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Abstract: In this paper we present a multi-loop measurement feedback control scheme to
improve atom laser coherence. The first loop (proposed by Thomsen and Wiseman, 2002) aims
to cancel the decohering effects of the nonlinear atom-atom interactions via direct measurement
feedback. However, there are nonlinear interactions with the optical probe field used in the
measurement scheme which may also contribute to a degradation in atom laser performance.
Accordingly, we introduce a second feedback loop to implement a LQG controller to reduce
these effects. The multi-loop design achieves improved atom laser coherence.

1. INTRODUCTION

Atom lasers are devices that exploit wave properties of
matter to form a beam of atoms that is analogous to
optical lasers in that it is coherent and intense. While
the concept of an atom laser has been experimentally
demonstrated (Hagley et al. (1999), Bloch et al. (1999)),
atoms lasers are still quite a way from being available for
use in applications. Applications for atom lasers include,
for example, precision metrology and atom lithography;
such applications exploit the fact that the de Broglie
wavelength of atoms is much smaller than that of light,
and also that atoms are more sensitive to interactions than
photons.

Atom lasers are produced from Bose-Einstein Condensates
(BEC), which are ensembles of atoms cooled to a very
low temperature (nano Kelvin) and have the characteristic
property that essentially all the atoms are in the ground
state, Metcalf and van der Straten (1999). It is this high
occupation of the ground state that is responsible for the
coherence properties of atom lasers. However, as atoms
are massive objects that interact with one another, the
coherence of the condensate and the resulting atom laser
beam are degraded.

The use of measurement feedback to counteract the de-
cohering effect of the nonlinear atom-atom interactions
was proposed by Thomsen and Wiseman (2002). Their
feedback scheme measured light which had interacted with
the condensate, the results of which were used in a propor-
tional feedback scheme that varied the condense density
by modulating the trap containing the condensate. Ap-
propriate tuning of the feedback gain enables the cancella-
tion of the undesirable nonlinear atom-atom interactions,
and may be considered as a quasi feedback linearization
scheme. However, there are nonlinear interactions with
the optical probe field used in the measurement scheme
which may also contribute to a degradation in atom laser
performance. Accordingly, we introduce a second feedback
loop (used in conjunction with the Thomsen-Wiseman

proportional feedback) to implement a classical LQG con-
troller to reduce these effects. We demonstrate that the
multi-loop design achieves improved atom laser coherence.

The single mode model for an atom laser we use is
described in Section 2. We include in this section the
proportional loop design from Thomsen and Wiseman
(2002). In Section 3, the LQG loop is designed. The
performance of this loop is investigated in Section 4. In
Section 5 we introduce a definition of coherence time and
give an approximation of the this coherence time for the
BEC under the action of the multi-loop control system.

2. MODEL

We consider a single mode model of a BEC represented
by a mode operator a satisfying a bosonic commutation
relation [a, a†] = 1 (here, † denotes adjoint, and the
commutator is defined by [A,B] = AB − BA), as shown
in Fig. 1. The system is coupled to three quantum field
inputs and one classical input. First, an atomic boson
vacuum input b1 with damping rate κ is used to model
the out-coupling responsible for the atom laser beam.
Second, since the number of atoms in the BEC is reduced
after some of them are released as the beam, in order to
maintain the number of atoms in the BEC, it is necessary
to pump it up by adding atoms from external sources.
This is represented by another quantum field input b2 with
pumping rate µ (see the Appendix for further details).
The third input is a quantum optical field represented
by a mode operator b3 and the corresponding output is
measured by a homodyne detection system (HD). The
resulting photocurrent is used in two ways. The first is
to produce a proportional feedback signal u1 with gain k
(as in Thomsen and Wiseman (2002)), while the second
is used for the LQG feedback signal u2 designed in this
paper. The two feedback signals are combined additively
to produce a classical input signal u = u1 + u2.

Before the feedback is applied, the system is described by
a Hamiltonian
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Fig. 1. A schematic representation of the multi-loop atom
laser feedback system. The output corresponding to
the input b1 forms an atom laser beam. The optical
output, which corresponds to the optical input b3, is
detected by a photon detector (HD) which produces
a photocurrent using a standard homodyne scheme.
This current is used for proportional feedback u1 =
kic and LQG feedback control u2.

