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Abstract: The delay-dependent decentralized stabilization problem of multi-channel singular time-delay 
time-invariant systems subject to multiple internal and external incommensurate constant point delays is 
discussed based on the descriptor integral-inequality approach. The descriptor integral-inequality Lemma 
is firstly established. Based on the new Lemma and the Lyapunov-Krasovskii functional approach, delay-
dependent decentralized stabilization sufficient conditions are obtained. An LMI based algorithm to design 
the decentralized state feedback controls that stabilize the multi-channel singular time delays systems is 
provided. Finally, some numerical examples are presented to illustrate the effectiveness and the 
availability for the design. 

 

1. INTRODUCTION 

Singular systems provide a more natural description of 
dynamical systems than the standard state-space systems due 
to the fact that the singular systems can preserve the structure 
of physical systems and can include non-dynamic constraints 
and impulsive elements (George et al., 1981). On the other 
hand, Singular systems have many important applications in, 
for example, circuit systems (Newcomb and Dziurla, 1989), 
robotics (Mills and Goldenberg, 1989), and aircraft modeling 
(Stevens and Lewis, 1991). From these viewpoints, 
considerable attention has been devoted to the analysis and 
synthesis of linear singular systems in the references 
Stefanovski (2006), Xu et al., (2002), Yu et al., (2003), 
Ishihara et al., (2003), Wang et al., (2006), Gui et al., (2006). 

Delay systems have attracted the attention of many 
researchers over the past decades since time delays are one of 
the main causes for instability and poor performance of many 
control systems and frequently encountered in many 
industrial processes such as the steel industry, oil industry etc 
(Richard, 2003). Delays may be classified as point delays or 
distributed delays according to their nature and as internals 
(i.e. in the state) and externals (i.e. in the input or out put) 
according to the signals they influence. Point delays may be 
commensurate if each delay is an integer multiple of a base 
delay or, more generally, incommensurate if they are 
arbitrary real numbers (De la Sen, 2007). The presence of 
internal delays leads to a large complexity in the resulting 
system dynamic since the whole dynamical systems becomes 
infinite-dimensional. In addition, the fact increases the 
difficulty in the study of basic properties, like for instance 
controllability, observability, stability and stabilization, 
compared to the delay-free case since the transfer functions 
consist of transcendent numerator and denominator quasi-
polynomials (Zheng and Frank, 2001). By those reasons, the 
stability of multiple internal and external incommensurate 
constant point delay systems becomes of increased difficulty 

related to the delay-free case (Lee et al., 2004). Singular 
delay systems, which are those where the delays influence the 
system’s behavioral such as regular, impulsive, 
asymptotically stable and so on, present even a higher 
analysis and design difficulty. It should be pointed out that 
the stability problem for singular time delay systems is much 
more complicated than that for regular systems because it 
requires to consider not only asymptotically stable , but also 
regularity and impulse free at the same time (Fridman and 
Shaked, 2002), and the latter two need not be considered in 
regular systems. Very recently, a great effort has been 
devoted to the investigation of the behavior of time-delay 
singular systems in he references Kim , (2005), Boukas et al., 
(2003), Jiang et al., (2007).  

During the last decades, the decentralized control and 
analysis of singular systems have been studied extensively, 
such as Wen et al., (2003), Wo et al., (2007), Lewis et al., 
(1991), Liu et al., (1995), Xie et al., (2006), due to the fact 
that many real-world systems can be modeled as multi-
channel or large-scale singular systems, such as electric 
power systems, economic systems and so on. It is well known 
that the stabilization of multi-channel or large-scale singular 
systems can become very complicated owing to the high 
dimensionality and interconnection of the system model. In 
practices, due to the information transmission between 
subsystems, time delays naturally exist in multi-channel or 
large-scale singular systems, so, in recent years, some 
researchers have considered the stability problem of various 
multi-channel or large-scale singular systems with time 
delays (Guan et al., (1995)). However, to the best of our 
knowledge, there are no results on the problems of delay-
dependent stabilization of multi-channel singular linear 
continuous-time systems with multiple internal and external 
incommensurate constant point delays. 

The goal of this paper is to deal with the delay-dependent 
stabilization of singular linear continuous-time systems with 
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multiple internal and external incommensurate constant point 
delays. A new method called the descriptor integral-
inequality method that can be used to study the delay-
dependent stabilization issue of singular linear continuous-
time systems with time-varying state and input delays is 
proposed. Based on the Lyapunov-Krasovskii functional 
approach, new delay-dependent stabilization sufficient 
conditions are developed. All the sufficient conditions can be 
easily solved by the linear matrix inequality (LMI) Matlab 
toolbox.  

