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Abstract: This paper presents a performance analysis of nonlinear periodically time varying
sampled-data controllers acting upon a linear time invariant plant. Time invariant controllers are
distinguished from strictly periodically time varying controllers. For a given nonlinear strictly
periodic controller, a time invariant controller is constructed. Necessary and sufficient conditions
are given under which the time invariant controller gives strictly better control performance
than the time invariant controller from which it was obtained, for the robust stabilization of Lp

unstructured perturbations, for all p ∈ [1,∞].

Keywords: Robust stabilization, Lp space, Nonlinear Periodic systems, Sampled-data systems

1. INTRODUCTION

Time-varying and nonlinear feedback control is often ap-
plied to systems for which conventional linear time in-
variant control cannot achieve the desired system perfor-
mance. The use of periodic linear and nonlinear control
to achieve particular performance specifications has been
actively studied for the last two decades. Periodic control
has been shown to have advantages over time-invariant
control in a number of areas, including simultaneous stabi-
lization of a number of plants Das (2001), stabilization of
nonholonomic systems Godhavn and Egeland (1997), and
output feedback stabilization and pole placement Moreau
and Aeyels (2004); Yen and Wu (1993).

Analyses of the limitations of time-varying linear and
nonlinear control have also been done. A number of re-
sults have shown that time varying and nonlinear control
provides no advantages over linear time-invariant control
(LTI) for controlling LTI plants for disturbance rejec-
tion Dahleh and Shamma (1992); Chapellat and Dahleh
(1992). In Schmid and Zhang (2003); Schmid (2006) it
was shown that periodic control of LTI plants can give
strictly worse disturbance rejection performance than time
invariant control.

In this note, we analyze the performance of periodic non-
linear sampled-data controllers of continuous time LTI
plants for the problem of robust stabilization. The problem
of robust stabilization of an LTI plant involves consider-
ing a family of plants, and obtaining a controller which
stabilizes the closed loop system for all plants in the
family. In Khargonekar et al (1985) it was shown that
for discrete controllers of LTI discrete plants, linear time
varying controllers could provide improved gain and phase
margins, relative to that achievable by LTI controllers. For
problems involving unstructured perturbations of an nom-
inal LTI plant, numerous authors have shown that linear

and nonlinear time-varying controllers offer no advantages
over LTI controllers for these problems (e.g. Chapellat and
Dahleh (1992); Poolla and Ting (1987); Shamma and
Dahleh (1991); Schmid (2006); Djouadi (2003)).

In our analysis, strictly nonlinear periodically time vary-
ing controllers will be distinguished from nonlinear time
invariant controllers. For a given strictly periodically time
varying sampled-data controller, we give necessary and
sufficient conditions for the construction of a time in-
variant sampled-data controller that will give superior
robust stabilization performance than the strictly periodic
controller. Our results show that an optimal stabilizing
controller will be time invariant. Hence the use of strictly
periodically time varying controllers for achieving certain
performance specifications may come at a price; a strictly
periodic controller can give inferior performance for the
robust stabilization of unstructured perturbations.

This paper is organized as follows: Section 2 provides some
necessary mathematical preliminaries and formulates the
problem of robust stabilization for unstructured perturba-
tions by nonlinear periodic sampled-data control. Section
3 presents properties of nonlinear periodic systems to be
used for the performance analysis. In Section 4, for a
given periodic nonlinear sampled-data controller, we show
how to construct a time invariant nonlinear sampled-data
controller. Section 5 compares the robust stabilization per-
formance of the nonlinear periodic sampled data controller
with that of the constructed time invariant sampled-data
controller.

