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Abstract: The objective of a robust fault reconstruction scheme is to generate an accurate
reconstruction of the fault that is unaffected by disturbances. A typical method for robust fault
reconstruction is to reconstruct the faults and disturbances, which is conservative and requires
stringent conditions. This paper investigates and presents conditions that guarantee a fault
reconstruction that rejects the effects of disturbances, which are less stringent than those of
previous work. A VTOL aircraft model is used to validate the work of this paper.
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1. INTRODUCTION

Fault detection and isolation (FDI) is an important area
of research activity. A fault is deemed to occur when
the system being monitored is subject to an abnormal
condition, such as a malfunction in the actuators or
sensors. The fundamental purpose of an FDI scheme is
to generate an alarm when a fault occurs and also to
determine its location. An overview of work in this area
appears in (Frank (1990)). The most commonly used FDI
methods are observer-based, where the measured plant
output is compared to the output of an observer, and the
discrepancy is used to form a residual, which is then used
to decide as to whether a fault condition is present.

A useful alternative to residual generation is fault recon-
struction, which not only detects and isolates the fault,
but provides an estimate of the fault so that its shape
and magnitude can be better understood and more precise
corrective action can be taken (Edwards et al. (2000);
Saif & Guan (1993)). However, as the fault reconstruction
scheme is observer-based, it is usually designed about a
model of the system. This model usually does not per-
fectly represent the system, as certain dynamics are either
unknown or do not fit exactly into the framework of the
model. These dynamics are usually represented as a class
of disturbances within the model which will corrupt the
reconstruction, producing a nonzero reconstruction when
there are no faults, or mask the effect of a fault, producing
a ‘zero’ reconstruction in the presence of faults (Patton &
Chen (1993)). Hence, the scheme needs to be designed so
that the reconstruction is robust to disturbances.
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Edwards et al. (2000) used a sliding mode observer from
(Edwards & Spurgeon (1994)) to reconstruct faults, but
there was no explicit consideration of the disturbances.
Tan & Edwards (2003) built on this work and designed the
sliding mode observer using the Linear Matrix Inequalities
(LMIs) method in (Boyd et al. (1994)) to minimize the
L2 gain from the disturbances to the fault reconstruction.
Saif & Guan (1993) combined the faults and disturbances
to form a new ‘fault’ vector and used a linear observer to
reconstruct the new ‘fault’. Although this method manages
to decouple the disturbances from the fault reconstruction,
very stringent conditions need to be fulfilled, and is conser-
vative because the disturbance vector does not need to be
reconstructed. Edwards & Tan (2006) compared the fault
reconstruction performances of (Edwards et al. (2000))
and (Saif & Guan (1993)), and found that it was redundant
to reconstruct the disturbance in order to generate a fault
reconstruction that is robust to disturbance. A counter ex-
ample was presented to prove this point, but the conditions
for disturbance decoupling were not formally investigated.

This paper builds on the work in (Edwards & Tan (2006)).
Its main contribution is the investigation of conditions
that guarantee the fault reconstruction is decoupled from
disturbances. The conditions that guarantee disturbance
decoupling are found to be less stringent than those
in (Saif & Guan (1993)) which proves that disturbance
reconstruction is redundant for disturbance decoupling. In
addition, the conditions in this paper are easily testable
on the original system matrices, making it possible to
immediately determine whether disturbance decoupled
fault reconstruction is feasible. A VTOL system taken
from the FDI literature will be used to validate the
results in this paper. The paper is organized as follows:
Section 2 introduces the system and sets up the coordinate
transformation and framework for the investigation of the
existence conditions; Section 3 investigates the conditions
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such that disturbance decoupled fault reconstruction is
achieved; an example to validate the conditions is given
in Section 4 and finally Section 5 makes some conclusions.

The notation used throughout this paper is quite standard;
in particular ‖.‖ represents the Euclidean norm for vectors
and the induced spectral norm for matrices, and λ(.)
denotes the spectrum of a square matrix. For an arbitrary
matrix H with rank m, denote by H† the left-pseudo-
inverse with the property that

H†H = H1

[
0 0
0 Im

]

HT
1

where H1 is an orthogonal matrix. The matrix H† can
be easily found using the Singular Value Decomposition
(SVD) and is not necessarily unique. For the case when H
has full column rank, then H†H = Im.

