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Abstract: Recently, nonlinear H∞ control theory has been paid attention for the powerful
design method for a robust stabilization. The solvable condition of nonlinear H∞ control problem
is given by the Hamilton Jacobi Inequality (HJI). The HJI is the partial differential inequality
which is quite difficult to solve, so some numerical approaches have been researched.
The approach to solve the HJI based on State-dependent Riccati Inequality (SDRI) is proposed.
The SDRI is derived from the HJI with a State-dependent Coefficient form (SDC form) of a
nonlinear system under an integrability constraint. Here, since the SDC form for a nonlinear
system is not unique, free parameters of the SDC form can be considered.
In this paper, a new expression of free parameters to completely express the SDC form is
proposed. Using free parameters, a desirable numerical solution of the SDRI can be calculated.
We focus on a constant solution of the SDRI because the integrability constraint can be
neglected. Finally, numerical examples to verify the advantage of the free parameters of SDC
form are given.

Keywords: Robust control of nonlinear systems,LMIs.

1. INTRODUCTION

Recently, Nonlinear H∞ Control Theory has become a re-
markably popular tool in engineering applications (van der
Schaft (1992))(Imura et al. (1993a))(Imura et al. (1993b)).
It is known that in order to solve Nonlinear H∞ Control
Problems, we have to deal with a kind of partial differential
inequality called Hamillton-Jacobi Inequality (HJI). For
Linear H∞ Control Problems, we can derive the linear H∞

controller easily by solving a familiar Algebraic Riccati
Inequality (ARI), but it turns out to be much more com-
plicate to derive nonlinear H∞ controller due to a necessity
on dealing with the HJI. Since HJI is a partial differential
inequality, it is quite hard to solve HJI analytically.

Numerical solutions of HJI have been researched. One of
the researches is about approximate solution of HJI using
Taylor Expansion around a equilibrium point (Patpong
et al. (1996)). This approximate solution shows a good
behavior around the equilibrium point, but does not guar-
antee a global characteristic. On the other hand, there is
a way using nonlinear matrix inequality which is so-called
State-dependent Riccati Inequality(SDRI) (Lu and Doyle
(1995))(Erdem and Alleyne (1999))(Cloutier and Stans-
bery (1999)). For a nonlinear system(4), the SDRI(10) is
derived from State-dependent Coefficient (SDC) Form of
the nonlinear system(7).

Lu and Doyle (1995) showed about SDRI issues. Roughly
concluding, if there exists a positive definite matrix P (x)
which is a solution of SDRI and also positive definite scalar
function V (x) satisfying ∂V/∂x = 2xT P (x), then such the
V (x) is a positive definite solution of the HJI. By solving
the point-wise ARIs via LMI problem formulation, they
got a set of point-wise solutions and also an approximate
continuous solution P (x).

For these methods which use SDRI to solve HJI, there is a
problem that SDC form of nonlinear system is not unique.
This problem means that there are many representations
of A(x) satisfying f(x) = A(x)x. In other words, free
parameters can be considered in SDC form(Shamma and
Cloutier (2003))(Jaganath et al. (2005)). Since the solution
of SDRI depends on A(x), it is important to choose a
good representation of A(x). In other words, the solution
of SDRI P (x) can be adjusted by using different A(x).

In this paper we focus on the representation of SDC form.
As we saw in this introduction, it is important to consider
about the SDC form because the SDC form to a nonlinear
system is not unique. This time we introduce a perfect
representation of SDC form so that an appropriate solution
of the SDRI can be calculated.
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2. H∞ CONTROL PROBLEM

2.1 Linear H∞ Control Problem

Let us consider the following linear system Sl

Sl

{

ẋ = Ax + B1w + B2u

z = C1x + D12u
(1)

where w is an unknown disturbance, z is a controlled
output, u is a control input to be chosen. Objectives of
linear H∞ control is to find a controller that achieves
closed-loop stability and makes L2-gain of system Sl less
than or equal to a prior γ > 0. For an easy formulation
of control input, let us assume CT

1 D12 = 0, DT
12D12 = I.

Then the control input is given by

u = −BT
2 Px (2)

where P is a positive definite matrix which satisfies fol-
lowing ARI

PA + AT P +
1

γ2
PB1B

T
1 P − PB2B

T
2 P + CT

1 C1 < 0.

(3)