2. PROBLEM FORMULATION

For any p ∈ [1,∞), let Ln
p be the space of all n-dimensional

Lebesgue measurable vector functions u : R
+ → R

n

with each u ∈ Ln
p having bounded Ln

p norm ‖u‖p =
(∫∞

0
|u(t)|pp dt

)
1
p , where |·|p is the p-norm on R

n, i.e. |x|p =

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 2779 10.3182/20080706-5-KR-1001.0719



(
∑n

i=1 |xi|
p)

1/p
. Also let Ln

∞ be the space of functions with

bounded Ln
∞ norm ‖u‖∞ = ess sup{|u(t)|∞ : t ∈ R

+}. We
denote Ln

0 = {u ∈ Ln
∞ : limt→∞ supτ≥t |u(τ)| = 0} ⊆ Ln

∞.
We consider systems G : Ln

p → Lm
p . G is assumed to be

nonlinear, in the sense of not necessarily linear. We write
the evaluation of a system G at a signal u as G(u) = Gu
and for all t ∈ R

+, (Gu)(t) denotes the value of the signal
Gu at time t. We write the composition of systems F and
G (assuming it exists) as G ◦ F = GF . When composing
three or more systems, we assume the order of operation
is right-to-left: HGF = H ◦ (G ◦ F ). For any τ ∈ R and
p ∈ [1,∞], let q−τ : Ln

p → Ln
p be the back shift operator

defined by (q−τu)(t) = u(t−τ) for all u ∈ Ln
p , and t ∈ R

+.
Let Pτ : Ln

p → Ln
p be the truncation operator defined by

(Pτu)(t) =

{

u(t) if t ≤ τ
0 elsewhere.

(1)

G is causal if, for all τ ∈ R
+ and all u ∈ Ln

p , PτGu =
PτGPτu.

G has pointwise finite memory (Shamma and Zhao
(1993)) if there exists a function FM(·, ·;G) : Ln

p ×R
+ →

R
+ such that for all u ∈ Ln

p and t ∈ R
+,

(1) FM(u, t;G) ≥ t,
(2) FM(u, t;G) = FM(Ptu, t;G),
(3) (I − PFM(u,t;G))Gu = (I − PFM(u,t;G))G(I − Pt)u

G has pointwise fading memory if it can be approximated
arbitrarily closely in norm by pointwise finite memory
systems.

A system G is time invariant, if G = qτGq−τ for all
τ ∈ R

+. A system G is T -periodic, 0 < T < ∞, if
G = qT Gq−T and G 6= qτGq−τ for all τ ∈ (0, T ).

The Lm
p -induced system norm of G is given by

‖G‖p = sup
{

‖Gu‖p/‖u‖p : u ∈ Ln
p , u 6= 0

}

(2)

G is a stable system if ‖G‖p < ∞. For stable G, there
exists a sequence of non-zero signals {uk}k∈Z

+ ⊆ Ln
p such

that ‖G‖p = limk→∞
‖Guk‖p

‖uk‖p
; we say G attains its norm

on the sequence. The Lm
p incremental norm of G is

‖G‖inc
p = sup

{

‖Gu − Gv‖p

‖u − v‖p
: u, v ∈ Ln

p , u − v 6= 0

}

. (3)

G is incrementally Lp stable if ‖G‖inc
p < ∞. If G is

incrementally stable then it is also stable, and ‖G‖inc
p =

‖G‖p.

We consider the closed-loop sampled-data control sys-
tem Φ(P0, K̂h) in Figure 1, where P0 is an LTI nth
order continuous time plant, and u1(t), y2(t), e1(t) ∈
R

n, u2(t), y1(t), e2(t) ∈ R
m, S is a sampler and H is a

zero-order hold which are synchronized with a sampling
period h; thus ŷ2(k) = (Sy2)(k) = y2(kh) and u(t) =
(Hû2)(t) = û2([t/h]), where [t/h] denotes the integer part

of t/h. K̂h is a n-input m-output nonlinear N -periodic

discrete time controller. If K̂h has integer period N ≥ 2,
we say that K̂h is strictly periodic; if N = 1, we say it
is time invariant. This feedback system is said to be well

posed if given input signals (u1, u2) ∈ Ln+m
p there exist

unique (e1, e2) ∈ Ln+m
p satisfying

e1 = u1 − Ke2, e2 = u2 + P0e1 (4)

such that the input-output mapping Φ(P0, K̂h) : (u1, u2) 7→

(e1, e2) is causal. Φ(P0, K̂h) is Nh-periodic due to the

h-periodic sampling process. A controller K̂h is said to
incrementally pointwise fading memory Lp stabilize P0

if Φ(P0, K̂h)) is incrementally Lp stable with pointwise
fading memory.