This paper is organized as follows. In section 2, the regular 
independent of time delays problem is discussed and the 
delay-dependent decentralized stabilization problem is 
defined for the multi-channel singular time-delay time-
invariant systems with multiple internal and external 
incommensurate constant point delays. Then a new lemma 
called the descriptor integral-inequality Lemma that can be 
used to study the delay-dependent decentralized stabilization 
issue for singular time-delay systems is proposed. In section 
3, by employing the descriptor integral-inequality Lemma, 
the sufficient conditions of delay-dependent decentralized 
stabilization are completely characterized based on nonlinear 
matrix inequality (NLMI), which are associated with the time 
delays and cannot be solved directly. From the viewpoint of 
LMI, the design method of state feedback control law is 
summarized. In section 4, the delay-dependent decentralized 
stabilization problems are illustrated by numerical examples. 

Notation: Throughout the paper, I and 0  denote the 
appropriately dimensioned identity matrix and zero matrix. 

{ }diag is a block-diagonal matrix. The symmetric terms in a 

symmetric matrix are denoted by ∗ , e.g., T

X Y X Y
Z Y Z

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥∗⎣ ⎦ ⎣ ⎦

. 

2. PROBLEM STATEMENT 

Consider the following multi-channel singular system with 
1q′ + local control station and multiple internal and external 

incommensurate constant point delays described by 

( ) ( ) ( )

( ) ( ) { }
0 0

,

,     max , ,0 ,

q q

j j j j j
j j

Ex t A x t h B u t h

x t t t h hφ

′

= =

⎧ ′= − + −⎪
⎨
⎪ ′= ∈ −⎡ ⎤⎣ ⎦⎩

∑ ∑                 (1) 

where ( ) nx t ∈R  represents the state and ( ) jm
ju t ∈R is the local 

control input at the thj local station, and 
( )0,1, ,jA j q= , ( )0,1, ,jB j q′=  are real matrices of compatible 

orders with the dimensions of those vectors, and 
( ), 1, ,jh j q= , ( ), 1, ,jh j q′ ′= are the q internal and q′ external 

point delays respectively. The zero delays 
0 0 0h h′= = corresponding to the delay-free dynamics and 

current delay-free input are added for notational 
simplification convenience. ( )tφ  is a compatible vector 
valued continuous different initial function. The maximum 
delays h  and h′ are defined as 

( )1max j q jh h≤ ≤= and ( )1max j q jh h′≤ ≤′ ′= . The singular matrix 
n nE ×∈R  with ( )rank E r n= <  gives the singular character to the 

system (1) compared to the standard system ( )nE I= . 

The unforced singular delay system of (1) can be written as 

( ) ( ) ( )0
1

q

j j
j

Ex t A x t A x t h
=

= + −∑                    (2) 

The following definition is useful to discuss a wide class of 
the so-called singular regular systems: 

Definition 1. The system (2) is said to be regular if there 

exists a constant s∈C  such that
0

0j
q

h s
j

j

sE A e−

=

− ≠∑ . 

The definition 1 is not easy to test because the 

0

0j
q

h s
j

j

sE A e−

=

− ≠∑  depends on the internal point 

delays ( )1, ,jh j q= . An alternative characterization of 
regularity is now given. First, the generic rank ( )g.r.  in C  of 
a complex matrix ( )Q s  is defined as 

( )( ) ( )( )g.r. max ranksQ s Q s∈= ⎡ ⎤⎣ ⎦ . The subsequent result 
formulates equivalent condition for regularity of the system 
(2) to that given explicitly in Definition 1. 

Theorem 1. The system (2) is said to be regular independent 
of the delays ( )1, ,jh j q=  if the rank , jE A n⎡ ⎤ =⎣ ⎦  where 

0 1,j jA A A⎡ ⎤= ⎣ ⎦  with 1 1 2, , ,j qA A A A⎡ ⎤= ⎣ ⎦ . 