2. PRELIMINARIES AND PROBLEM STATEMENT

Consider the following system

ẋ(t) = Ax(t) + Mf(t) + Qξ(t) (1)

y(t) = Cx(t) (2)

where x ∈ R
n, y ∈ R

p, f ∈ R
q and ξ ∈ R

h are the
states, outputs, unknown faults and unknown disturbances
respectively while ξ encapsulates all nonlinearities and un-
knowns in the system. Assume rank(M) = q, rank(Q) = h
and rank(C) = p. Also assume that p > q.

The main goal is to reconstruct f whilst being robust
to ξ. The robust fault reconstruction scheme in (Tan &
Edwards (2003)) minimized the effect of ξ on the fault
reconstruction using Linear Matrix Inequalities if and only
if the following conditions are satisfied

A1. rank(CM) = rank(M)
A2. (A,M, C) is minimum phase.

Their method however, does not fully reject the effects of
ξ. Saif & Guan (1993) managed to reject the effects of the
ξ by combining f and ξ vectors and then designed a fault
reconstruction scheme to reconstruct this new ‘fault’. The
necessary and sufficient conditions for their scheme are

B1. rank(C [ M Q ]) = rank [ M Q ]
B2. (A, [ M Q ] , C) is minimum phase.

Since only the reconstruction of f is required, therefore
reconstructing the new ‘fault’ is conservative. Therefore,
this paper investigates the conditions that guarantee dis-
turbance decoupled fault reconstruction with less strin-
gent conditions than (Saif & Guan (1993)). Firstly, define
k = rank(CQ) where k ≤ h and assume

N0. rank(CM) = rank(M)
N1. rank (C [ M Q ]) = rank(CM) + rank(CQ)

Notice that N1 implies p > q + k. The implication of this
assumption will be discussed later in the paper.

Proposition 1. If N0 and N1 hold then there exist nonsin-
gular linear transformations x 7→ T2x, ξ 7→ T−1

1 ξ such that
(A,M,C, Q) when partitioned have the structure

n-p
↔

p
↔

A=

[
A1

A3

A2

A4

]
l n-p

l p

q
↔

,M=

[
0

M2

]
n-p
↔

p
↔

, C=[ 0 C2 ]

h
↔

, Q=

[
Q1

Q2

]
(3)

where M2 =

[
0

Mo

]
l p-q

l q
with Mo, C2 being invertible.

Further partition Q1, Q2 to be

Q1 =

[

Q̄1 0
0 0

]
l h-k

l n-p-h+k
, Q2 =





0 0
0 Q̄2

0 0





l p-q-k

l k

l q

(4)

where Q̄1,Q̄2 are square and invertible.

Proof. From (Edwards & Spurgeon (1994)), since CM is
full rank, there exists a change of coordinates such that
(A,M,C) can be written as

Ã =

[
Ã1 Ã2

Ã3 Ã4

]

, M̃ =

[
0

M̃2

]

, C̃ = [ 0 T ] , Q̃ =

[
Q̃1

Q̃2

]

(5)

where M̃2 =
[

0 M̃T
o

]T
with M̃o and T being full rank.

Let T1 ∈ R
h×h be an orthogonal matrix such that

h-k
←→

k
←→

Q̃2T1 = [ 0 Q̃22

]
l p

(6)

where rank(Q̃22) = k. This follows since by assumption,

CQ = TQ̃2 is rank k. Therefore, Q̃T1 can be partitioned
to have the structure of

h-k
←→

k
←→

Q̃T1 =

[

Q̃11

0
Q̃12

Q̃22

]
l n-p

l p

(7)

Using the partitions in (5), N1 results in

rank
(
T

[

M̃2 0 Q̃22

])
= q + k (8)

Since T is orthogonal, using (6) and (7) result in

rank
([

M̃2 0 Q̃22

])
= q + k (9)

The expanded structure of (7) according to (9) is

h-k
←→

k
←→

Q̃T1 =





Q̃11

0
0

Q̃12

Q̃221

Q̃222





l n-p

l p-q

l q

(10)

where Q̃221 and Q̃222 are appropriate partitions of Q̃22.
Hence, Q̃221 ∈ R

(p−q)×k has full column rank k which

means there exists a matrix Q̃
†
221 such that Q̃

†
221Q̃221 = Ik.

