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Abstract: This paper extends the well-known concept, input-to-state stability (ISS), to finite-
time control problems. In other words, a new concept, finite-time input-to-state stability
(FTISS), along with related concepts such as finite-time input-output stability and finite-time
small-gain theorems, is discussed, and then is applied to both the finite-time stability analysis
and the finite-time stabilizing feedback design. With finite-time convergence, non-smoothness
has to be considered, which poses serious technical challenges in the analysis and synthesis of
closed-loop finite-time systems. It is found that FTISS plays a key role in the study of finite-time
stability and stabilization of nonlinear systems.

1. INTRODUCTION

Systems analysis and control synthesis to deal with the
stability and stabilization of nonlinear systems have be-
come more and more important following various practical
demands. Many nonlinear control approaches, including
feedback linearization, backstepping, control Lyapunov
functions, input-to-state stability, passivity-based control,
and nonlinear small-gain techniques were proposed in the
last few decades (Huang [2004], Isidori [1995], Khalil
[2002], Krstic et al. [1995], Sontag [2000], Jiang et al.
[1994], Teel [1996]) to tackle stability and stabilization of
nonlinear systems.

Most of these nonlinear feedback tools focus on the design
of smooth controllers for various classes of nonlinear sys-
tems. Among the nonlinear control techniques, Sontag’s
input-to-state stability (ISS) Sontag [2000] provides an
effective way to tackle stabilization of nonlinear systems or
their robust and adaptive control in the presence of various
uncertainties arising from control engineering applications.
On the other hand, non-smooth (including discontinu-
ous and continuous but not Lipschitz continuous) control
approaches have drawn increasing attention in nonlinear
control system design. One of the main benefits of the non-
smooth finite-time control strategy is that it can force a
control system to reach a desirable target in finite time.
This approach was first studied in the literature of optimal
control. In recent years, different finite-time stabilizing
feedback laws have been constructed for some classes of
nonlinear systems (Bhat et al. [2000], Hong et al. [2001],
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Moulay et al. [2006]). In addition, some control designs
have been proposed for specific classes of uncertain non-
linear systems using a backstepping-like procedure (Hong
et al. [2006]). These finite-time controllers can also yield,
in some sense, fast response and high tracking precision
as well as disturbance-rejection properties because of their
non-smoothness. Despite its potential application to prac-
tical problems, the study of finite-time stabilization is
quite under-developed, partially because of the lack of
effective tools in non-smooth analysis and synthesis.

The objective of this paper is to develop a framework
for the design of non-smooth vs. smooth controllers with
finite-time stability based on the finite-time variant of ISS,
which we term as finite-time ISS (FTISS). Characteriza-
tions of FTISS are presented and its combination with
non-smooth feedback is proposed to yield a new design
tool for finite-time stabilization of nonlinear systems.

The paper is organized as follows. The problem formula-
tion is introduced in Section 2. Then, in Section 3, some
results on FTISS are reviewed, while issues on finite-time
input-to-output stability (IOS) are addressed in Section
4. Following that, finite-time feedback design via FTISS
is reported in Section 5. Finally, concluding remarks are
given in Section 6.

2. CONCEPTS AND PRELIMINARIES

In this section, we will give some related preliminary
knowledge to deal with the non-smoothness resulting from
of finite-time stability of nonlinear systems for the follow-
ing investigation.

First of all, we should not that the Dini derivative is im-
portant in the analysis of non-smooth dynamics. Consider
a system in the following form
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ẋ = f(t, x), f(t, 0) = 0, x ∈ Rn (1)
and let x(t) be a generic solution. Further, let V (t, x) : R×
Rn → R be a continuous functions, satisfying a local
Lipschitz condition for x, uniformly with respect to t. The
detailed introduction of Dini derivative of V (x, x(t)) can
be found in Rouch et al. [1977].