Proof   From definition 1, the direct calculation yields 
1

T

0
, , , , ,j q

q
h s h sh s

j j n n n n
j

sE A e E A sI I e I e I− −−

=

⎡ ⎤⎡ ⎤− = − − −⎣ ⎦ ⎣ ⎦∑         (3) 

Thus, from (3) it is clear that the
0

:  0j
q

h s
j

j

s sE A e−

=

∃ ∈ − ≠∑C  

is equivalent to rank , jE A n⎡ ⎤ =⎣ ⎦ . Since 
1rank , , , , ,qh sh s

n n n nsI I e I e I n s−−⎡ ⎤− − − = ∀ ∈⎣ ⎦ C  then 

0

g.r. rank ,j
q

h s
s j j

j

sE A e E A−
∈

=

⎛ ⎞
⎡ ⎤− =⎜ ⎟ ⎣ ⎦

⎝ ⎠
∑ . So, 

0 0

rank , g.r. 0j j
q q

h s h s
j s j j

j j

E A n sE A e n sE A e− −
∈

= =

⎛ ⎞
⎡ ⎤ = ⇒ − = ⇒ − ≠⎜ ⎟⎣ ⎦

⎝ ⎠
∑ ∑  for 

s∈C  and Theorem 1 has been fully proved. 

It is well known that a singular system has a more 
complicated structure and contains not only finite dynamical 
modes (exponential modes), but also infinite frequency 
modes, including infinite nondynamical and dynamical 
modes that may generate undesired impulse behaviors, they 
should be eliminated. In order to guarantee the system (2) is 
regular and impulse-free, the following lemmas are given: 

Lemma 1 (Xu et al., 2002).  Suppose the pair ( )0,E A is said to 
be regular and impulse free, then the solution to (2) exists and 
is impulse free and unique on [ )0,∞ . 

Lemma 2 (Masubuchi et al., 1997). The pair ( )0,E A is said to 
be regular, impulse free and stable if and only if there exist a 
matrix P such that T T 0EP PE= ≥ and T T

0 0 0P A A P+ < . 

The state feedback controllers 

( ) ( ) , 0,1, ,j ju t K x t j q′= =                         (4) 
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are employed to stabilize (1). The goal of this paper is to 
develop a new delay-dependent stabilization method that 
provides the gain, jK , of the controllers such that the resulting 
closed-loop system 

( ) ( ) ( )
0 0

q q

j j j j
j j

Ex t A x t h B x t h
′

= =

′= − + −∑ ∑               (5) 

is asymptotically stable, where j j jB B K= . For this purpose, 
the following lemmas are first introduced. 

Lemma 3(Jiang et al., 2007). Let ( ) nx t ∈R be a vector-valued 
function with first-order continuous-derivative entries. Then, 
the following descriptor integral-inequality holds for any 
matrices E , 1M , 2M , Y and T 0X X= > , and a scalar 0h ≥ :  

( ) ( ) ( ) ( ) ( ) ( )T T T T T 1d
t

t h
x s E XEx s s t t h t Y X Y tξ ξ ξ ξ−

−
− ≤ ϒ +∫           (6) 

where 

( ) ( )
( )

:
x t

t
x t h

ξ
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
,

T T T T
1 1 1 2

T T
2 2

:
M E E M M E E M

M E E M
⎡ ⎤+ − +

ϒ = ⎢ ⎥∗ − −⎣ ⎦
, [ ]1 2:Y M M= . 

3. MAIN RESULTS 

This section addresses the sufficient conditions of delay-
dependent stabilization obtained by the descriptor integral-
inequality method. The following theorem is obtained for 
system (5). 

Theorem 2. For given scalars 0h >  and 0h′ > , if there exist 
symmetric and positive definite matrices T 0X X= > , 

T 0,j jY Y= >   ( )1, ,j q= , ( )T 0, 1, ,j jY Y j q′ ′ ′= > =  T 0R R= > , 
T 0R R′ ′= > ,  any matrices 1 2,j jM M ( )1, ,j q=  and 1 2,j jM M′ ′  

( )1, ,j q′=  such that: 

T T 0EX XE= ≥                                 (7) 
T T T T T T
0 0 1 1

1

1

T T
0 0 0 0 0

0 0 0 0
0 0 0

0
0 0

0

q qqh q h h h h h
qhR

q h R
hR

hR
h R

h R

′
−

−

′ ′ ′ ′ ′ ′⎡ ⎤Ξ Η Η Η Η
⎢ ⎥∗ −⎢ ⎥
⎢ ⎥′ ′ ′∗ ∗ −
⎢ ⎥
∗ ∗ ∗ −⎢ ⎥
⎢ ⎥Ψ = <⎢ ⎥
⎢ ⎥∗ ∗ ∗ ∗ −
⎢ ⎥′ ′∗ ∗ ∗ ∗ ∗ −⎢ ⎥
⎢ ⎥
⎢ ⎥

′ ′∗ ∗ ∗ ∗ ∗ ∗ −⎢ ⎥⎣ ⎦

 (8) 

