . From (4),

ui = −
∑

j∈Ni(t)

∂ψ(‖qi − qj‖)
∂ ‖qij‖

· 1
‖qi − qj‖

(qi − qj) = 0 (15)

We can rewrite Eq. (15) in matrix form as −(L̂(t) ⊗
In)q → 0, where l̂ii = −

∑N
j=1,j 6=i (

∂ψ(‖qi−qj‖)
∂‖qij‖ · 1

‖qi−qj‖ ),

l̂ij = ∂ψ(‖qi−qj‖)
∂‖qij‖ · 1

‖qi−qj‖ and qT = [qT1 , · · · , qTN ]. From

definition, we know∂ψ(‖qi−qj‖)
∂‖qij‖ · 1

‖qi−qj‖ ≥ 0 is uniformly
bounded for ‖qij‖ ∈ [0, ψ−1(Qmax)). Since the dynamic
network is connected all the time, from the property of
the Laplacian matrix L̂(t) ⊗ In Godsil and Royle [2001],
q converges asymptotically to span{1}, which implies that
q1 = · · · = qN .

4. COORDINATED CONTROL ALGORITHM WITH
A VIRTUAL LEADER

In some situation, the regulation of agents has certain
purposes, such as achieving the desired common velocity,
or arriving at a desired destination. In this section, we in-
vestigate the coordination control algorithm with a virtual
leader.
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4.1 Main Result

We present explicit control input in Eq. (3), which is
described as:

ui = −
∑

j∈Ni(t)

∇qi
ψ(‖qi − qj‖)︸ ︷︷ ︸
αi

−

∑
j∈Ni(t)

aij(t)(pi − pj)︸ ︷︷ ︸
βi

− c1(pi − pγ)︸ ︷︷ ︸
γi

, c1 > 0
(16)

where pγ is the desired constant velocity (virtual leader).

We define the sum of artificial potential energy and the
total relative kinetic energy between all agents and the
virtual leader as following:

U =
1
2

N∑
i=1

(
∑

j∈Ni(t)

ψ(‖qij‖) + (pi − pγ)T (pi − pγ)) (17)

Clearly, U is a positive semi-definite function.

Theorem 2 Consider a system of N mobile agents with
dynamics (1), each steered by protocol (16). Suppose that
the initial network G(0) is connected and the initial energy
U0 is finite. Then the following hold:

i) G(t) will be connected for all t ≥ 0.
ii) All agents asymptotically converge to the same posi-

tion and move with the desired velocity pγ .
iii) If the initial velocity of the COM p̄(0) is equal to

the desired velocity pγ , then p̄(t) will be equal to the
desired velocity pγ for all t ≥ 0; otherwise p̄(t) will
exponentially converge to the desired velocity with a
time constant of c1s.

4.2 Proof of the Theorem

We first prove part i) of Theorem 2.

Denote the position difference vector and the velocity
difference vector between agent i and virtual leader as
q̃i = qi − pγt and p̃i = pi − pγ , respectively. We have

˙̃qi = p̃i
˙̃pi = ui, i = 1, ..., N (18)

By the definition of ψ(‖qij‖), potential function can be
rewritten as

ψ(‖qij‖) = ψ(‖q̃ij‖) (19)

Thus the control input (16) for agent i can be rewritten as

ui = −
∑

j∈Ni(t)

∇q̃i
ψ(‖q̃ij‖)−

∑
j∈Ni(t)

aij(t)(p̃i − p̃j)

−c1p̃i
(20)

and the positive semi-definite energy function (17) can be
rewritten as

U =
1
2

N∑
i=1

(ψ(‖q̃ij‖) + p̃Ti p̃i) (21)

The time derivative of U in [tk−1, tk) is

U̇ = −p̃T [(L(t) + c1IN )⊗ In]p̃ (22)

Because L is a positive semi-definite, U̇(t) ≤ 0 in [tk−1, tk),
which implies that

U(t) ≤ U(tk−1) for t ∈ [tk−1, tk) (23)

Similar to the proof of part i) of Theorem 1, we can get
that no edge-distance will tend to r for t ∈ [tk−1, tk), which
implies that no edge will lost at time tk, and U(tk) is
bounded. Since G(0) is connected and no edges in E(0)
will be lost, G(t) will be connected for all t ≥ 0.

We now prove part ii) of Theorem 2.

Similar to the proof of part ii) of Theorem 1, the set

Ω =
{

_

q̃ ∈ Dg, p̃ ∈ RNn
∣∣∣U(

_

q̃ , p̃) ≤ Umax

}
(24)

is compact, where
_

q̃ = col(q̃11, · · · , q̃1N , · · · , q̃N1,

· · · , q̃NN ),Dg =
{

_

q̃ ∈ RN
2n

∣∣∣ ‖q̃ij‖ ∈ [0, r),∀(i, j) ∈ E(t)
}

,

p̃ = col(p̃1, p̃2, · · · , p̃N ) and Umax
∆= U0 + (N(N−1)

2 − (N −
1))ψ(‖r − ε‖). From LaSalle’s invariant principle, we have

U̇ = − p̃T (L(t)⊗ In)p̃− c1p̃
T p̃ = 0 (25)

which implies that p̃1 = · · · = p̃N = 0. This occurs
only when p1 = · · · = pN = pγ . This also implies that
ui = ṗi = ṗγ = 0. From (16),

ui = −
∑

j∈Ni(t)

∂ψ(‖qi − qj‖)
∂ ‖qij‖

· 1
‖qi − qj‖

(qi − qj) = 0 (26)

Similar to the proof of part ii) of Theorem 1, we have
q1 = · · · = qN .