The following is a basic concept about finite-time control
Bhat et al. [2000]: The equilibrium x = 0 of system (1)
is (locally) finite-time stable if it is Lyapunov stable and
(locally) finite-time convergent in a neighborhood U . By
“finite-time convergence”, we mean that, for any initial
conditions x(t0) = x0 ∈ U , there is a settling-time function
T ≥ 0, which is a continuous function of x0, such that
every solution x(t; t0, x0) of system (1) is defined with
x(t; t0, x0) ∈ U/{0} for t ∈ [t0, T ) and satisfies

lim
t→t0+T

x(t; t0, x0) = 0, x(t; t0, x0) = 0, ∀t > t0 + T.

When U = Rn, the origin is a globally finite-time stable
equilibrium.

In what follows, we will focus on the finite-time stability
analysis for autonomous systems. In this case, the consid-
ered systems with finite-time convergence must be non-
smooth (more precisely, non-Liptchitz).

A function γ : R+ → R+ is said to be a generalized K-
function if it is continuous with γ(0) = 0, and satisfies

γ(s) = max{0, γ̄(s)− γ̄(s0)}, (2)
where γ̄ is a K-function and s0 is a given parameter. Note
that the class of generalized K-functions includes as a
special case the class of (conventional) K-functions, which
are defined as continuous and strictly increasing functions
with γ(0) = 0. As usual, a function γ is a K∞-function
if it is a (conventional) K-function and also γ(s) →∞ as
s → ∞; and it is a positive definite function if γ(s) > 0
for all s > 0 and γ(0) = 0. A function β : R+ ×R+ → R+

is a generalized KL-function if, for each fixed t ≥ 0, the
function β(s, t) is a generalized K-function, and for each
fixed s ≥ 0 it decreases to zero as t → T for some T ≤ ∞.

For simplicity, we still say “K-function” (or “KL-function”)
when we use generalized K-function (or generalized KL-
function) in the sequel when there is no confusion.

Then, we introduce new concepts to combine finite-time
control with ISS ideas. Consider system

ż = f(z, v), f(0, 0) = 0, z ∈ Rn, v ∈ Rm, (3)
where f is continuous with respect to z and v.
Definition 1. System (3) is (locally) finite-time input-to-
state stable (ISS) (with v as the input) in a neighborhood
U , if, for any initial time t0 ≥ 0, initial state z(t0) = z0 ∈ U
and bounded input v ∈ Uv (for some neighborhood Uv),
we have z(t) ∈ U and

||z(t)|| ≤ β(||z0||, t− t0) + γ( sup
t0≤τ≤t

||v(τ)||), (4)

where γ is a K-function and β is a KL-function with
β(||z0||, t − t0) ≡ 0 when t ≥ t0 + T for some function
T continuous with respect to z0. When U = Rn and
Uv = Rm, the system is (globally) finite-time input-to-
state stable.

In what follows, we write “finite-time input-to-state sta-
ble” instead of “globally finite-time input-to-state stable”
if there is no confusion.

If a system is FTISS with v ∈ Rm as the input, then it is
FTISS with input w = χ(v) for a continuous function χ
with χ(0) = 0. Moreover, suppose χ is a homeomorphism
between v and w = χ(v) and then a system is FTISS with
v ∈ Rm as the input if and only if it is FTISS with w as
the input.

Obviously, finite-time ISS implies ISS. Note that the main
difference between ISS and finite-time ISS is the finite-
time convergence of β; that is, “β(||z0||, t − t0) ≡ 0 when
t ≥ t0 + T .

Example 1. Consider the system, ż = −sgn(z) − z3 + v2,
where sgn(·) is the sign function. If we take

β(||z0||, t− t0) =




||z(t0)|| − (t− t0) if t0 ≤ t

≤ ||z(t0)||+ t0
0 otherwise

,

γ(s) = s2/3 ,

then we obtain that the system is FTISS.