Let X1 and X2 be orthogonal matrices such that

h-k
←→

X1Q̃11 =

[

Q̄1

0

]
l h-k

l n-p-h+k

k
←→

, X2Q̃221 =

[
0

Q̄2

]
l p-q-k

l k

(11)

Now define a nonsingular change of coordinates repre-
sented by the matrix T2 where

n-p
←→

p-q
←→

q
←→

T2 :=





X1 −X1Q̃12Q̃
†
221 0

0 X2 0

0 −Q̃222Q̃
†
221 Iq




(12)

such that the matrices Q̃, C̃ in their new coordinates have
the following structure
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T2Q̃T1 =








Q̄1 0
0 0
0 0
0 Q̄2

0 0








l h-k

l n-p-h+k

l p-q-k

l k

l q

, C̃T2
−1 =

[
0 TY −1

1

]
(13)

where Y1 =

[
X2 0

−Q̃222Q̃
†
221 Iq

]

and TY −1
1 is invertible. The

coordinate transformation T2 does not alter M̃ . Equating
Mo = M̃o and C2 = TY −1

1 , the proof is thus complete. �

2.1 A sliding mode observer for fault reconstruction

A sliding mode observer from (Edwards & Spurgeon
(1994)) for the system (1) - (2) is

˙̂x(t) = Ax̂(t)−Gley(t) + Gnν , ŷ(t) = Cx̂(t) (14)

where x̂ ∈ R
n is the estimate of x and ey = ŷ − y is the

output estimation error. The term ν is defined by

ν = −ρ
ey

||ey||
, ey 6= 0, ρ ∈ R+ (15)

where ρ is an upper bound of f and ξ. The matrices
Gl, Gn ∈ R

n×p are the observer gains to be designed. In
the coordinates of (3) in Proposition 1, Gn is assumed to
have the structure

Gn =

[
−L
Ip

]

C−1
2 P−1

o (16)

where Po ∈ R
p×p is symmetric positive definite (s.p.d.)

and L = [ Lo 0 ] ∈ R
(n−p)×p with Lo ∈ R

(n−p)×(p−q).

Define the state estimation error as e := x̂− x. Therefore,
by combining (1) - (2) and (14), the state estimation error
system can be expressed as

ė(t) = (A−GlC)e(t) + Gnν −Mf(t)−Qξ(t) (17)

Introduce a change of coordinates such that eL :=
col(e1, ey) = Tee where

Te =

[
In−p L

0 C2

]

(18)

Hence, (A,M,C, Q) in the new coordinates are

A =

[
A1 A2

A3 A4

]

, M =

[
0
M2

]

, C =[ 0 Ip ] , Q =

[
Q1

Q2

]

(19)

where A1 = A1 + LA3, A3 = C2A3, M2 = C2M2, Q1 =
Q1 + LQ2, Q2 = C2Q2 and Gn will become

Gn =

[
0

P−1
o

]

(20)

Therefore, the state estimation error equation after the
coordinates transformation is

ėL(t) = (A− GlC)eL(t) + Gnν −Mf(t)−Qξ(t) (21)

Lemma 2. From (Tan & Edwards (2003)), if there exists
a value of Gl to satisfy P (A − GlC) + (A − GlC)T P < 0
where

P =

[
P11 P12

PT
12 P22

]

> 0 with P12 = [P121 0] l n-p
←→
p-q

then if Po = P22 − PT
12P

−1
11 P12, and for a large enough

choice of ρ, an ideal sliding motion takes place on S =
{e : Ce = 0} in finite time. �

Assume that the observer (14) has been designed and a
sliding motion has been achieved (ėy = ey = 0). Then,
(21) can be partitioned according to (19) - (20) as

ė1(t) = (A1 + LA3)e1(t)− (Q1 + LQ2)ξ(t) (22)

0 = C2A3e1(t) + P−1
o νeq − C2M2f(t)− C2Q2ξ(t) (23)

where νeq is the equivalent output error injection term
required to maintain the sliding motion and can be ap-
proximated to any degree of accuracy by replacing ν with

ν = −ρ
ey

||ey||+ δ
(24)

where δ is a small positive scalar. Since ey is a measurable
signal, therefore νeq can be computed online (Edwards
et al. (2000); Edwards & Spurgeon (2000)) for full details.