where 
( ) 1 1

1

1

1,1
0 0 0

0 0
0

q q

q

q

′

′

′ ′⎡ ∏ ∏ ∏ ∏ ⎤
⎢ ⎥∗ −⎢ ⎥
⎢ ⎥∗ ∗
⎢ ⎥
∗ ∗ ∗ −Ξ = ⎢ ⎥

⎢ ⎥′∗ ∗ ∗ ∗ −⎢ ⎥
⎢ ∗ ∗ ∗ ∗ ∗ ⎥
⎢ ⎥′∗ ∗ ∗ ∗ ∗ ∗ −⎢ ⎥⎣ ⎦ , 

( ) ( ) ( )T
0 0 0 0

1 1

T T T
1 1 1 1

1 1 1 1

1,1

          ,

q q

j j
j j

q q q q

j j j j
j j j j

X A B A B X Y Y

M M E E M M

′

= =

′ ′

= = = =

′= + + + + +

⎛ ⎞ ⎛ ⎞
′ ′+ + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑ ∑

∑ ∑ ∑ ∑
 

T T
1 2j j j jXA M E E M∏ = − + , T T

2 2 ,j j j jY M E E M= + +  
T T

1 2j j j jXB M E E M′ ′ ′∏ = − + , T T
2 2 ,j j j jY M E E M′ ′ ′ ′= + +  

[ ]1 11 21 1 20 0 0 , 0 0 0q q qM M M M⎡ ⎤Η = Η = ⎣ ⎦ , 
[ ]1 11 21 1 20 0 0 , 0 0 0q q qM M M M′ ′ ′ ′ ′ ′⎡ ⎤Η = Η = ⎣ ⎦ , 

0 0 0 1 1T q qA B A A B B ′⎡ ⎤= +⎣ ⎦ . 
Then the closed-loop system (5) is regular independent of the 
delays and impulse free and asymptotically stable. 

Proof. Suppose (7)-(8) hold for T 0X X= > , T 0j jY Y= > , 
T 0j jY Y′ ′= > , T 0R R= > , T 0R R′ ′= > , 1 2,j jM M , 1 2,j jM M′ ′ , 

then from (8) it is easy to see that 

( ) ( )T

0 0 0 0 0X A B A B X+ + + <                        (9) 

By Theorem 1 and Lemma 2, it follows from (7) and (9) that 
the system (5) is regular independent of the delays and the 

pair 0 1
1

,
q

j
j

E A B
=

⎛ ⎞
+⎜ ⎟

⎝ ⎠
∑ is regular and impulse free. Next, we 

shall examine the stability of the singular delay system (5). 
To this end, we choose a Lyapunov-Krasovskii functional 
candidate as: 

( ) ( ) ( )1 2V t V t V t= +                               (10) 
with 

( ) ( ) ( ) ( ) ( ) ( ) ( )1
1 1

d d
j j

q qt tT T T
j jt h t h

j j
V t x t XEx t x s Y x s s x s Y x s s

′

′− −
= =

′= + +∑ ∑∫ ∫ , 

( ) ( ) ( ) ( ) ( )
0 0T T T T

2
1 1

d d d d
q qt t

h t h t
j j

V t x s E REx s s x s E R Ex s s
θ θ

θ θ
′

′− + − +
= =

′= +∑ ∑∫ ∫ ∫ ∫  

where T 0X X= > , T 0j jY Y= > , T 0j jY Y′ ′= > ， T 0R R= >  and 
T 0R R′ ′= > are to be determined. Then, the time derivative of 

( )V t  along the trajectory (5) satisfies 
( ) ( ) ( )1 2V t V t V t= +  

where 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

T T
1

1 1

T T
j

1 1

T
0

2

          

      

q q

j j
j j

q q

j j j j j
j j

V t x t XEx t x t Y Y x t

x t h Y x t h x t h Y x t h

t tη η

′

= =

′

= =

⎛ ⎞
′= + +⎜ ⎟

⎝ ⎠

′ ′ ′− − − − − −

= Ξ

∑ ∑

∑ ∑            (11) 