u1

u2

e1

e2

y1

y2

ê2ŷ2

+

+

+

−
P0

K̂h SH

Fig. 1. The closed loop sampled-data control system
Φ(P, K̂h)

A commonly considered robust stabilization problem
(Poolla and Ting (1987); Schmid (2006); Shamma and
Dahleh (1991); Shamma and Zhao (1993)) involves ad-
ditive unstructured uncertainties. We consider a family of
plants

Padd = {P : P = P0 + ∆W} (5)

where P0 is a “nominal” strictly causal LTI plant, ∆ :
Ln

p → Lm
p is a stable nonlinear time varying perturbation,

and W : Ln
p → Ln

p is a stable LTI system with stable
inverse (weighting function). We assume that all plants in
Padd result in a well-posed feedback system. A discrete
controller K̂h is said to robustly Lp stabilize Padd if it

stabilizes Φ(P, K̂h) for every P ∈ Padd. For a given plant

P0 and controller K̂h, and for each p ∈ [1,∞), we define the

additive Lp robust stability margin of K̂h to be the largest

value of r such that Padd is robustly Lp stabilized by K̂h

for all nonlinear time varying perturbations ∆ : Ln
p → Lm

p

satisfying ‖∆‖p < r. For p = ∞ we consider perturbations
∆ : Ln

0 → Lm
0 satisfying ‖∆‖∞ < r. We denote this robust

stability margin by rp(K̂h). When comparing two con-
trollers, the one that achieves the greater stability margin
is said to give superior robust stabilization performance.

3. ANALYSIS OF PERIODIC SYSTEM NORMS

In this section, G : Ln
p → Lm

p is a stable periodic system

with period T = Nh, where N, n, m ∈ Z
+, N ≥ 2, h > 0

and p ∈ [1,∞]. Also i is an integer with 0 ≤ i ≤ N − 1.
For brevity we introduce Gih : Ln

p → Lm
p with Gih =

qihGq−ih.

Definition 1. Define GTI : Ln
p → Lm

p with

GTI =
1

N

N−1
∑

i=0

Gih (6)
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Then GTI is a stable periodic system with period T = h
and satisfies ‖GTI‖p ≤ ‖G‖p for all p ∈ [1,∞], by the
triangle inequality. We will establish, for each p ∈ [1,∞],
conditions under which ‖GTI‖p < ‖G‖p.

For each 1 ≤ i ≤ N − 1, there must exist at least one
signal w ∈ Ln

p such that Gw 6= qihGq−ihw, else G would
be have period less than Nh. However, there may be one
or more signals w ∈ Ln

p for which Gw = qihGq−ihw, for
all 1 ≤ i ≤ N − 1. To characterize this situation precisely,
we will introduce the notion of Lp h-periodicity.

Definition 2. For any p ∈ [1,∞], G is Lp norm h-periodic
to an input signal u ∈ Ln

p if, for all 0 ≤ i ≤ N −
1, ‖Gu‖p = ‖Gihu‖p, and G is Lp norm h-periodic to
a sequence of input signals {uk}k∈Z

+ ⊆ Ln
p if, for all

0 ≤ i ≤ N − 1,

lim
k→∞

‖Guk‖p

‖uk‖p
= lim

k→∞

‖Gihuk‖p

‖uk‖p
(7)

O
Gu

qhGq−huq2hGq−2hu

q3hGq−3hu

‖Gu‖p

Fig. 2. G is Lp norm h-periodic to u ∈ Ln
p

Definition 3. 1. p = 1 G is L1 h-periodic to u ∈ Ln
1 if

(a) G is L1 norm h-periodic to u, and (b) the set

M1 = {t ∈ R
+ : |

N−1
∑

i=0

Gihu(t)|1 <
N−1
∑

i=0

|Gihu(t)|1} (8)

has measure zero.

2. p ∈ (1,∞) G is Lp h-periodic to u ∈ Ln
p if Gu = Gihu

for all 0 ≤ i ≤ N − 1.

3. p = ∞ G is L∞ h-periodic to u ∈ Ln
∞ if (a) G is

L∞ norm h-periodic to u, and (b) ‖
∑N−1

i=0 Gihu‖∞ =
∑N−1

i=0 ‖Gihu‖∞.