Example 2. FTISS implies the finite-time stability prop-
erty when v = 0, but the converse may not be true, even in
the bounded-input-bounded-state (BIBS) case. Consider

ż = −(1 + sin v)z
1
3 , (5)

which is BIBS and finite-time stable when v = 0. However,
taking v = 3π/2 makes the system not finite-time stable
and therefore, (5) is not finite-time ISS.
Definition 2. System (3) is robustly finite-time stable with
a stability margin if there is a K∞-function ρ (called a
stability margin) and a KL-function β with β(||z0||, t) ≡ 0
when t ≥ T for some function T continuous with respect
to z0, such that, for every feedback law v(t, z) bounded by
ρ(||z||) it holds that

||z(t)|| ≤ β(||z(0)||, t), ∀t ≥ 0 (6)
for every solution of system

ż = f(z, v(t, z))

Fix any smooth positive definite and proper (or radially
bounded) function ϕ. Then for any d(t) ∈ M , where

M = {all measurable functions from R to [−1, 1]m},
(7)

we can rewrite (3) as
ż = f(z(t), d(t)ϕ(z(t))) = g(z, d), g(0, d) = 0. (8)

In equation (8), d(t) can be viewed as the disturbance
input. System (8) is uniformly globally finite-time stable
(UGFTS) if it is uniformly stable (that is, for some K∞-
function δ(·), and for each ε ≥ 0, the estimate z(t, z0, d) ≤
ε holds for all d ∈ M, ||z0|| ≤ δ, and t ≥ 0) and
uniformly finite-time convergent (that is, for each r > 0,
there is a T > 0 such that, ||z(t, z0, d)|| = 0 for every
d ∈ M, ||z0|| ≤ r, t ≥ T ). System (3) is weakly robustly
finite-time stable if there is a smooth positive definite and
proper function ϕ satisfying ||ϕ̄(||z0||) ≤ ||ϕ(z0)|| for some
K∞-function ϕ̄ so that the corresponding system (8) is
UGFTS.

Then, we introduce some useful inequalities:
Lemma 3. (Jiang et al. [1994]) For any K-function γ, any
K∞-function ρ such that ρ−Id is a K∞ function, and any
nonnegative real numbers a and b, we have
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γ(a + b) ≤ γ(ρ(a)) + γ(ρ ◦ (ρ− Id)−1(b)). (9)
Lemma 4. For any continuous function g(x, z), there are
continuous nonnegative functions g1(x) and g2(z) such
that

|g(x, z)| ≤ g1(x) + g2(z). (10)
Moreover, both functions g1(x) and g2(z) vanish at zero
when g(0, 0) = 0.

Note that the proof of the above lemma is quite easy and
that the inequality has been used in the research work of
others, too many to cite.
Lemma 5. (Young’s inequality, Hardy et al. [1952]): Let
f(x) be a strictly increasing continuous function. Then

ab ≤
∫ a

0

f(x) dx +
∫ b

0

f−1(x)dx, (11)

where f−1 is the inverse function of f . Particularly, we
have

ab ≤ a1+c

1 + c
+

c b1+ 1
c

1 + c
, a ≥ 0, b ≥ 0, c > 0. (12)

3. ISS-LYAPUNOV FUNCTION

In this section, we will review the relationship between
FTISS and the existence of an ISS-Lyapunov function
guaranteeing finite-time ISS. In fact, the main result of
this section can be found in Hong et al. [2007].

A function V is called an ISS-Lyapunov function for
system (3) if there exist K∞-functions φ1, φ2, and K-
functions φ4, φ3, such that

(A1)
φ1(||z||) ≤ V (z) ≤ φ2(||z||), ∀z ∈ Rn; (13)

(A2) For any z, v with ||z|| ≥ φ0(||v||), we have
D+V (z)f(z, v) ≤ −φ3(||z||), (14)

which is equivalent to asking that there are K∞-functions
φ3, φ4 such that, for any z ∈ Rn, v ∈ Rm,

D+V (z)f(z, v) ≤ −φ3(||z||) + φ4(||v||), (15)

A function V (z) is called a finite-time ISS-Lyapunov
function for system (3) if it is an ISS-Lyapunov function
with conditions (A1) and (A2), and φ3(||z||) is O(V (z)a)
(as z → 0) for some constant a with 0 < a < 1.

Consider a dynamic system
ż = g(z(t), d(t)), g(0, d(t)) = 0 (16)

where g is continuous with respect to z and d. (16) is called
to be robustly finite-time stable if it is finite-time stable
for any disturbance d(t) taking values in a compact set of
Rm.