with 
( ) ( ) ( ) ( ) ( ) ( ) TT T T T T

1 1q qt x t x t h x t h x t h x t hη ⎡ ⎤′ ′= − − − −⎣ ⎦ , 

( ) 1 10

1

0

1

1,1
0 0 0

0 0
0

q q

q

q

XA XA XB XB
Y

Y
Y

Y

′

′

⎡ ⎤
⎢ ⎥∗ −⎢ ⎥
⎢ ⎥∗ ∗
⎢ ⎥

∗ ∗ ∗ −Ξ = ⎢ ⎥
⎢ ⎥′∗ ∗ ∗ ∗ −⎢ ⎥
⎢ ∗ ∗ ∗ ∗ ∗ ⎥
⎢ ⎥′∗ ∗ ∗ ∗ ∗ ∗ −⎢ ⎥⎣ ⎦

, 

( ) ( ) ( )T
0 0 0 00

1 1
1,1

q q

j j
j j

X A B A B X Y Y
′

= =

′= + + + + +∑ ∑ , 

and 

( ) ( )( ) ( ) ( ) ( )

( ) ( )

T T T T T
2 0 0 0 0

1

T T

1

T T T T d

        d

q t

t h
j

q t

t h
j

V t t qhR q h R t x s E REx s s

x s E R Ex s s

η η
−

=

′

′−
=

′ ′ ′= + −

′−

∑∫

∑∫
(12) 

with 
0 0 0 1 1T q qA B A A B B ′⎡ ⎤= +⎣ ⎦  
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Applying the Lemma 2, It is clear that the following is true 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

T T T T

1 1

T T T T

1 1

T T 1 T 1
1

1 1

d d

d d
j j

q qt t

t h t h
j j

q qt t

t h t h
j j

q q

j j j j
j j

x s E REx s s x s E R Ex s s

x s E REx s s x s E R Ex s s

t hR h R tη η

′

′− −
= =

′

′− −
= =

′
− −

= =

′− −

′≤ − −

⎛ ⎞
′ ′ ′ ′≤ Ξ + Η Η + Η Η⎜ ⎟

⎝ ⎠

∑ ∑∫ ∫

∑ ∑∫ ∫

∑ ∑

      (13) 

where 
( ) 1 11

1

1

1

1,1
0 0 0

0 0
0

q q

q

q

′

′

′ ′⎡ Τ Τ Τ Τ ⎤
⎢ ⎥∗ Γ⎢ ⎥
⎢ ⎥
⎢ ⎥

∗ ∗ ΓΞ = ⎢ ⎥
⎢ ⎥′∗ ∗ ∗ Γ⎢ ⎥
⎢ ⎥
⎢ ⎥′∗ ∗ ∗ ∗ Γ⎢ ⎥⎣ ⎦

,

T T
1 2

T T
2 2

T T
1 2

T T
2 2

,

, 1, ,

,

, 1, ,

j j j

j j j

j j j

j j j

M E E M

M E E M j q

M E E M

M E E M j q

Τ = − +

Γ = − − =

′ ′ ′Τ = − +

′ ′ ′ ′Γ = − − =

( ) T T T
1 1 1 11

1 1 1 1

1,1
q q q q

j j j j
j j j j

M M E E M M
′ ′

= = = =

⎛ ⎞ ⎛ ⎞
′ ′= + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑ , ,.

[ ]1 11 21 1 20 0 0 , 0 0 0q q qM M M M⎡ ⎤Η = Η = ⎣ ⎦ , 

[ ]1 11 21 1 20 0 0 , 0 0 0q q qM M M M′ ′ ′ ′ ′ ′⎡ ⎤Η = Η = ⎣ ⎦ . 
Substituting (13) into (12) gives us 

( ) ( ) ( )T T T T 1 T 1
2 1 0 0 0 0

1 1
T T T T

q q

j j j j
j j

V t t qhR q h R hR h R tη η
′

− −

= =

⎛ ⎞
′ ′ ′ ′ ′ ′ ′≤ Ξ + + + Η Η + Η Η⎜ ⎟

⎝ ⎠
∑ ∑

(14) 
Combining (11)-(14) yields 

( ) ( ) ( )T T T T 1 T 1
0 0 0 0

1 1

T T T T
q q

j j j j
j j

V t t qhR q h R hR h R tη η
′

− −

= =

⎛ ⎞
′ ′ ′ ′ ′ ′ ′≤ Ξ + + + Η Η + Η Η⎜ ⎟

⎝ ⎠
∑ ∑

     (15) 
where 

0 1Ξ = Ξ + Ξ  

From (15), it is clear that 0Ψ <  guarantees ( ) 0V t <  by the 
Schur complement (Boyd et al., 1994). According to the 
Lyapunov-Krasovskii functional theorem (Gu et al., 2003), 
the closed-loop system (5) is asymptotically stable. This 
completes the proof of Theorem 2. 