H0 = k0a
†a†aa + (u1 + u2)a

†a, (1)

and three (respective) field coupling operators

L1 =
√

κ a, (2a)

L2 =
√

µa†, (2b)

L3 =
√

γ a†a. (2c)

The first term in the Hamiltonian H0 represents the atom-
atom interaction and the second one is the classical control
term. The optical output field b3,out is given by

db3,out = L3dt + db3. (3)

The output of homodyne detector (HD in Fig. 1) is the

real quadrature z = b3,out + b†3,out which satisfies

dz = (L3 + L†
3)dt + d(b3 + b†3). (4)

Formally, the photocurrent ic(t) is related to this quadra-
ture by dz(t) = ic(t)dt.

Now consider the system after the proportional feedback
of Thomsen and Wiseman (2002) has been applied, but
before the LQG feedback is implemented; formally, u1(t) =
kic(t). This corresponds to the part above the dashed line
in Fig. 1. This system is described by a Hamiltonian

H = k0a
†a†aa + u2a

†a +
i

2
(L†

3L4 − L†
4L3), (5)

where the third term is an additional Hamiltonian which
results from the proportional feedback , and

L4 = −ika†a.

The three field coupling operators are

L =

[

L1

L2

L3 + L4

]

. (6)

The third operator L3 + L4 is the result of a series
(cascade) connection, Thomsen and Wiseman (2002) (see
also Gough and James (2007)).

For an arbitrary BEC operator X, the infinitesimal time
evolution is given by (Hudson and Parthasarathy (1984),
Gardiner and Zoller (2000))

dX = LXdt + [L†db − db†L, X], (7)

where

LX = L†XL +
(

−1

2
L†L − iH

)†

X (8)

+ X
(

−1

2
L†L − iH

)

and the quantum noise input vector

b =

[

b1

b2

b3

]

. (9)

The atom laser beam is given by

db1,out = L1dt + db1. (10)

It follows from (5), the commutation relation [a, a†] = 1,
and the relation

i

2
(L†

3L4 − L†
4L3) =

√
γ ka†aa†a (11)

=
√

γ k(a†a†aa + a†a) (12)

that the nonlinear atomic interaction term can be can-
celled by the choice of proportional gain k = −k0/

√
γ. We

shall henceforth assume that this choice has been made.
The term

√
γ ka†a corresponds to a shift of the input

u, and will be ignored. Note that even though the main
nonlinear terms has been cancelled, the dynamics (7) is
still nonlinear.

3. LQG LOOP DESIGN

The nonlinearities remaining in the system after the pro-
portional feedback has been implemented may also de-
grade performance of the atom laser. To analyze this
decoherence and design the LQG feedback input for the
reduction of the decoherence, we consider linearization. In
general, the effectiveness of a linear model may only be
limited to a certain period of time, which is determined
by the coupling constant of the optical field in this case.
The purpose of the estimate feedback is then to extend the
effective time of linearization because it is proportional to
the coherence time of the atom laser beam. This can be
thought of as noise reduction. It will be shown that the
noise from the optical field can be effectively reduced by
modifying the conditional evolution with the control input
u2.

The measurement through the optical field is providing
information about the number of the condensate atoms.
As a result, the phase of the BEC mode fluctuates and
phase uncertainty increases while the number observable
is invariant in time. Fortunately, our control input is
given by the rotation operator so that one can expect the
fluctuation in the phase can be reduced by rotation control.

For the mode operator a, (7) and (4) can be written as

da =
(

−κ

2
+

µ

2
− |λ|2

2
+ iu2

)

adt (13a)

−
√

κdb1 +
√

µdb†2 − (λdb†3 − λ∗db3)a,

dz = 2λra
†adt + (db3 + db†3), (13b)
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where we have defined a constant λ as

λ =
√

γ + i
k0√
γ

:= λr + iλi. (14)

Suppose that the BEC mode a is initially in a coherent
state whose center is located at (x0, 0) in the phase space.
Let us define new quadrature operators around the center
as a = (x0+ξ)+iη and assume that x0 ≫ 1, which implies
that the number of the trapped atoms is sufficiently large.
In this approximation, each quadrature and the output
process can be expressed as

dξ = Bu2dt + Gdw, (15a)

dz = Cξdt + Ddw. (15b)

Here we have introduced

B =

[

0
x0

]

, G = x0

[

0 0
−λi λr

]

, (16a)

C = [ λrx0 0 ] , D = [ 1 0 ] , (16b)

and

ξ =

[

ξ
η

]

, w =

[

w
v

]

, (17)

where w, v are independent classical Brownian noise pro-
cesses (that need not commute).