Finally, we prove part iii) of Theorem 2.

It follows from the control protocol (16) and the symmetry
of ψ(‖qij‖) and A(t) that

˙̄p =
∑N
i=1 ui
N

= −c1p̄+ c1pγ (27)

By solving Eq. (27), we get
p̄ = pγ + (p̄(0)− pγ)e−c1t (28)

where p̄(0) is initial velocity of COM. Thus, it follows that,
if p̄(0) = pγ , then p̄(t) = pγ for all t ≥ 0; otherwise p̄(t)
will exponentially converge to the desired velocity with a
time constant of c1s.

4.3 Extensions and discussion

In the coordinated control algorithm (16), it is assumed
that each agent is an informed agent who has informa-
tion about the virtual leader. However, in some nature
examples, few individuals have the pertinent information,
such as knowledge of the location of a food source, or of a
migration route Couzin et al. [2005]. In this subsection, we
assume that only one agent is the informed agent which
is given information about the virtual leader. The control
input for agent i is designed as

ui = −
∑

j∈Ni(t)

∇qiψ(‖qi − qj‖)−∑
j∈Ni(t)

aij(t)(pi − pj)− hic1(pi − pγ)
(29)
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If agent i is the informed agent, then hi = 1; otherwise,
hi = 0. Without loss of generality, we can assume that the
first agent is informed agent, that is, hi = 1 for i = 1 and
hi = 0 for others. Similar to the proof of Theorem 2, we
can prove the follows:

Theorem 3 Consider a system of N mobile agents with
dynamics (1), each steered by protocol (29). Suppose that
the initial network G(0) is connected and the initial energy
U0 is finite. Then the following hold:

i) G(t) will be connected for all t ≥ 0.
ii) All agents asymptotically converge to the same posi-

tion and move with the desired velocity pγ .

5. SIMULATION STUDY

5.1 Coordinated control without a leader

Simulations were performed on 10 agents moving in a
2-dimensional space under the influence of the control
protocol (4). Initial positions and initial velocities of the
10 agents are chosen randomly from the boxes [0, 8]× [0, 8]
and [0, 4]× [0, 4], respectively, and the initial positions are
chosen to satisfy the condition that the initial interaction
network is connected. Under the same initial positions and
velocities of the 10 agents and r = 4, the simulations
were performed with ε = 0.05 and 1.0, respectively. Fig. 3
(a) shows the initial states of the agents, the solid lines
represent the neighboring relations, and the solid lines
with arrows represent the direction of velocities.; Fig. 3
(b) depicts the motion trajectories of all agents from t = 0
to 5 seconds with difference constant ε; Fig. 3 (c) and (d)
show the convergence of positions with difference constant
ε for x−axis and y−axis, respectively, from which we can
see that all agents eventually achieve the same position;
Fig. 3 (e) and (f) show the convergence of velocities with
difference constant ε for x−axis and y−axis, respectively.
We find that the smaller the value of the constant ε, the
larger the maximum overshoot and the smaller the settling
time of the velocity. Therefore, there exists a fundamental
trade-off between maximum overshoot and settling time
for choosing the parameter ε. Large overshoot is due to the
fact that smaller ε corresponds to larger potential force.
On the other hand, smaller ε leads to earlier adding edges.

5.2 Coordinated control with a virtual leader

Simulations for the protocol (16) and the protocol (29)
were performed with 50 agents moving in a 2-dimensional
space. In both simulations, r = 4, and ε = 0.5, and
initial positions and velocities of the 50 agents were chosen
randomly from the boxes [0, 15]× [0, 15] and [0, 4]× [0, 4],
respectively. The initial positions were chosen to satisfy the
condition that the initial interaction network is connected.
The desired velocity was chosen as pγ = [3, 3]. Fig. 4 (a)
shows the initial states of the agents; Fig. 4 (b) depicts the
motion trajectories of all agents from t = 0 to 5 seconds;
Fig. 4 (c) and (d) show the convergence of positions
for x−axis and y−axis, respectively; Fig. 4 (e) and (f)
show the convergence of velocities for x−axis and y−axis,
respectively.

In Fig. 5, the informed agent is chosen randomly from
the group and mark with a solid circle; Fig. 5 (a) shows

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Coordinated control of 10 agents applying algo-
rithm (4)

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Coordinated control of 50 agents applying algo-
rithm (16)
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Coordinated control of 50 agents applying algo-
rithm (29)

the initial states of the agents; Fig. 5 (b) depicts the
motion trajectories of all agents from t = 0 to 35 seconds;
Fig. 5 (c) and (d) show the convergence of positions
for x−axis and y−axis, respectively; Fig. 5 (e) and (f)
show the convergence of velocities for x−axis and y−axis,
respectively. We can clearly see that the group using
control protocol (29) has a slower convergent time than
that using control protocol (16).

6. CONCLUSION

In this paper, we present a class of coordinated control
algorithms by a combination of roles of motion control
and connectivity control. The goal of the control laws
is to make the group to achieve velocity alignment and
a desired group shape while preserving connectivity of
the network during the evolution. We find that there
is a trade-off between maximum overshoot and settling
time of velocity convergence. Moreover, we investigate the
coordinated control with a virtual leader and show that all
agents can asymptotically attain the desired velocity even
if only one agent in the team has access to the virtual
leader. Other topics such as the effects of time delay and
disturbance may warrant further studies.
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