As ( )0,1, ,jK j q′=  are design matrixes, Ψ is nonlinear in the 
design parameters jK  and X , the nonlinearities also come 
from R  and 1R− ,  R′  and 1R −′ . Thus in this case (8) cannot be 
solved directly by LMI toolbox. In order to obtain a 
controller gain, jK , from the nonlinear matrix inequality (8), 
the following theorem is given. 

Theorem 3. For given numbers 0h > , 0h′ > , jλ , 0jμ ≠ , 
1, ,j q= and jλ′ , 0jμ′ ≠ , 1, ,j q′= , if there exist symmetric and 

positive matrices jY , 1, ,j q= , jY ′ , 0,1, ,j q′= , R , R′ and any 
matrices jK , 0,1, ,j q′=  such that the following LMI holds 

            T
0 0 0Y E EY′ ′= ≥                                  (16) 

11 12 13 14 15

22

33

44

55

0 0 0
0 0 0

0

∑ ∑ ∑ ∑ ∑⎡ ⎤
⎢ ⎥∗ ∑⎢ ⎥
⎢ ⎥∗ ∗ ∑ <
⎢ ⎥
∗ ∗ ∗ ∑⎢ ⎥

⎢ ⎥∗ ∗ ∗ ∗ ∑⎣ ⎦

                     (17) 

Where 

T T
1 2 2

11 0
qh q h

qhR
q h R

′ ′⎡ ⎤Ω Ω Ω
⎢ ⎥∑ = ∗ −⎢ ⎥
⎢ ⎥′ ′ ′∗ ∗ −⎣ ⎦

, 
T T
1

12 0 0
0 0

qh h⎡ ⎤Ν Ν
⎢ ⎥∑ = ⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

T T
1

13 0 0
0 0

qh h ′′ ′ ′ ′⎡ ⎤Ν Ν
⎢ ⎥∑ = ⎢ ⎥
⎢ ⎥
⎣ ⎦

, 
0 0

14 15 0 0
0 0

Y Y′ ′⎡ ⎤
⎢ ⎥∑ = ∑ = ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

{ }22 diag , ,hR hR∑ = − − , { }33 diag , ,h R h R′ ′ ′ ′∑ = − − , 

{ }44 1diag , , qY Y∑ = − − , { }55 1diag , , qY Y′ ′∑ = − − , 

11 11 1 11 1

21

21

21

2

0 0 0

0 0
0

q q

q

q

′

′

′ ′Ω⎡ ⎤
⎢ ⎥∗ −⎢ ⎥
⎢ ⎥
⎢ ⎥
∗ ∗ −Ω = ⎢ ⎥

⎢ ⎥′∗ ∗ ∗ −
⎢ ⎥
⎢ ⎥
⎢ ⎥′∗ ∗ ∗ ∗ −⎣ ⎦

 

( )1 1 T 2
1 0j j j j j j j j j jEA Y Y Y E Yμ λ μ λ μ− − −′= + + + , 1, ,j q=  

( )1 T 2
2j j j j j jEY Y E Yμ μ− −= + + , 1, ,j q=  

( )1 1 T 2
1 0j j j j j j j j j jEB K Y Y E Yμ λ μ λ μ− − −′ ′ ′ ′ ′ ′ ′ ′ ′= + + + , 1, ,j q′=  

( )1 T 2
2j j j j j jEY Y E Yμ μ− −′ ′ ′ ′ ′ ′= + + , 1, ,j q′=  

( )

( )

1 1 1
11 0 0 0 0

1 1 1

T

1 1 1
0 0 0 0

1 1 1
        

q q q

j j j j j j j j j j j
j j j

q q q

j j j j j j j j j j j
j j j

E A Y B K EA Y EB K Y

E A Y B K EA Y EB K Y

λ μ λ μ λ μ

λ μ λ μ λ μ

′
− − −

= = =

′ ′
− − −

= = =

′ ′ ′Ω = + − − −

⎛ ⎞
′ ′ ′ ′ ′ ′+ + − − −⎜ ⎟

⎝ ⎠

∑ ∑ ∑

∑ ∑ ∑
 

1 1 1 1
2 21 1 1 1 1 1 1q q q q q qAY A Y B K B Kμ μ μ μ− − − −

′ ′ ′′ ′⎡ ⎤Ω = Ω⎣ ⎦ , 

( ) 1 1
21 0 0 0 0

1 1

q q

j j j j j j j j
j j

A Y B K A Y B Kλ μ λ μ
′

− −

= =

′ ′ ′Ω = + − −∑ ∑ , 

1 0 0 0 0RΝ = ⎡ ⎤⎣ ⎦ , 0 0 0 0q RΝ = ⎡ ⎤⎣ ⎦ , 

1 0 0 0 0R′ ′Ν = ⎡ ⎤⎣ ⎦ , 0 0 0 0q R′′ ′Ν = ⎡ ⎤⎣ ⎦ . 

then the decentralized controller (4) with 1
j j jK K Y −′= , 

0,1, ,j q′=  stabilises system (1) and the closed-loop system 
(5) is regular independent of the delays and impulse free.  