Without loss of generality, we assume that d ∈ M ⊂
Rm defined as in (7), and call functions d time-varying
parameters.

If system (16) is finite-time stable for any fixed d(t), then
we define the duration between the initial time and the
settling time as Td(t)(t0, z) = inf{t − t0 : ψd(t, t0, z) = 0}
with initial condition z(t0) = z because the solution may
not be unique. Here Td(t)(t0, z) of system (16) is assumed
to be continuous with respect to (t0, z, d).

In our case, d(t) is not fixed. Define a function

T∗(z) = sup
d∈M

Td(t0, z) ≥ 0 (17)

for system (16), where ψd(t, t0, z) represents the state at
the fixed moment t with z(t0) = z as its initial state.
Moreover, we have the following facts about T∗:

1) There is d∗(t) ∈ M (for a given t0) to make T∗
become a settling time function Td∗ , that is, T∗(z) =
Td∗(t0, z), where d∗(t) can be viewed as the “worst”
disturbance to slow down the convergence rate for any
fixed initial condition z. Therefore, T∗ is still bounded
and continuous with respect to z because Td∗(t0, z) is
so.

2) T∗ is certainly a function of t0, z and d∗(t), expressed
as T∗(t0, d∗, z), but we can prove that it is a function
only depending on the initial condition z. In fact,
we consider two cases: z(t10) = z̄ and z(t20) = z̄.
Clearly, system (16) with z(t10) = z̄ and any given
d1(t) ∈ M is equivalent to system (16) with z(t20) = z̄
and d2(t) = d1(t + t10 − t20) ∈ M . If we take the
relative settling time Tdi(ti0, z̄) for the case of z(ti0) =
z̄, (i = 1, 2), then Td1(t10, z̄) = Td2(t20, z̄). Therefore,
T∗(t10, d

1
∗, z̄) = T∗(t20, d

2
∗, z̄), which implies that T∗ of

system (16) only depends on the value of initial state
z̄.

3) T∗(ψd∗(t, t0, z)) ≥ Td(t0, ψd(t, t0, z)) at every point.

It was shown in Bhat et al. [2000] that ż = f(z) is finite-
time stable if and only if there are a continuous Lyapunov
function V and constants 0 < c, 0 < a < 1 such that
V̇ (z) ≤ −cV (z)a. In the following, we extend this result
to a dynamical system with disturbances.

The equivalence relation between FTISS and the existence
of finite-time ISS-Lyapunov function was shown in Hong
et al. [2007].
Theorem 6. The following conditions are equivalent:

1. System (3) is finite-time ISS with v as input;

2. there is an ISS-Lyapunov function V0(z), which is a
positive-definite and proper function such that

V̇0 := D+V0ż ≤ −γ3(V0) + γ4(||v||), (18)

where γ3(V0) = O(V a
0 ) as V0 → 0 for some positive

constant a < 1, and γi (i = 3, 4) are K∞-functions.

3. System (3) is robustly finite-time stable.

4. System (3) is weakly robustly finite-time stable.

Bhat et al. [2000] considered the sensitivity of a finite-
time stable system to perturbations, where boundedness
or (local) finite-time convergence were derived on basis of
the existence of Lipschitz continuous Lyapunov function.
In our work, finite-time robust stability is related to, but
different from, their works.

Example 3. Going back to Example 1, it is easy to see that
we can select a smooth finite-time ISS-Lyapunov function
V (z) = z2 with

V̇ ≤ −2V
1
2 +

3
2
v

8
3 .
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4. FINITE-TIME INPUT-OUTPUT STABILITY

In this section, we will extend FTISS to finite-time input-
output stability and obtain a related small-gain theorem.

In fact, the above discussion can be extended to the
systems with measured variables. In other words, we
can also consider finite-time input-output properties for
nonlinear systems with output variables:{

ẋ = f(x, u), x ∈ Rn, x(t0) = x0, u ∈ Rm

y = h(x, u), y ∈ Rl, h(0, 0) = 0, f(0, 0) = 0
(19)

where f and h are continuous.