Example 4. Let N = 2, m = 1 and assume G and u are

such that (Gu)(t) = e−t2 and (Ghu)(t) = −e−t2 . Then G
is L1 norm h-periodic to u, but M1 = R

+ has positive
measure, so G is not L1 h-periodic to u. As Gu 6= Ghu, G
is not Lp h-periodic to u for all p ∈ (1,∞). G is L∞ norm
h-periodic to u, but G is not L∞ h-periodic to u.

Definition 5. For any p ∈ (1,∞), G is Lp h-periodic to
a sequence of input signals {uk}k∈Z

+ ⊆ Ln
p if, for all

0 ≤ i ≤ N − 1,

lim
k→∞

‖(G − Gih)uk‖p

‖uk‖p
= 0 (9)

Definition 6. For any p ∈ {1,∞}, G is Lp h-periodic to
a sequence of input signals {uk}k∈Z

+ ⊆ Ln
p if (a) G is

Lp norm h-periodic to {uk}, and (b) if the sequences
{Gihuk/‖uk‖p}k∈Z

+ are convergent with limits yi ∈ Lm
p

for each 0 ≤ i ≤ N − 1, then,

1. p = 1 the set

M1 = {t ∈ R : |

N−1
∑

i=0

yi(t)|1 <

N−1
∑

i=0

|yi(t)|1} (10)

has measure zero.

2. p = ∞ ‖
∑N−1

i=0 yi‖∞ =
∑N−1

i=0 ‖yi‖∞.

We will use the phrase “in the absence of h-periodicity”
to describe the situation where G is not Lp h-periodic to
a sequence of signals upon which it attains its norm. The
next theorem states that, in the absence of h-periodicity,
‖GTI‖p < ‖G‖p. For p ∈ (1,∞), this condition is both
necessary and sufficient. For p ∈ {1, ∞}, it is sufficient;
necessity can be shown with the addition of a further
assumption. When h-periodicity occurs ‖G‖p = ‖GTI‖p.

Theorem 7. For any p ∈ [1,∞], the h-periodic system in
(6) satisfies

‖GTI‖p < ‖G‖p (11)

if G is not Lp h-periodic to any sequence {wk}k∈Z
+ ⊆ Ln

p

of inputs on which G attains its Lp norm.

For p ∈ (1,∞), if G is Lp h-periodic to a sequence
{wk}k∈Z

+ ⊆ Ln
p of inputs on which G attains its Lp norm,

then

‖GTI‖p = ‖G‖p (12)

For p ∈ {1,∞}, if G is Lp h-periodic to a sequence
{wk}k∈Z

+ ⊆ Ln
p of inputs on which G attains its Lp

norm, and the output sequences {Gihwk/‖wk‖p}k∈Z
+ are

convergent in Lm
p , for all 0 ≤ i ≤ N − 1, then

‖GTI‖p = ‖G‖p (13)

Proof See Theorem 5.2 in Schmid and Zhang (2003)

A natural question is to ask how likely an Nh-periodic
system is to be h-periodic to one or more input signals.
We define

Definition 8. Let G : Ln
p → Lm

p be Nh-periodic. For each
p ∈ [1,∞], we define the Lp h-periodic set of G to be

Mp(G) = {w ∈ Ln
p : G is Lp h-periodic to w } (14)

Our next result shows that a linear system will be h-
periodic to few input signals:

Lemma 9. Assume that G is linear and that p ∈ (1,∞).
Then the Lp h-periodic set of G has empty interior.

Proof: Define for each 1 ≤ i ≤ N − 1, the Nh-periodic
system Fi : Ln

p → Lm
p with Fi = G−Gih. From Definition

3.2, w ∈ Mp(G) if and only if Fiw = 0 for all 1 ≤ i ≤ N−1.
Thus Mp(G) =

⋂

1≤i≤N−1 ker(Fi), where ker(Fi) = {w ∈

Ln
p : Fiw = 0}. As G is linear, each Gih is linear and hence

each Fi is linear. Thus each ker(Fi) is a proper subspace
of Ln

p and hence has empty interior. Thus Mp(G) also has
empty interior.2

As Mp(G) is the intersection of N − 1 sets, the likelihood
of time invariance reduces with increasing N .
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4. CONSTRUCTION OF A DISCRETE TIME
INVARIANT CONTROLLER

In this section, K̂h is a given discrete strictly periodic
stabilizing controller for an LTI plant P0 in Figure 1, with
period N ≥ 2. Theorem 10 introduces a time invariant
discrete stabilizing controller K̂TI .