To reconstruct the fault, define a fault reconstruction sig-

nal to be f̂(t) := WC−1
2 P−1

o νeq where W :=
[
W1 M−1

o

]

with W1 ∈ R
q×(p−q). Then define the fault reconstruction

error signal ef = f̂ − f . From (23) and f̂ it becomes

ef (t) = −WA3e1(t) + WQ2ξ(t) (25)

It is desired that ef = 0 (f̂ = f). From (22) and (25), it
is clear that ξ is an excitation signal of ef and that the
design freedom is represented by Lo and W1. Hence the
goal is to decouple ef from ξ by choice of Lo and W1.
Define Qa to be the left h − k columns of Q in (3). The
following theorem states the main result of this paper.

Theorem 3. Suppose N0 and N1 hold. Then ef will be
decoupled from ξ by appropriate choice of Lo and W1 if
the following conditions are satisfied

C1. rank [ CAQa CM CQ ] − rank(M) − rank(CQ) =
rank [ AQa Q ]− rank(Q)

C2. (A, [ M Q ] , C) is minimum phase.

Note that C1 and C2 are easily testable conditions onto the
original system matrices. In addition C1 is not as stringent
as B1 but the disturbance could still be decoupled from
the fault reconstruction. The following section provides a
constructive proof of Theorem 1.

3. DISTURBANCE DECOUPLED FAULT
RECONSTRUCTION

In order to make ef completely decoupled from ξ, a
necessary condition is

WQ2 = 0 (26)

since it represents the direct feedthrough component in the
system formed from (22) and (25).

Partition Q2 from (3) and (13) such that

Q2 =

[
Q21

Q22

]
l p-q

l q
=





0 0
0 Q̄2

0 0



 (27)

which results in WQ2 = W1Q21.

Thus the necessary and sufficient condition to ensure (26)
holds is that W1Q21 = 0.

Lemma 4. A general solution for W1 that will satisfy
W1Q21 = 0 (and hence making WQ2 = 0) is given by

W1 = W12(Ip−q −Q21Q
†
21) (28)
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where

Q
†
21 =

[
0 0
0 Q̄−1

2

]

and W12 ∈ R
q×(p−q) is design freedom such that

W12 = [ W121 W122 ]
←→
p-q-k

←→
k

Proof. This is straightforward; substituting (28) and (27)
into WQ2 results in (26) being satisfied. �

Remark 1. If N1 is not satisfied, then rank (C [ M Q ]) <
rank(CM) + rank(CQ). Since rank(CQ) = k if N1 is not
satisfied, then from M in (3), it is clear that rank(Q21) <
rank(Q2) =: k. Expanding (26) according to W gives
WQ2 = W1Q21 + M−1

o Q22. In order to satisfy (26),

W1Q21 = −M−1
o Q22 (29)

must be satisfied. To satisfy (29) by choice of W1 requires

rank(Q21) = rank
[

QT
21 QT

22

]T
= rank(Q2) (30)

which is a contradiction. Therefore, N1 is a necessary
condition in order for (26) to be satisfied.

Lemma 4 has shown that N1 is a sufficient condition for
(26) to be satisfied as it makes the coordinate transforma-
tion in Proposition 1 feasible. Therefore, N1 is a necessary
and sufficient condition for (26) to be satisfied. ♯

From the solution in (28), W1 is constrained to be

W1 = W12(Ip−q −Q21Q
†
21) = [ W121 0 ] (31)

Partition A1, A3, Lo from (3) and (2.1) as

A1 =

[
A11 A12

A13 A14

]
l h-k

l n-p-h+k
, A3 =

[
A31 A32

A33 A34

A35 A36

]
l p-k-q

l k

l q

p-k-q
←→

k
←→

Lo =

[
L11

L21

L12

L22

]

(32)

Then, from W1 in (31), WA3 can be written as

WA3 =
[
W121A31 + M−1

o A35 W121A32 + M−1
o A36

]
(33)

The terms (A1 + LA3) and (Q1 + LQ2) in (22), when
expressed using the system partitions in (32) will produce