2.2 Nonlinear H∞ Problem

Let us consider the following nonlinear system Snl

Snl

{

ẋ = f(x) + g1(x)w + g2(x)u

z = h1(x) + j12(x)u
(4)

where w, z, u is same as (1). And objectives of nonlinear
H∞ problem is also same as linear one. Refer to (van der
Schaft (1992)), under standard assumptions hT

1 j12 = 0 and
jT
12j12 = I, an optimal feedback control law is given by

u(x) = −
1

2
gT
2 (x)

∂V

∂x
(5)

where V (x) is a positive definite solution of HJI

∂V

∂xT
f +

1

4γ2

∂V

∂xT
g1g

T
1

∂V

∂x
−

1

4

∂V

∂xT
g2g

T
2

∂V

∂x

+ hT
1 h1 + εxT x ≤ 0 (6)

for some positive ε.

2.3 State-dependent Coefficient Form

Let us define as follows

f(x) = A(x)x, g1(x) = B1(x), g2(x) = B2(x)

h1(x) = C1(x)x, j12(x) = D12(x),

then the nonlinear control system Snl can be transformed
into SDC form

Snl

{

ẋ = A(x)x + B1(x)w + B2(x)u

z = C1(x)x + D12(x)u
. (7)

With assumption

∂V

∂x
= 2P (x)x (8)

the HJI of the nonlinear system Snl becomes

xT
(

P (x)A(x) + AT (x)P (x) +
1

γ2
P (x)B1(x)BT

1 (x)P (x)

− P (x)B2(x)BT
2 (x)P (x) + CT

1 (x)C1(x)
)

x < 0. (9)

Finally we get a SDRI

P (x)A(x) + AT (x)P (x) +
1

γ2
P (x)B1(x)BT

1 (x)P (x)

− P (x)B2(x)BT
2 (x)P (x) + CT

1 (x)C1(x) < 0. (10)

For this SDRI a nonlinear H∞ control input u is given by

u = −
1

2
gT
2 (x)

∂V

∂x
= −BT

2 (x)P (x)x. (11)

3. FREE PARAMETERS OF STATE-DEPENDENT
COEFFICIENT FORM

Since it is not unique to decide a state-dependent coeffi-
cient form to a general nonlinear system, free parameters
of the SDC form can be considered. In this section, we
clarify these free parameters, and consider them to find a
suitable solution for HJI.

3.1 Existence of Free Parameters of SDC Form

Since the choices of B1(x), B2(x) and D12(x) are unique,
we will only focus on A(x) and C1(x).

Example 1. Consider nonlinear system

Snl



























ẋ =

[

−5 sin(2x1)

x1 − 2x2 − 3x3
1

]

+

[

2

−1

]

w +

[

1

0

]

u

z =





u

5x1

10x2





(12)

where x = [x1, x2]
T . Two different SDC forms for this

f(x) can be chosen as

f(x) = A1(x)x =





−5
sin(2x1)

x1

0

1 − 3x2
1 −2





[

x1

x2

]

, (13)

f(x) = A2(x)x =







0 −5
sin(2x1)

x2

−3x2
1 −2 +

x1

x2







[

x1

x2

]

. (14)

It is easy to see that the value of A(x) will be different
depends on SDC form. Since the solution of SDRI depends
on A(x), it is quite important to deal with the free
parameters of SDC form. 2

3.2 Representation of Free Parameters of SDC Form

We can represent f(x) as below.

f(x) = A(x)x = (A(x) + E(x)) x (15)

E(x) is any matrix that satisfies

E(x)x = 0. (16)

E(x) ∈ R
n×n include n × (n − 1) free parameters, since

each row of E(x) include n− 1 independent vectors which
intersect perpendicularly to x.

Example 2. Let us think the same A1(x),A2(x) as previous
example and

E(x) =







5
sin(2x1)

x1

−5
sin(2x1)

x2

−1
x1

x2






.

E(x) satisfies E(x)x = 0. And A2(x) = A1(x) + E(x), so
A2(x) can be represented with A1(x) and E(x). 2
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We introduce the new representation which claify free
parameters without less and surplus.