Proof. To cast the problem of designing a stabilising 
controller (4) into the LMI formulation, it is assumed that 

1
0Y X −′ = . Under this condition, the (16) is equivalent to (7). 

Due to T T 0EX XE= ≥ and define the following matrices 

1 2

0X
W

W W
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 0 1 11
1

12 13

q

j
j

A B A
A

A A
=

⎡ ⎤⎛ ⎞
+⎢ ⎥⎜ ⎟

= ⎢ ⎥⎝ ⎠
⎢ ⎥
⎣ ⎦

∑ ,

( ) 1 1
1

U diag , , , , , ,
q

j j q q
j

Y Y Y Y Y Y
=

⎧ ⎫⎪ ⎪′ ′ ′= + − − − −⎨ ⎬
⎪ ⎪⎩ ⎭
∑ , 

TT T T T
1 11 1 11 1q qW M M M M′ ′⎡ ⎤= ⎣ ⎦ ,

{ }2 21 2 21 2diag , , , , ,q qW M M M M′ ′= , 

11 1 12 2q qA A A B B⎡ ⎤= ⎣ ⎦ , TT T T T
12A E E E E⎡ ⎤= ⎣ ⎦ ,

{ }13 diag , , , , ,A E E E E= − − − − , 
then 

T T UW A A WΞ = + + , 
[ ]1 0 0 0 0I WΗ = , [ ]0 0 0 0q I WΗ = , 
[ ]1 0 0 0 0I W′Η = , [ ]0 0 0 0q I W′′Η = , 
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when 1 j jM Xλ= , 2 j j jM Yμ= , 1 j jM Xλ′ ′= , 2 j j jM Yμ′ ′ ′= , 0jμ ≠ , and 
0jμ′ ≠ , it is obvious that W  is invertible, and  

1

1 2

0X
W

W W
− ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

,

T1 1 1 1
1 1 1 1 1 1 1q q q q q qW Y Y Y Yλ μ λ μ λ μ λ μ− − − −′ ′ ′ ′ ′ ′⎡ ⎤= − − − −⎣ ⎦ ,

{ }1 1 1 1
2 1 1 1 1diag , , , , ,q q q qW Y Y Y Yμ μ μ μ− − − −′ ′ ′ ′= , 

Define { }1 1 1 1 1diag , , , , , , , ,T W I I R R R R− − − − −′ ′=  and set 1
j jY Y −=  

1, ,j q= , 1
j jY Y −′ ′= , 1, ,j q′= , 1R R−= , 1R R −′ ′= , j j jK K Y ′=  

0,1, ,j q′= , then 
( ) T T T T T T

2 2 1 12

T

1,1
0 0 0 0 0

0 0 0 0
0 0 0

0
0 0

0

q qqh q h h h h h
qhR

q h R
hR

T T
hR

h R

h R

′′ ′ ′ ′ ′ ′⎡ ⎤Ω Ω Ν Ν Ν Ν
⎢ ⎥∗ −⎢ ⎥
⎢ ⎥′ ′ ′∗ ∗ −
⎢ ⎥

∗ ∗ ∗ −⎢ ⎥
⎢ ⎥Ψ = <⎢ ⎥
⎢ ⎥∗ ∗ ∗ ∗ −
⎢ ⎥′ ′∗ ∗ ∗ ∗ ∗ −⎢ ⎥
⎢ ⎥
⎢ ⎥

′ ′∗ ∗ ∗ ∗ ∗ ∗ −⎢ ⎥⎣ ⎦

       

(18) 
where 

( )

( ) 11 1 11 13

21

22

21

2

1,1
0 0 0

0 01,1
0

q q

q

q

′

′

′ ′⎡ ⎤
⎢ ⎥∗ −⎢ ⎥
⎢ ⎥
⎢ ⎥

∗ ∗ −= ⎢ ⎥
⎢ ⎥′∗ ∗ ∗ −⎢ ⎥
⎢ ⎥
⎢ ⎥′∗ ∗ ∗ ∗ −⎢ ⎥⎣ ⎦

 