A1+LA3=

[
A11+L11A31+L12A33 A12+L11A32+L12A34

A13+L21A31+L22A33 A14+L21A32+L22A34

]

Q1+LQ2=

[
Q̄1 L12Q̄2

0 L22Q̄2

]

Therefore, from W1 in (31) and Lo in (32), the system (22)
and (25) form the following state space system

[
ė11(t)
ė12(t)

]

= (A1 + LA3)
︸ ︷︷ ︸

Ā

[
e11(t)
e12(t)

]

− (Q1 + LQ2)
︸ ︷︷ ︸

B̄

[
ξ1(t)
ξ2(t)

]

(34)

ef (t) = (−WA3)
︸ ︷︷ ︸

C̄

[
e11(t)
e12(t)

]

(35)

Expressing (34) - (35) in terms of the triple (Ā, B̄, C̄) the
state space matrices will have the form

Ā=

[
Ā1

Ā3

Ā2

Ā4

]

←→
h-k

←→
n-p-h+k

l h-k

l n-p-h+k
, B̄=

[

B̄1

0
B̄2

B̄4

]

←→
h-k

←→
k

, C̄=
[
C̄1 C̄2

]

←→
h-k

←→
n-p-h+k

l q
(36)

It is obvious that e11 will be affected by ξ1 because B̄1 is
full rank. However, e12 can be decoupled from ξ by setting
B̄4 = 0 (L22 = 0) and Ā3 = 0. In order for ef not to be
affected by e11 (and subsequently ξ), it is essential to make
C̄1 = 0. Making Ā3 = 0 and C̄1 = 0 respectively requires

rank(A31) = rank

[
A13

A31

]

and rank(A31) = rank

[
A31

A35

]

since Mo is nonsingular.

Therefore, combining the requirements that satisfy both
Ā3 = 0 and C̄1 = 0 requires

E1. rank(A31) = rank
[

AT
13 AT

31 AT
35

]T

From (35), to make C̄1 = 0⇒ −W121A31 −M−1
o A35 = 0.

Hence, a general solution for W121 that satisfies C̄1 = 0 is

W121 = −M−1
o A35A

†
31 + W1211(I −A31A

†
31) (37)

where W1211 is design freedom.

Lemma 5. The condition E1 is satisfied if and only if

rank [ CAQa CM CQ ]− rank [ CM CQ ]
= rank [ AQa Q ]− rank(Q)

(38)

Proof. See §A in the appendix. �

Since it has been assumed in §2 that rank(CM) =
rank(M), then Condition N1 becomes

rank (C [ M Q ]) = rank(M) + rank(CQ) (39)

Substituting this result into (38) in Lemma 5 yields

rank [ CAQa CM CQ ]− rank(M)− rank(CQ)
= rank [ AQa Q ]− rank(Q)

(40)

which corresponds to Condition C1.

Substitute L22 = 0 into (34) to get Ā3 = A13 + L21A31

and choosing

L21 = −A13A
†
31 + L211(I −A31A

†
31) (41)

where L211 is design freedom, makes Ā3 = 0. As a result,

Ā =

[
Ā1 Ā2

0 Ā4

]

(42)

In order for Ā to be stable, Ā1 and Ā4 have to be stable.
Using (41), Ā4 from (34) and (36) can be written as

Ā4 = A14 −A13A
†
31A32 + L211(I −A31A

†
31)A32 (43)

So for Ā4 to be stable,
(

A14−A13A
†
31A32, (I−A31A

†
31)A32

)

must be detectable. Likewise Ā1 can be written as

Ā1=A11 + L11A31 + L12A33=A11 + [L11 L12]

[
A31

A33

]

(44)

This implies that

(

A11,

[
A31

A33

])

has to be detectable if

Ā1 is to be stable.

Proposition 6.
(

A14−A13A
†
31A32, (I−A31A

†
31)A32

)

and
(

A11,

[
A31

A33

])

are detectable if (A, [ M Q ] , C) is mini-

mum phase.