Theorem 10. Let K̂h be any strictly periodic discrete
controller with period N ≥ 2 that incrementally pointwise
fading memory stabilizes P0. Let N , M , M̃ , Ñ , X, Y , X̃,
Ỹ be stable, causal LTI discrete systems such that

SP0H = NM−1 = M̃−1Ñ ,

I = X̃M − Ỹ N = M̃X − ÑY (15)

Then K̂h may be parameterized by

K̂h = (Y − MQ̂h)(X − NQ̂h)−1 (16)

Q̂h = (K̂hN − M)−1(K̂hX − Y ) (17)

where Q̂h is a strictly periodic stable causal discrete sys-
tem with period N . Define the discrete control parameter
Q̂TI and discrete controller K̂TI by

Q̂TI =
1

N

N−1
∑

i=0

qiQ̂hq−i (18)

K̂TI = (Y − MQ̂TI)(X − NQ̂TI)
−1. (19)

Then K̂TI is time invariant and incrementally pointwise
fading memory stabilizes P0.

Proof: The existence of the parameterizations (16) - (17)
follows from Theorem 2.7 in Poolla and Ting (1987). As

K̂h incrementally pointwise fading memory stabilizes P0,
Q̂h is incrementally stable with pointwise fading memory
(Theorem 5.2 in Shamma and Zhao (1993)). Hence by Q̂TI

is also incrementally stable with pointwise fading memory,
and by Theorem 5.2 in Shamma and Zhao (1993) again,

K̂TI incrementally pointwise fading memory stabilizes P0.

For two periodic operators A and B with periods TA and
TB respectively, the product operator AB has period given
by the least common multiple of TA and TB . The inverse
of a periodic operator A has the same period as A. As
K̂h has period N , the parameter Q̂h also has period N ,
because all the other systems in (17) are LTI. Hence Q̂TI

is a time invariant system, because

q1Q̂TIq
−1 =

1

N

N−1
∑

i=0

qiQ̂hq−i (20)

=
1

N

N
∑

i=1

Q̂h

= Q̂TI . (21)

Thus K̂TI is also time invariant, because all the other
systems in (19) are LTI. 2

Our next Lemmas provide a formula for the robust stabil-
ity margin of a controller K̂h for the plant P0.

Lemma 11. Sastry (1999) Let K̂h be an incrementally
pointwise fading memory stabilizing controller for P0 as in
Figure 1. Let

T (K̂h) = WHK̂hS(I + P0HK̂hS)−1 (22)

The stability of closed loop systems in Figures 1 and 3 are
equivalent.

∆

T (K̂h)

Fig. 3. Redrawn Block Diagram for robust stabilization

Lemma 12. For any p ∈ [1,∞], assume K̂h incrementally
point wise fading memory stabilizes P0. The robust stabil-
ity margin of K for Padd is

rp(K̂h) =
1

‖T (K̂h)‖p

(23)

Proof: By definition,

rp(K̂h) = sup{α > 0 : if ‖∆‖p < α, then

P0 + ∆W is stabilized by K̂h} (24)

Let ‖∆‖p be an admissible disturbance satisfying ‖∆‖p <
1

‖T (K̂h)‖p

; then ‖∆‖p‖T (K̂h)‖p < 1, and so by the Small

Gain Theorem, P0 + ∆W is stabilized by K̂hK. Thus

1

‖T (K̂h)‖p

≤ rp(K̂h) (25)

Next let ∆ be an admissible disturbance with ‖∆‖p <

rp(K̂h); then by Theorem 5.1 in Shamma and Zhao (1993)
(noting that periodic systems satisfy the UINE property),

K̂h stabilizes P0 + ∆W and

‖T (K̂h)‖p ≤
1

rp(K̂h)
(26)

2

5. LP PERFORMANCE ANALYSIS OF PERIODIC
SAMPLED-DATA CONTROLLERS

We now present our main result comparing the additive
robust stability margins of the strictly periodic and time
invariant controllers K̂h and K̂TI . Theorem 13 shows that,
in the absence of h-periodicity, K̂TI will give strictly better
robust stability performance than K̂h.