( ) ( )

( )

1 1 1
0 0 0 03

1 1 1

T

1 1 1
0 0 0 0

1 1 1

0 0
1 1

1,1

         

         

q q q

j j j j j j j j j j j
j j j

q q q

j j j j j j j j j j j
j j j

q q

j j
j j

E A Y B K EA Y EB K Y

Y E A Y B K EA Y EB K

Y Y Y Y

λ μ λ μ λ μ

λ μ λ μ λ μ

′
− − −

= = =

′ ′
− − −

= = =

′

= =

′ ′ ′= + − − −

⎛ ⎞
′ ′ ′ ′ ′ ′− + + − −⎜ ⎟

⎝ ⎠
⎛ ⎞
′ ′ ′+ +⎜ ⎟
⎝ ⎠

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

 

and 1j , 2j , 1j′ , 2j′ , 1Ν , qΝ , 1′Ν , q′Ν , 2Ω  are defined in 
Theorem 3. 

Therefore, (18) follows from (17). From this derivation, the 
conclusion can be drawn that if there exist symmetric and 
positive matrices jY , 1, ,j q= , jY ′ , 0,1, ,j q′=  , R , R′ and any 
matrices jK , 0,1, ,j q′=  satisfying (16) and (17), then the 
following symmetric and positive matrices  
X , jY , 1, ,j q= , jY ′ , 1, ,j q′= , R , R′ , and any matrices 

1 2,j jM M 1, ,j q=  and 1 2,j jM M′ ′ 1, ,j q′=  satisfy (7) and (8). So, 
the resulting closed-loop systems (5) is regular independent 
of the delays , impulse free and asymptotically stable, and the 
desired controller is defined by (4) 
with 1

j j jK K Y −′= , 0,1, ,j q′= . This completes the proof of 
Theorem 3. 

4. NUMERICAL EXAMPLE 

In this section, a numerical example is presented to 
demonstrate the validity of the results described above. 

Example. Consider a multi-channel singular time-delay 
system (1), with the following parameters: 

1 0 0
0 1 0
0 0 0

E
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 0

0.2 0.1 0.5
0.25 0 0.2

0 1 0
A

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

, 1

0.4 0.2 0.6
0 0.5 0
0 0 2

A
− −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

,

[ ]T0 1 0 0B = , [ ]T1 0 1 0B = , [ ]T2 0 0 1B = . 
In this example, we assume that the max point time delays 
are 4.46h =  and 0.2h′ = , and jλ , jμ  jλ′ , jμ′  are chosen as 

1 1.8953λ = − , 1 1.4451λ′ = − , 2 0.3451λ′ = − , 1 14.7388μ = , 1 0.3654μ′ = , 
2 4.3654μ′ = and using Matlab LMI Control Toolbox to solve 

the feasible problems (22), (23) and (24), a decentralized 
stabilizing state feedback control law can be obtained as: 

( ) [ ] ( )0 0.4687 0.1629 0.4769u t x t= − − , 
( ) [ ] ( )1 0.5624 0.4637 2.7508u t x t= − − , 
( ) [ ] ( )2 0.0035 0.0476 0.0039u t x t= − − , 

The purpose is to design a decentralized state feedback 
control law such that the closed-loop system is regular 
independent of the delays, impulse free and asymptotically 
stable. To this end, we can validate easily by 
computing [ ]0 1 0 0 1 1 2 2rank , , , , ,E A A B K B K B K , so, from the Theorem 
1, we can obtain that [ ]0 1 0 0 1 1 2 2rank , , , , , 3E A A B K B K B K = , i.e. the 
system (5) is regular independent of the delays jh , 1, ,j q= . 
Hence, according to Theorem 1 and Theorem 3, controller (4) 
with gain jK  given in the preceding can make the closed-
loop systems (5) regular independent of the delays, impulse 
free and asymptotically stable. 

5. CONCLUSION 

In this paper, the delay-dependent decentralized stabilization 
problem of large-scale singular time-delay time-invariant 
systems subject to multiple internal and external 
incommensurate constant point delays has been studied. The 
main contribution of this study is to obtain the control law, 
which can delay-dependent decentralized stabilises large-
scale singular time-delay time-invariant systems, by the 
Lyapunov-Krasovskii functional approach combined with an 
descriptor integral- inequality. The numerical examples show 
that the proposed controller design method works very well. 
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