Proof. See §B in the appendix. �

Proposition 6 matches Condition C2, guaranteeing a stable
sliding motion and the proof of Theorem 1 is complete. �
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Remark 3.6 of (Edwards & Tan (2006)) provided a
counter-example where B1 is not satisfied but it is still
possible to reconstruct the fault robustly. In the notation
of (1) - (2), the matrices that describe the example are

A =

[
−1 1 0

1 2 1
0 1 1

]

,M =

[
0
0
1

]

, Q =

[
1
0
0

]

, C =

[
0 1 0
0 0 1

]

(45)

C1 and C2 are satisfied for the matrices in (45) above.

Remark 2. Note that C1 is less conservative than B1, and
hence can be applied to a wider class of systems. Condition
B1 implies that Qa = ∅ (empty matrix), which will satisfy
C1. However, the converse is not necessarily true. ♯

Remark 3. There have been efforts to generate distur-
bances decoupled fault detection residuals using linear
observers in (Xiong & Saif (2000)) and (Patton & Chen
(2000)) which respectively utilize the Special Coordi-
nate Basis and Eigenstructure Assignment. However, their
methods required certain elements in the matrix A to be
zero. From the analysis in this paper, no such condition is
required; the only requirement on the matrix A is that
E1 is satisfied. Hence, this paper has also shown how
the conditions for robust fault reconstruction using sliding
mode observer is less stringent than if linear observers are
used. ♯

4. AN EXAMPLE

The method proposed in this paper will be verified using
a VTOL aircraft model taken from (Saif & Guan (1993))
where the states are the horizontal velocity, vertical ve-
locity, pitch rate and pitch angle. The inputs are the
collective pitch control and the longitudal cyclic pitch
control. Assume that the horizontal and vertical velocities
and the pitch angle are measurable and that both inputs
are faulty. Thus,

B = M =






0.4422 0.1761
3.5446 −7.5922
−5.5200 4.4900

0 0




 , C =

[
1 0 0 0
0 1 0 0
0 0 0 1

]

Suppose that the matrix A is imprecisely known and that
there exists parametric uncertainty such that

ẋ = (A + ∆A)x + Bu + Mf (46)

where ∆A is the discrepancy between the known matrix
A and its actual value. Due to the nature of the state
equations, any parametric uncertainty will appear in the
third row of A. Writing (46) in the framework of (1) using

∆Ax = Qξ = [ 0 0 1 0 ]
T

︸ ︷︷ ︸

Q

[ 0 0.5 0 2 ]x
︸ ︷︷ ︸

ξ

The coordinate transformation in Proposition 1 shows that
Q̄1 = −1, A11 = 1.6459 and Q̄2, A12, A13 and A14 are all
empty matrices. Also, Q2 = 03×1 and from (27), it is easy

to see that Q21 = 0. Choosing W1211 = [−0.75 1 ]
T

and
substituting into (37) and then into (31), yields W1 =

[−0.7475 0.3824 ]
T

which satisfies (26).

It can be shown that C1 and C2 are satisfied, hence it is
possible to obtain a fault reconstruction that is decoupled
from the disturbances. Since rank(Q) = 1 and rank(M) =
2 and rank (C [ M Q ]) = 2, then B1 is not satisfied and
hence the method in (Saif & Guan (1993)) cannot be used.

In the following simulation, the parameters associated with
ν were chosen as ρ = 50, δ = 0.001. The faults were
induced in both actuators and Figure 1 shows the faults

and their reconstructions. It can be seen that f̂ provides
accurate estimates of f that are independent of ξ.
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Fig. 1. The left subfigure is f , the right subfigure is f̂ .

5. CONCLUSION

This paper has investigated and presented conditions
that guarantee disturbance decoupled fault reconstruction,
which are easily testable onto the original system matrices.
In previous work, the effects of the disturbances on the
fault reconstruction were only minimized, and conditions
that guarantee disturbance decoupling were not known.
Other work has achieved disturbance decoupling by recon-
structing the disturbances together with the fault, but this
requires stringent conditions to be fulfilled and the distur-
bance reconstruction is not needed for analysis. This paper
has successfully investigated the conditions such that the
fault reconstruction is decoupled from the disturbance,
and it was found that the conditions are less stringent
compared to earlier work. A VTOL aircraft model was
used to validate the proposed method.
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Appendix A. PROOF OF LEMMA 5

From the partitions in (3) - (4) and (32) as well as the
structure of Qa in Theorem 3, it can be shown that

CAQa = C2





A31Q̄1

A33Q̄1

A35Q̄1



 (A.1)

Using the partitions of M,Q from (3) - (4) results in

rank[CAQa CM CQ]−rank[CM CQ] = rank(A31) (A.2)

since C2,Mo and Q̄2 are full rank and invertible.