Theorem 1. Let A0(x) be one of a state-dependent coeffi-
cient matrix of f(x), x ∈ R

n such that

f(x) = A0(x)x (17)

Arbitrary A(x) which satisfies

∀x 6= 0, f(x) = A(x)x (18)

can be represented by

A(x) = A0(x) + Ma(x)Θ(x) (19)

The first column of Ma(x) ∈ R
n×n must be 0. Anather

n × (n − 1) elements are free parameters. And Θ(x) is
combined rotation matrices which rotate x1 axis to the
direction of x. (Obviously the first row of Θ is xT /‖x‖.)

‖x‖ =
√

∑n

j=1
x2

j is Euclid norm of x. (For detail of

Θ(x),see the appendix A.) 2

Proof. 2 − nth rows of Θ(x) intersect perpendicularly to
x, and first column of Ma(x) is 0. So Ma(x)Θ(x)x =
0 and each row of Ma(x)Θ(x) is linear combination of
independent vectors. It satisfies condition of E(x) . And
this representation clarify just enough n × (n − 1) free
parameters.

Consequently A(x) is a state-dependent coefficient matrix.

A(x)x = A0(x)x + Ma(x)Θ(x)x = A0(x)x = f(x) (20)

Furthermore we check whether all of A(x) are represented
by Ma. Let us think about A1(x). To represent A1(x) ,
there should be Ma(x) such that

Ma(x) = (A1(x) − A0(x))ΘT (x). (21)

A first column of (A1(x) − A0(x))ΘT (x) is 0 , because a
first column of ΘT (x) is x/‖x‖ and A1(x)x−A0(x)x = 0.
Since inverse matrix of rotation matrix is transpose matrix
of it, we have

A(x) =
(

A0(x) + (A1(x) − A0(x))ΘT (x)Θ(x)
)

= A1(x).
(22)

So we can represent all of A(x) by using A0(x) +
Ma(x)Θ(x). 2

Example 3. Let us think the same A1(x),A2(x) as previous
example and

Θ(x) =

[

cosθ sinθ
−sinθ cosθ

]

cosθ = x1/‖x‖, sinθ = x2/‖x‖.

As we saw in the previous proof, if we choose

Ma(x) = (A2(x) − A1(x))ΘT (x)

=
1

‖x‖





5
sin(2x1)

x1

−5
sin(2x1)

x2

−1 x1/x2





[

x1 x2

−x2 x1

]

= ‖x‖





0 −5
sin(2x1)

x1x2

0 1/x2





then we get

A1(x) + Ma(x)Θ(x)

=





−5
sin(2x1)

x1

0

−1 − 3x2
1 −2



 +





0 −5
sin(2x1)

x1x2

0 1/x2





[

x1 x2

−x2 x1

]

=





0 −5
sin(2x1)

x2

−3x2
1 −2 + x1/x2



 = A2(x)

2

Remark 1. Although C1(x) can be represented with free
parameter Mc(x) as well as Ma(x), the nonlinearity of
C1(x) can be transformed into A(x) by using coordinate
transformation.

Let us consider coordinate transformation

x̃ = T (x) =

[

h⊥

1 (x)
h1(x)

]

. (23)

h⊥(x) is any function which is independent of h(x).In
other words, the rank of ∂T (x)/∂x should be n. And x =
T−1(x̃). By using coordinate transformation, nonlinear
system(4) transformed into

Snl































˙̃x =
∂T (x)

∂x
(f(x) + g1(x)w + g2(x)u)

:= f̃(x̃) + g̃1(x̃)w + g̃2(x̃)u

z =
[

0 I
]

x̃ + j12(x)u

:= C1x̃ + ˜j12(x̃)u

(24)

As we can see, the controlled output z is represented in
a linear expression with this transformed system. And
the f(x) is transformed into f̃(x̃) which includes the
nonlinearity of z. From now on, we only focus on Ma(x)
to describe free parameters of the SDC form. 2

3.3 Solving SDRI via LMI

When SDRI(10) is fixed with a state x, it is a same
inequality as ARI(3) with variable P . To solve this matrix
inequality, (3) can be transformed into LMI. By using
Schur Complement and a variable transformation X =
P−1, Riccati Inequality becomes

[

AX + XAT +
1

γ2
B1B

T
1 − B2B

T
2 XCT

1

C1X −I

]

< 0 (25)

which is a LMI with respect to a variable X. By solving
this LMI, we will get P = X−1 as a constant solution of
SDRI.