System (19) is finite-time input-output stable (FTIOS)
if there exist a KL-function β and a K-function γ such
that, for each initial condition x(t0) = x0, each measur-
able essentially bounded control u on [t0,∞), and each
t in the right maximal interval of the definition of the
corresponding solution of system (19), we have

||y(t)|| ≤ β(||x0||, t− t0) + γ( sup
t0≤τ≤t

||u(τ)||), (20)

with β(||x0||, t − t0) ≡ 0 when t ≥ T for some function T
continuous with respect to x0.

Moreover, system (19) is said to be finite-time zero-state
detectable if for all x ∈ Rn, u ≡ 0, y ≡ 0, ∀t ≥ t0 will
leads to limt→T x(t) = 0 and x ≡ 0, ∀t ≥ T for some finite
time T . Moreover, system (19) is said to be finite-time
strongly detectable (SD) if there exist a KL-function β0

and a K-function γ0 such that, for each measurable control
u(t) defined on [t0, T 0) with t0 ≤ T 0 ≤ ∞, the solution x(t)
of (19) right maximally defined on [t0, T ′) (t0 ≤ T ′ ≤ T 0)
satisfies
||x(t)|| ≤ β0(||x0||, t− t0) + γ0( sup

t0≤τ≤t
||(u(τ)T , y(τ)T )T ||),

for t ∈ [t0, T ′) with β0(||x0||, t − t0) ≡ 0 when t ≥ T for
some T ≤ T ′ depending on x0.

Clearly, finite-time strong detectability implies finite-time
zero-state detectability, which implies the conventional
zero-state detectability.

Then we consider the system (19) with output variable y,
and the following result shows the relationship between
finite-time ISS and finite-time IOS.
Theorem 7. If system (19) is finite-time ISS (FTISS) with
input u, then it is finite-time zero-state detectable and is
finite-time IOS. Conversely, if system (19) is finite-time
IOS and finite-time SD, then it is finite-time ISS.

Proof: Due to ISS of the x-system of system (19), we have
||x(t)|| ≤ β(||x0||, t− t0) + γ(||u||[t0,t])

with β(||x0||, t− t0) = 0, t ≥ T for some T ≥ t0, and then
finite-time SD can be easily obtained.

Indeed, it is not hard to see that there are two K-functions
γx and γu such that

||h(x, u)|| ≤ γx(||x||) + γu(||u||)
by Lemma 3. Therefore, FTIOS follows readily because we
have
||y(t)|| ≤ γx ◦ 2β(||x0||, t− t0) + (γx ◦ 2γ + γu)(||u||[t0,t]).

Conversely, we have two KL-functions β and β0 and two
K-functions γ and γ0 such that, for t ≥ t0 ≥ 0,

||y(t)|| ≤ β(||x(t0)||, t− t0) + γ(||u||[t0,t]), (21)

||x(t)|| ≤ β0(||x(t0)||, t− t0) + γ0(||(u, y)||[t0,t]), (22)
where β(||x(t0)||, t − t0) = 0 for t ≥ T (t0) and
β0(||x(t0)||, t − t0) = 0 for t ≥ T0, with T (t0) and T0(t0)
continuous with respect to x(t0).

By taking t0 = t/2 in (22) and plugging (21) with t0 = 0,
we have

||x(t)|| ≤ β0

(
||x(

t

2
)||, t

2

)
+ γ0(·). (23)

Note that, according to Lemma 3 for any K∞-function ρ
with ρ− Id being K∞-function, we have

γ0(·) := γ0

(
||u||[0,t] + β(||x(0)||, t

2
) + γ(||u||[0,t])

)

≤ γ0(ρ(β(||x(0)||, t

2
)) + γ̄(||u||[0,t])

where γ̄ = γ0
(
ρ ◦ (ρ− Id)−1 ◦ (Id + γ)

)
is a K∞-function.

Moreover,

||x(
t

2
)|| ≤ β0(||x(0)||, t

2
)+γ0(ρ(β(||x(0)||, 0)))+γ̄(||u||[0,t]).