Also, it can be shown that

AQa =








A11Q̄1

A13Q̄1

A31Q̄1

A33Q̄1

A35Q̄1








(A.3)

As a result, the right hand side of (38) becomes

rank [ AQa Q ]− rank(Q) = rank





A13Q̄1

A31Q̄1

A35Q̄1



 (A.4)

Since Q̄1 is invertible, (38) is equivalent to

rank(A31) = rank
[

AT
13 AT

31 AT
35

]T
(A.5)

which corresponds to E1 and the proof is complete. �

Appendix B. PROOF OF PROPOSITION 6

From (Edwards & Spurgeon (1994)), the Rosenbrock sys-
tem matrix associated with (A, [ M Q ] , C) is

Ea,1(s) =

[
sI −A M Q

C 0 0

]

(B.1)

and the zeros of the system are the values of s that cause
its Rosenbrock matrix to lose normal rank. From (3) and
(32), it can be shown that Ea,1(s) loses rank if and only if
Ea,2(s) loses rank where

Ea,2(s) :=

[
sI −A14 −A13

−A32 −A31

]

(B.2)

Hence, the invariant zeros of (A, [ M Q ] , C) are the in-
variant zeros of (A14, A13, A32, A31).

Define r = rank(A31), by a singular value decomposition

A31 = R1

[
0 0
0 A312

]

R2 (B.3)

where R1, R2 are orthogonal matrices and A312 ∈ R
r×r is

invertible. Define

A
†
31 = RT

2

[
0 0
0 A−1

312

]

RT
1

Since by assumption rank(A31) = rank
[

AT
13 AT

31

]T
then

the structure of A31 in (B.3) results in

A13 = [ 0 A132 ]R2 (B.4)

where A132 ∈ R
(n−p−h+k)×r. Partition

A32 = R1

[
A321

A322

]
l p-q-k-r

l r
(B.5)

Substituting (B.3) - (B.5) into (B.2) and pre-multiply it
with Tz where

Tz =





In−p−h+k 0 −A132A
−1
312

0 Ip−q−k−r 0
0 0 Ir



 (B.6)

then it is clear that Ea,2(s) loses normal rank when the
following matrix pencil loses rank

Ea,3(s) =

[

sI − (A14 −A132A
−1
312A322)

A321

]

(B.7)

From the Popov-Belevitch-Hautus (PBH) rank test (Ed-
wards & Spurgeon (1994)), the values of s that cause
Ea,3(s) to lose rank are the unobservable modes of (A14−
A132A

−1
312A322, A321). Therefore, the invariant zeros of

(A14, A13, A32, A31) are the unobservable modes of (A14−
A132A

−1
312A322, A321).

Now evaluate the pair
(

A14−A13A
†
31A32, (I−A31A

†
31)A32

)

using the new structures of A31, A13 and A32 introduced
in (B.3) - (B.5). It is easy to verify that

A14 −A13A
†
31A32 = A14 −A132A

−1
312A322 (B.8)

(I −A31A
†
31)A32 = R1

[
A321

0

]

(B.9)

Therefore, if (A, [ M Q ] , C) is minimum phase, then
(

A14 −A13A
†
31A32, (I −A31A

†
31)A32

)

is detectable ♯.

If (A, [ M Q ] , C) is minimum phase, then (A,C) is de-
tectable. Performing the PBH rank test on (A,C) and
expanding in the coordinates of (3), then the detectabil-
ity of (A,C) implies the detectability of (A1, A3), which
(by expanding further in the coordinates of (32)) further

implies the detectability of
(

A11,
[

AT
13 AT

31 AT
33 AT

35

]T
)

.

However, since by assumption the condition in E1 holds,

the detectability of
(

A11,
[

AT
13 AT

31 AT
33 AT

35

]T
)

implies

that

(

A11,

[
A31

A33

])

is detectable.

Hence, if (A, [ M Q ] , C) is minimum phase, then (A11,[
A31

A33

])

is detectable and the proof is complete. �
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