3.4 Solving SDRI with Ma via LMI

By substituting A = A0+MaΘ into (3), Riccati Inequality
becomes

PA0 + PMaΘ + AT
0 P + ΘT MT

a P

+
1

γ2
PB1B

T
1 P − PB2B

T
2 P + C1C

T
1 < 0. (26)

For this inequality, the same procedure as the case of linear
Riccati Inequality is not suitable for getting LMI because
there are extra terms PMaΘ and ΘT MT

a P which includes
the free parameters Ma and Θ.
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To obtain the LMI from SDRI with Ma, we consider the
following procedure. Since −PB2B

T
2 P ≤ 0, ∀P , we will

get

PA0 + PMaΘ + AT
0 P + ΘT MT

a P

+
1

γ2
PB1B

T
1 P + C1C

T
1 < 0. (27)

By using Schur Complement, the matrix inequality (27)
can be transformed into following LMI






PA0 + GΘ + AT
0 P + ΘT GT + CT

1 C1

1

γ
PB1

1

γ
BT

1 P −I






< 0 (28)

with respect to variables P and G = PMa.The first column
of G should be 0. By solving this LMI, we will get a
constant solution P and a free parameter to SDC form
Ma = P−1G.

3.5 Solving SDRI with Ma via BMI

By substituting A = A0 + MaΘ into (25), we get a matrix
inequality





(

A0X+XAT
0 +MaΘX+XΘT MT

a

+ 1

γ2 B1B
T
1 − B2B

T
2

)

XCT
1

C1X −I



 < 0. (29)

This is a Bilinear Matrix Inequality (BMI) which has a
bilinear term MaΘX. The variables to be calculated are
Ma and X. Generally BMI does not have a formulation to
calculate global solution. In this paper we have solved a
BMI with iterating method. By fixing one of the variables
BMI becomes LMI. Then BMI can be solved as LMI with
fixing one variable and local solution is given by iterating
step. The following steps describe the iterating method
shortly.

(1) As a first step find P which is the solution of the
Normal LMI (25).

(2) Solve LMI which is made by substituting P (found
in step 1) into BMI (29) and get Ma as a solution of
LMI.

(3) Solve LMI which is made by substituting Ma (found
in step 2) into BMI (29) and get P as a solution of
LMI.

(4) Iterate Step 2 and Step 3 until P converges.

By using this iterating method we get local solutions P
and Ma of BMI.

4. COMPUTATION OF A CONSTANT SOLUTION

Generally the SDRI has a state-dependent solution P (x).
One way to find a state-dependent solution is to calculate
point-wise solution of SDRI at each state. Or it is possible
to consider the constant solution P which satisfies SDRI
at local area.

As we saw in a previous section, the assumption which is
so-called a integrability condition (8) is needed when we
construct a SDRI from a HJI. In this section, a constant
solution P is considered so that the integrability condition
can be neglected and the advantage of free parameters of
SDC form will be shown.

4.1 Considered System

Let us consider the nonlinear system (12) which is shown
in previous section. The SDC form is selected as

Snl

{

ẋ = (A0(x)x + Ma(x)Θ(x)) + B1(x)w + B2(x)u

z = C1(x)x + D12(x)u

A0(x) =



























−5
sin(2x1)

x1

0

1 − 3x2
1 −2



 (x 6= 0)

[

−10 0

1 −2

]

(x = 0)

,

Θ(x) =







1

‖x‖

[

x1 x2

−x2 x1

]

(x 6= 0)

0 (x = 0)

, B1(x) =

[

2
−1

]

, B2(x) =

[

1
0

]

, C1(x) =

[

5 0
0 10

]

.

Parameters which are needed for calculation are w =
15 sin(30t), γ = 6.5 and initial state x0 = [−4.0, 1.0]T .

Since a constant solution of SDRI is considered, it is
important to check an area where P satisfies HJI. In this
simulation, we checked P in a set which has 1681 states x

{0.2[i1, i2]
T | − 80 ≤ i1 ≤ 80, − 80 ≤ i2 ≤ 80} (30)

where i1, i2 are integers.