Theorem 13. For any p ∈ [1,∞], let K̂h be any strictly
periodic controller with parameterization (16)-(17) and
period N ≥ 2 that incrementally pointwise fading memory
Lp stabilizes P0. The time invariant stabilizing controller

K̂TI defined in (19) also incrementally pointwise fading
memory Lp stabilizes P0, and gives strictly better Lp

robust stabilization than K̂h in the sense that
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rp(K̂TI) > rp(K̂h), (27)

if the closed loop system T (K̂h) with

T (K̂h) = WHK̂hS(I + P0HK̂hS)−1 (28)

is not Lp h-periodic to any sequence {wk}k∈Z
+ ⊆ Ln

p of

inputs on which T (K̂h) attains its Lp norm.

Proof: Define T (K̂TI) with

T (K̂TI) = WHK̂TIS(I + P0HK̂TIS)−1. (29)

Then T (K̂h) and T (K̂TI) have affine representations

T (K̂h) = S(Y M̃ − MQ̂TV M̃)H, (30)

T (K̂TI) = S(Y M̃ − MQ̂TIM̃)H (31)

Substituting for (18), we obtain

T (K̂TI) = S

(

1

N

N−1
∑

i=0

qihT (K̂h)q−ih

)

H (32)

and so T (K̂h) and T (K̂TI) are related by (6). Hence by
Theorem 7,

‖T (K̂TI)‖p < ‖T (K̂h)‖p (33)

Applying Lemma 12 yields (27). 2

Since ‖T (K̂TI)‖p ≤ ‖T (K̂h)‖p, the stability margin of

K̂TI at least matches that of K̂h, and hence the time
invariant controller K̂TI provides at least equal, and in the
absence of h-periodicity, superior robust stabilization than
the strictly periodic controller from which it was derived.

We have assumed K̂h incrementally pointwise fading mem-
ory stabilizes P0 because this allows us to use Theorem
5.1 from Shamma and Zhao (1993) on the necessity of
the small gain theorem. For the case p = ∞, Theorem
5.1 from that paper applies only to nonlinear time varying
perturbations ∆ : Ln

0 → Lm
0 , and this is why the defini-

tions of robust stability margin given above differ for the
cases p ∈ [1,∞) and p = ∞.

Recently Schmid (2006) showed the superior performance
of discrete nonlinear time invariant controllers, relative to
discrete periodic controllers, for the robust stabilization of
an LTI discrete time plant. The above result extends the
result of that paper to show the superior performance of
nonlinear time invariant sampled-data controllers, for the
robust stabilization of an LTI continuous time plant.

If K̂h in Theorem 13 is linear strictly periodic, then
K̂TI is LTI, and hence specializing Theorem 13 to linear
controllers reveals the superior performance of linear time
invariant sampled-data controllers in comparison with
linear strictly periodic sampled-data controllers. Shamma
and Dahleh (1991) considered discrete systems ( discrete
LTI plant with a discrete controller), and showed that
the for l∞ signals, the robust stability performance of
an linear time varying controller could be equalled by
an LTI controller. This result is similarly extended to
sampled-data systems. Moreover, in this paper we have
explicitly constructed the LTI controller, and shown that

in the absence of h-periodicity it provides strictly superior
performance than the linear strictly periodic controller
from which it was obtained.

Corresponding versions of Theorem 13 can be obtained for
other plant families, for example multiplicative uncertain-
ties Khargonekar et al (1987); Djouadi (2003)

Pmult = {P : P = (I + ∆W )P0} (34)

The relevant closed loop system response is

Tmult(K̂h) = WP0HK̂hS(I + P0HK̂hS)−1 (35)

6. CONCLUSION

We have investigated the performance of strictly periodic
sampled-data controllers for the stabilization of an LTI
continuous time plant. The results imply that the use of
periodic controllers to achieve performance specifications
such as improvement in output feedback and pole place-
ment may come at the price of inferior performance with
respect to robust stabilization, relative to that achievable
by time invariant controllers. The results give new insights
into the limitations of periodic feedback control.
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