The classical LQG loop is designed to minimize the de-
viation of the quadratures from the center of the initial
coherent state (x0, 0). We use an infinite horizon LQG cost
with integrand

ξT Qξ + ru2
2. (18)

The first term represents the weighted deviation of the
quadratures, which is what we really want to minimize.
The second term is a penalty on the control energy.

Note that ξ of the system (15) is not controllable. In fact, ξ
need not be controlled for the atom laser beam coherence.
It will be shown that the quadratic cost of ξ is invariant
under measurement and control. Hence, the cost matrix Q
should be of the form

Q =

[

0 0
0 q

]

, (19)

where q > 0.

A solution of this optimal control problem, or an optimal
input u2, is given by the conditional process of the system
(15), i.e., the cost functional is minimized by rotating the
BEC state corresponding to measurement outcomes. The

conditional expectation ξ̆(t) of ξ(t) given the measurement
data z(s), 0 ≤ s ≤ t is given by

dξ̆ = Bu2dt + (PC† + GD†)dw̆, (20a)

Ṗ = GG† − (PC† + GD†)(PC† + GD†)†, (20b)

where P := E[(ξ − ξ̆)(ξ − ξ̆)T |z] is the conditional covari-
ance matrix of the error and w̆ is the innovation process.
Note that although we want to control or minimize the cost
for η, the output z does not include information about η.
Thus, the estimation error of η under this measurement
monotonically increases. This is actually a reason that the
control of atom laser coherence is difficult.

If the pumping coefficient is accurately tuned to compen-
sate for the decrease in the number of atoms, then by

standard LQG methods the optimal control input is given
by

u2 = −
√

q

r
η̆, (21)

where η̆ is the conditional expectation of η. This is a
reasonable form even though the system is singular, be-
cause the feedback gain is proportional to the weight q
and inversely proportional to r.

4. PERFORMANCE OF THE LQG LOOP

If the weight r is small, a feedback gain of (21) becomes
high. This is quite natural because high gain control is
generally useful for stabilization. To see the effect of this
feedback, let us consider the mean square costs of ξ and
η, respectively.

By definition, the variance of the quadratures is decom-
posed into the variance of the conditional expectations and
the mean square error as

E[‖ξ‖2] = E[‖〈ξ〉‖2 + ‖ξ − 〈ξ〉‖2], (22)

To see the effect of feedback on the quantity (22), let us
first calculate each element of P . For the system with the
accurately-tuned pumping, they are given by

Ṗ11 =−x2
0λ

2
rP

2
11, (23a)

Ṗ12 = x2
0(λrλiP11 − λ2

rP11P12), (23b)

Ṗ22 = x2
0(λ

2
r + 2λrλiP12 − λ2

rP
2
12). (23c)

From the first equation, the mean square error of ξ is given
by

P11(t) =
P11(0)

x2
0λ

2
rP11(0)t + 1

. (24)

On the other hand, the conditional expectation of ξ is
given by

d〈ξ〉 = x0λrP11dw̆, (25)

and therefore

〈ξ(t)〉2 = P11(0) − P11(t). (26)

From these, the variance of ξ, or the mean square error
from the center of the initial coherent state x0, is given by

E[ξ(t)2] = P11(0), (27)

which is invariant. This implies that the coherence of the
BEC in ξ direction is preserved in time.

The other quadrature η fluctuates due to the interaction
with the optical field and needs to be controlled. Since the
covariance matrix P is independent of the input u, the
second term of (22) cannot be changed and the feedback
control is designed to reduce the first term. The conditional
expectation η is given by

d〈η〉 = −x0

√

q

r
〈η〉dt + x0λr

(

P12 −
λi

λr

)

dw̆, (28)

and the initial condition is the center of the initial state,
i.e., 〈η(0)〉 = 0. It is easy to see

〈η(t)〉2 =

∫ t

0

e−2x0

√
q

r
(t−s)

[

x0λr

(

P12(s)−
λi

λr

)]2

ds, (29)

where

P12(t) =
λi

λr

(

1 − 1

1 + (λrx0)2P11(0)t

)

. (30)
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Note that P12(t) > 0 for t > 0. On the other hand, P22

can be represented as

Ṗ22(t) = x2
0

[

|λ|2 − λ2
r

(

P12 −
λi

λr

)2]

(31)

When the feedback control is applied, the variance of η
from the center of the initial state is given by

E[η(t)2] = P22(0) + x2
0|λ|2t (32)

+

∫ t

0

ds
[

e−2x0

√
q

r
(t−s) − 1

]

×
[

x0λr

(

P12(s) −
λi

λr

)]2

.