Then, again by Lemma 3 and some manipulations, for all
t ≥ 0, we have

||x(t)|| ≤ β∗(||x(0)||, t) + γ∗(||u||[0,t]) (24)
with some KL-function β∗(||x(0)||, t) and γ∗ = γ̄ + γ̂,
which leads to ISS of system (19). Moreover, β0(||x(0)||, t) =
0 and β(||x(0)||, t) = 0 when t ≥ T0 for some constant T0

due to the finite-time convergence properties of β0 and
β, and then we will see that there is a T 0 such that
β∗(||x(0)||, t) = 0 when t ≥ T 0, which implies FTISS.

The next result is a generalized small-gain theorem for
finite-time ISS systems. Consider nonlinear interconnected
systems in the following form:

ẋ = f(x, yz, u), f(0, 0, 0) = 0, yx = h1((x, yz, u) (25)
ż = g(z, yx, v), g(0, 0, 0) = 0, yz = h2(z, yx, v), (26)

where x ∈ Rnx , z ∈ Rnz , u ∈ Rnu , v ∈ Rnv , yx ∈
Rmx , yz ∈ Rmz , and (yz, yz) = h(x, z, u, v) is the unique
solution of {

y = h1((x, h2(z, yx, v), u),
z = h2(z, h1(x, yz, u), v)

Theorem 8. Suppose systems (25) and (26) are finite-time
IOS with (yz, u) and (yx, v) as input, and yx and yz as
output, respectively, satisfying:




||yx(t)|| ≤ β1(||x0||, t)
+γy

1 ( sup
0≤τ≤t

||yz(τ)||) + γu
1 ( sup

0≤τ≤t
||u(τ)||),

||yz(t)|| ≤ β2(||x0||, t)
+γy

2 ( sup
0≤τ≤t

||yx(τ)||) + γu
2 ( sup

0≤τ≤t
||v(τ)||),

(27)

for suitable functions βi, γ
y
i , γu

i , i = 1, 2. Also suppose
(25) and (26) are finite-time SD. If there are two K∞-
functions ρi, 1, 2 and a nonnegative number cl satisfying

(Id + ρ2) ◦ γy
2 ◦ (Id + ρ1) ◦ γy

1 (s) ≤ s, s ≥ cl, (28)
(or equivalently, (Id+ρ1)◦γy

1 ◦ (Id+ρ2)◦γy
2 (s) ≤ s), then

system (25)-(26) with w = (u, v) as input, y = (yx, yz) as
output, and ξ = (x, z) as state is finite-time IOS.

Proof: IOS can be obtained directly from Theorem 2.1 of
Jiang et al. [1994]. Consider the construction of β̂i based
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on βi (i = 1, 2) in the proof of Theorem 2.1 of Jiang et al.
[1994] and then the finite-time convergence can also be
obtained.
Corollary 9. Suppose the ζ-subsystem of the system{

ξ̇ = q(ξ, v), q(0, 0) = 0
ζ̇ = g(ξ, ζ, v), g(0, 0, 0) = 0.

(29)

is finite-time ISS with (ξ, v) as input and the ξ-subsystem
of system (29) is finite-time ISS with input v. Then system
(29) is finite-time ISS with input v.

The conclusion can be obtained directly from Theorem 8
by taking x = yx = ξ, yz = 0, u = v, and z = ζ.

5. FINITE-TIME ISS-STABILIZABILITY

In this section, we will see how these ISS concepts can
be used in the finite-time control. Note that, for a finite-
time stable system, we are not sure if it admits a smooth
Lyapunov function (in fact, it may not be so in general,
referring to Bhat et al. [2000]). However, most of the
existing results on finite time stabilization exhibit the
existence of smooth Lyapunov function. Thus, when we
study how to apply finite time ISS in control design,
we can consider a Lipschitz continuous (or even smooth)
Lyapunov function.

At first, we introduce Jensen’s inequality:

(
n∑

i=1

xc2
i )1/c2 ≤ (

n∑

i=1

xc1
i )1/c1 , 0 < c1 < c2, (30)

with xi ≥ 0, 1 ≤ i ≤ n.