4.2 Normal LMI at the Origin

Let us solve SDRI at the origin via normal LMI (25). The
constant solution P is obtained as

P =

[

1.3637 2.0555
2.555 27.737

]

.

The area which P satisfies HJI is shown in Fig. 1(a). In
this case constant solution P satisfies 912/1681 states. The
simulation results of states x1, x2 and input u are shown
in Fig. 2(a), Fig. 2(b) and Fig. 2(c) respectively. As we
can see, the area which constant solution P satisfies HJI
is very small and the simulation with initial state x0 can
not be converged.

4.3 Normal LMI at Several States

Let us solve SDRI via normal LMI (25). This time we
consider two states x = [0, 0]T and x = [−1.0, 1.0]T so
that constant solution P satisfies a normal LMI at both
states.

The constant solution P is

P =

[

10.184 −3.4584
−3.4584 47.406

]

.

The area where P satisfies HJI is shown in Fig. 1(b). In
this case constant solution P satisfies 1058/1681 states.
The simulation results are shown in Fig. 2. As we can see,
the area where constant solution P satisfies HJI becomes
slightly larger than the one of normal LMI at the origin.
And the system with initial state x0 converges to the origin
somehow.

4.4 LMI with Ma(x) at Several States

Let us solve SDRI with Ma(x) via LMI (28). This time
also we consider same two states.
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The constant solution P and a free parameter Ma(x) are

P =

[

42.416 10.286
10.286 30.053

]

Ma([−1.0, 1.0]T ) =

[

0 4747.2
0 7725.2

]

.

The area where P satisfies HJI is shown in Fig. 1(c). In
this case constant solution P satisfies 1176/1681 states.
The simulation results are shown in Fig. 2. As we can see,
the area where constant solution P satisfies HJI becomes
larger than the one of normal LMI at several states. And
the system with initial state x0 converges to the origin
faster than Normal LMI.

4.5 BMI with Ma(x) at Several States

Let us solve SDRI with Ma(x) via BMI (29). This time
also we consider same two states.

The constant solution P and a free parameter Ma(x) are

P =

[

124.81 −1.7444
−1.7444 34.677

]

Ma([−1.0, 1.0]T ) =

[

0 0.17508
0 5.2015

]

.

The area where P satisfies HJI is shown in Fig. 1(d). In
this case constant solution P satisfies 1681/1681 states.
The simulation results are shown in Fig. 2. As we can see,
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the constant solution P satisfies HJI at all states which we
considered. And the system with initial state x0 converges
to the origin faster than LMI with Ma(x).

5. CONCLUSION

In this paper the solution of SDRI is considered as one
of the solution of HJI related to nonlinear H∞ control
problem. It has been known that it is not unique to decide
a SDC form of nonlinear system. To solve this problem we
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have introduced the complete representation of the SDC
form which includes free parameters. The effectiveness of
free parameters are confirmed with numerical examples.
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APPENDIX A

Hereunder the structure of combined rotation matrices are
preseted.

Θ(x) =
n

∏

i=2

Θi

Θi is a rotation matrix at x1 − xi plane.

Θi =







cos θi 0 sin θi

0 I 0 0
− sin θi 0 cos θi

0 I







Let us choose trigonometric function as below.

(cos θi, sin θi) :=

{

(ti+1/ti, xi/ti) ti 6= 0

(1, 0) ti = 0

ti :=















√

√

√

√x2
1 +

n
∑

k=i

x2
k 2 ≤ i ≤ n

x1 i = n + 1

The first row of Θ(x) is calculated to

ϑ11 =
n

∏

k=2

cos θk =
t3
t2

t4
t3

. . .
tn+1

tn
=

tn+1

t2
=

x1

‖x‖

ϑ12 = sin θ2 =
x2

‖x‖

ϑ13 = sin θ3 cos θ2 =
x3

t3

t3
t2

=
x3

‖x‖

...

ϑ1i = sin(θi)
i−1
∏

k=2

cos(θk) =
xi

ti

t3
t2

. . .
ti

ti−1

=
xi

‖x‖
.

So the first row of Θ(x) is xT /‖x‖.

Other expressions of Θ(x) are exist.Ma include the degree
of freedom of it. So we choose this simple one.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

187