If the gain of the feedback is sufficiently large, the fluctu-
ation in the conditional expectation of η can be reduced
and the variance is approximately represented as

E[η(t)2] ∼ P22(0) + x2
0|λ|2t −

λiP12(t)

λrP11(0)
. (33)

On the other hand, if u = 0, it is given by

E[η(t)2] = P22(0) + x2
0|λ|2t. (34)

Thus, the variance is reduced by the amount of

λiP12(t)

λrP11(0)
> 0 (35)

subject to high gain feedback control. Note that this
quantity is sensitive to the coupling constant with the
optical field γ. If γ is small, so is the fluctuation in the BEC
state and it is easy to reduce the variance by feedback.
If γ is large, the fluctuation from the optical field is very
strong and the control input u can hardly reduce the noise.
In this sense, the coupling constant γ can be thought of
as a parameter representing the degree of controllability
in the BEC system. A numerical example of the variances
is given in Fig. 2.

5. COHERENCE TIME

The analysis of the feedback effect in the previous section is
based on the linear model. If the control input u2 efficiently
reduces the fluctuation of the optical field, the BEC state
can keeps its initial coherence for a longer time and the
linear model is more effective to describe the system. Thus,
the coherence time of the atom laser beams is represented
by the effective time of the linear model.

In the linear model, the variance of ξ is invariant under
measurement and feedback whereas that of η monoton-
ically increases. So the coherence of the BEC state is
destroyed as the initial coherent state is stretched out
along the line ξ = 0 in time. In the full model (7) with
accurately-tuned pumping, since the nonlinear interaction
is represented by the number operator, the number of
atoms is preserved and the phase uncertainty increases
along the curve (x0 + ξ)2 + η2 = x2

0 on the phase space.
And the stationary solution of (7) is a mixture of number
states with the mean number x2

0 and the variance P11(0).
Thus, the coherent time, or the effective time of the linear
model, can be measured by the magnitude of the variance
E[η2].

The coherence time is usually related to the normalized
first-order coherent function. If the phase distribution is
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Fig. 2. Numerical results for the linear model with x0 = 10,
k0 = 1 and γ = 0.3. (a) The variance of ξ of the BEC
state under the two feedback controls. As expected
from the linear model (15), the variance is invariant
in time. (b) The variance of η of the same state for
u2n = 0. The variance increases linearly in time. Note
that the proportional feedback is applied, i.e., u1 6= 0.
(c) The variance of η when an optimal control (21)
is applied. This feedback suppresses fluctuation noise
and keeps the initial coherence for a longer time.

characterized by the variance ∆φ2, the first-order coher-
ence function can be approximately written as

g(1)(t) = e−∆φ2(t), (36)

and then, the coherence time T is given by

τ =

∫ ∞

0

e−∆φ2(t)dt. (37)

In the linear model, one can give another interpretation to
the definition of the coherence time. Let us first consider
the case of u = 0. The phase distribution can be related
to the variance of the quadrature as

(x0∆φ(τ))2 = E[η(t)2]. (38)

From (34), we have

∆φ(t)2 =
P22(0)

x2
0

+ |λ|2t. (39)

Thus, (37) yields

τ = e
−

P22(0)

x2
0

1

|λ|2 ∼
(

1 − P22(0)

x2
0

) 1

|λ|2 . (40)

On the other hand, E[η2] = x2
0 is satisfied if

t =
(

1 − P22(0)

x2
0

) 1

|λ|2 . (41)

Thus, the coherence time T is approximately described by
a time when the BEC state spreads to order x2

0.

This consideration allows us to introduce the coherence
time in a different way. We first notice that the equal-
ity E[η2] = x2

0 would overestimate the coherence time.
Secondly, the coherence time should be dependent on the
mean number x0 because the influence of the decoherence
from the optical field is inversely proportional to the mean
number. Thus, it is reasonable to think that the linear
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model is effective until when E[η2] is approximately less
than x0, i.e., here we define the coherent time τ of the
atom laser beam as

E[η(τ)2] = x0. (42)

If u2 = 0 (no LQG loop, proportional loop only), (34) is
used to yield

τ0 =
(

1 − 1

x0

) 1

x0|λ|2
, (43)

where we have assumed that the system is initially pre-
pared in a coherent state so that P11(0) = P22(0) = 1.
If high gain feedback control is applied (both LQG and
proportional loops), one may use (33) to obtain

τf ∼ 1

x0|λ|2
[

1 +

√

1 +
4

x0

{

1 +
( λi

λr

)2}]

(44)

Note that the coherence time is also sensitive to the
coupling constant with the optical field γ. In particular,
the difference of the coherence time between (43) and (44)
is determined by

λi

λr
=

k0

γ
. (45)

If γ is small, the coherence time is improved better.