Next, we give a lemma to generalize the discussions on
finite-time stability and finite-time ISS-Lyapunov func-
tion.
Lemma 10. Consider system (3). Suppose there are an
ISS-Lyapunov function V (z) =

∑n
i=1 Vi(z0

i ) with z0
i =

(0, ..., 0, zi, 0, ..., 0)T , a positive definite function ϕ1, and
a K-function ϕ2 such that

V̇ (z) ≤ −ϕ1(z) + ϕ2(||v||), (31)
where ϕ1(z) ∼ ∑n

i=1 c̄iVi(z0
i )ai , c̄i > 0, and 0 < ai < 1 for

i = 1, ..., n. Then the system is finite-time ISS with v as
the input.

Its proof is omitted for the space limitations.

Then, we consider the system of the form:{
ż = g(x, z), g(0, 0) = 0, f(0, 0) = 0,

ẋ = f(x, z) + v, (v, x, z) ∈ R×R×Rl (32)

where f and g are smooth functions. It is not hard to see
that, for any continuous function µ(z),

|f(x, z)| ≤ f1(h̄) + f2(z), h̄ = x− µ(z) (33)
with continuous functions f1(h̄) = O(f) for fixed z 6= 0
and f2(z) = O(f) for fixed h̄ 6= 0.
Theorem 11. Suppose the z-subsystem of (32) is FTISS
with respect to the input function h(x, z) = |x|psgn(x) −
|µ(z)|psgn(µ(z)) for some p > 1, where |µ(z)|psgn(µ(z))
is C1 with respect to z and µ(0) = 0. Moreover, the z-
subsystem admits a Lipschitz continuous Lyapunov func-
tion Vz and there is a constant q > p such that

V̇z(z) ≤ −γ1(Vz(z)) + γ2(|h(x, z)|), γ2(|h|) = O(|h|1+ 1
q ),
(34)

where γi (i = 1, 2) are K-functions with γ1(Vz) ∼ V a
z (as

z → 0) for some constant 0 < a < 1,

|f(x, z)| ≤ f̂(h) + f̄(z),

f̂(h) = O(|h| 1p ), f̄(z) = O(γ1(Vz(z))
1

1+q ), (35)
and ∣∣∣∣

∂|µ(z)|psgn(µ(z))
∂z

g(x, z)
∣∣∣∣ ≤ ĝ1(h) + ĝ2(z), (36)

with nonnegative functions ĝ1(h) = O(|h|) and ĝ2(z) =
O(γ1(Vz(z))

p
1+p ). Then there is a continuous feedback

µ∗(h) with µ∗(0) = 0 and |µ∗|qsgn(µ∗) of class C1 such
that system (32) is FTISS with w as the input by taking

v = µ∗(h) + w.

Remark 1. It is worth noting that the z-subsystem is
not assumed to be FTISS with respect to x, but with
respect to the (virtual) input h(x, z) = |x|p sgn(x) −
|µ(z)|p sgn(µ(z)) for p > 1. This represents one of the
main differences between C1 stabilizing control and non-
smooth finite time stabilizing control. Clearly, when p ≥ 1,
|x|p sgn(x) is differentiable. Also it is not hard to show that
|x−µ(z)| ≤ 2|h(x, z)| 1p and |h(x, z)| ≤ 2p|x−µ(z)|p. With
these inequalities, the system ż = g(x, z) is FTISS with
h̄ = x− µ(z) as the input if and only if it is FTISS when
h is considered as the input. Additionally, if a system is
FTISS with h as the input, then it is also FTISS with the
input |h|s for any constant s > 0.

Proof of Theorem 11: From (34), ż = g(µ(z), z) is finite-
time stable (since h = 0).