This is a natural consequence from a physical point of
view. The decoherence of the BEC state is mainly caused
by the interaction with the optical field. As stated earlier, if
the interaction between the BEC and optical field is weak,
the coherence of the BEC state is not seriously destroyed
by the interaction so that it is easy to recover the coherence
and the atom laser beam can hold its initial coherence for a
sufficiently long time. Figure 3 illustrates the dependance
of the coherence times on the coupling strength γ.

It is also worth noting that the coherence time is propor-
tional to

1

|λ|2 =
γ

γ2 + k2
0

. (46)

This factor indicates that there is an optimal γ to maxi-
mize the coherence time, as shown in Fig. 3. The optimal
coupling constant is approximately given as γ ∼ k0.

6. CONCLUSION

This paper addresses the possibility of feedback control
for stabilizing quantum systems with nonlinear dynamics
by designing a multi-loop feedback strategy to keep the
system in the linear domain as long as possible. The two
feedback loops work in different ways. The proportional
loop is designed to cancel the nonlinear terms in the
Hamiltonian which represent the atom-atom interactions
in the atom laser, and the LQG loop is designed to reduce
the fluctuation noise from the optical field. To apply
the first loop, the interaction with the optical field is
necessary to extract information from the system for the
purpose of eliminating the nonlinear effect of the atom-
atom interactions via feedback. However, this interaction
induces another nonlinearity into the system. The second
loop is then necessary to reduce the fluctuations from the
optical field. Combining these two loops, the performance
of the atom laser is improved and the system holds its
coherent properties longer than if only the proportional
loop was used.
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Fig. 3. Coherence time τf (solid line) and τ0 (dashed line)
as a function of γ.

Appendix A. PUMPING

The atom laser beam is formed when the condensate atoms
lead out from the trapped BEC. As a result, the number
of atoms in the system is reduced, which is represented by
the decay of the BEC mode a due to the linear coupling
to the input b1. The pumping input b2 is then introduced
to compensate for the decrease in the number of atoms.

It can be experimentally realized by evaporative cooling of
the uncondensed atoms and mathematically modeled by
the coupling to the excited states of a trapped field. After
physically relevant approximations, the pumping effect is
expressed as [Thomsen and Wiseman (2002)]

µ0A
−1[a†]D[a†]X, (A.1)

where, for arbitrary operators X and L,

A[L]X :=
1

2
(L†LX + XL†L), (A.2a)

D[L]X := L†XL − A[L]X. (A.2b)

Let us further simplify the pumping to obtain the model
used in this paper. Recall that the quadrature operators
are approximately order of ‖ξ‖2, ‖η‖2 . x0. In this approx-
imation, for example, we can express as aa† ∼ x2

0 + 2x0ξ.

Let us set A[a†]−1Z := Y for some operator Z. By
definition, this can be rewritten as

Z − 1

2
aa†Y − 1

2
Y aa† = 0. (A.3)

Note that this is an algebraic Lyapunov equation in the
infinite dimensional space. Since the number of atoms
is always positive, −aa† can be thought of as a stable
operator in the sense that −〈φ|aa†|φ〉 < 0 for any φ. As a
result, the equation above has a solution of the form

Y =

∫ ∞

0

e−aa†t/2Ze−aa†t/2dt. (A.4)

For an eigenstate of the quadrature operator ξ, ξ|ξ̃〉 = ξ̃|ξ̃〉,
the matrix element of 〈ξ̃′|Y |ξ̃〉 is given by
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〈ξ̃′|Y |ξ̃〉=
1

x2
0 + x0(ξ̃ + ξ̃′)

〈ξ̃′|Z|ξ̃〉 (A.5)

∼ 〈ξ̃′| 1

x2
0

(

Z − ξZ + Zξ

x0

)

|ξ̃〉. (A.6)

Consequently, the solution can be approximated as

Y ∼ 1

x2
0

(

Z − ξZ + Zξ

x0

)

. (A.7)

In the lowest order approximation, the pumping effect can
be expressed as

µ0A[a†]−1
D[a†]X ∼ µD[a†]X, (A.8)

where we have defined as µ = µ0/x2
0. This expression of the

pumping is equivalent to the coupling operator L2 defined
in (2).
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