Consider the following positive-definite Lyapunov function
V (x, z) = V∗(z) + W∗(x, z), (37)

with

V∗ =
∫ Vz(z)

0

ρ̄(s)ds, W∗ =
∫ x

µ(z)

h(s, z) ds

where ρ̄ : R+ → R+ is an increasing and positive
continuous function to be determined later. Note that
|µ|sgn(µ) = µ and |µ|psgn(µ) · µ = |µ|p+1, and then

W∗(x, z) =
|x|p+1 + p|µ(z)|p+1

p + 1
− x|µ(z)|psgn(µ(z)),

is positive for h 6= 0 and it is C1 with respect to z because
|µ|psgn(µ) is C1 given in the conditions. Then

V̇ (x, z) ≤ −ρ̄(Vz)γ1(Vz) + ρ̄(Vz)γ2(|h|) + Ẇ∗,
where

Ẇ∗ == h[f(x, z) + u]− h̄
∂|µ|p sgn(µ)

∂z
g(x, z),

with h̄ = x− µ(z). From Remark 1, |h̄| ≤ 2h1/p.

According to (35), q > p, Remark 1, and Young’s inequal-
ity,

hf(x, z) ≤ |h|[f̂(h) + f̄(z)] ≤ |h|1+ 1
q f̄1(h) + αf (z), (38)

for nonnegative continuous functions f̄1 and αf (z) =
O(γ1(Vz(z))).

Moreover, by (36) and Remark 1, along with Lemma 4 and
(30), we obtain

(x− µ)
∂|µ|psgn(µ)

∂z
g(x, z) ≤ |h|1+ 1

q ḡ2(h) + αg(z)
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with suitable nonnegative functions ḡ2(h) and αg(z) =
O(γ1(Vz(z))).

Select a function ρ̄ such that ρ̄(Vz(z))γ1(Vz(z)) > 2(αf +
αg)(z) noting that (αf + αg)(z) = O(γ1(Vz(z))).

Moreover, by Young’s inequality and (34), we have

ρ̄(Vz)γ2(|h|) ≤ 1
4
ρ̄(Vz)γ1(Vz) + |h|1+ 1

q ḡ1(h).

Take the control law:
µ∗(h) = −|h| 1q sgn(h)Φ(h), (39)

where Φ is C1 and dominates 1+ ḡ1(h)+ ḡ2(h)+ f̄1(h), or
equivalently,

hµ∗(h) + |h|1+ 1
q [f̄1(h) +

2∑

i=1

ḡi(h)] ≤ −|h|1+ 1
q .

Therefore, according to Young’s inequality, we have:

V̇ (x, z) ≤ −1
4
ρ̄(Vz)γ1(Vz(z))− |h|1+ 1

q + |w|1+q,

and it is easy to see that |µ∗(h)|qsgn(µ∗(h)) is C1.

Since ρ̄(0) > 0 and q > p,
ρ̄(Vz)γ1(Vz(z)) ∼ Vz(z)a ∼ V∗(z)a, as z → 0,

and |h|1+1/p ∼ W∗, or equivalently

|h|1+ 1
q ∼ W a0∗ , a0 =

p(1 + q)
q(1 + p)

< 1, as h → 0.

Then, by Lemma 10, the conclusion follows.

For illustration, we can revisit a system that was studied
in Hong et al. [2006] from the FTISS viewpoint:

{
ẋi = xi+1 + fi(x1, ..., xi), 1 ≤ i ≤ n− 1
ẋn = u + fn(x1, ..., xn)

(40)

where u ∈ R is the control input; x := (x1, . . . , xn)T ∈ Rn

is the state; and fi is C1 with respect to (x1, ..., xi) with
fi(0, . . . , 0) = 0 (i = 1, ..., n).

Then we give a recursive procedure to design finite-
time stabilizing controller by applying Theorem 11 and
Corollary 9 repeatedly. For space limitations, the details
are omitted here (referring to Hong et al. [2006]).

6. CONCLUSIONS

In this paper, the finite-time ISS for nonlinear systems was
investigated and the relationship between FTISS and other
basic finite-time concepts are revealed. Moreover, under
assumptions related to FTISS, finite-time feedback design
was given. In fact, the systematic application of FTISS
alleviates the mathematical technicality and complexity
associated with non-smooth feedback approaches. We be-
lieve that FTISS will play a role in finite-time control,
as important as what the conventional ISS has played in
asymptotic stability analysis and stabilization control.
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