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Abstract: This paper addresses the problem of optimal control system design for networked
control systems. We focus on a situation where the plant is single-input single-output and the
communication link between the controller and the plant is signal-to-noise ratio constrained.
In this setting, we characterize the controllers that minimize the tracking error variance, while
respecting the channel signal-to-noise ratio constraint. We also provide a description of the
optimal tradeoff curve in the performance versus signal-to-noise ratio plane and, as a byproduct,
we establish easily computable bounds on the achievable performance. We illustrate our results
with a numerical example based on a bit rate limited channel.
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1. INTRODUCTION

In networked control systems (NCS’s) loops are closed
over communication channels that cannot be regarded as
transparent. These systems have received much attention
over the last years, as witnessed by the special issue
edited by Antsaklis and Baillieul (2007), the handbook
by Hristu-Varsakelis and Levine (Eds.) (2005), and the
many references therein. Typical channel artifacts include
bit rate limits, random data dropouts and random delays
(see, e.g., the survey paper by Hespanha et al. (2007)). In
some cases, the impact of these characteristics is so severe,
that the communication channels become bottlenecks on
the achievable performance. In these cases, sensible NCS
designs should take the channel characteristics explicitly
into account.

Many interesting networked design techniques have been
reported in the literature for channels with random de-
lays (e.g., Nilsson (1998); Hespanha et al. (2007)), data
dropouts (e.g., Ling and Lemmon (2004); Schenato et al.
(2007); Seiler and Sengupta (2005); Něsić and Teel (2004))
and quantization (e.g., Nair et al. (2007); Xiao et al.
(2003); Fu and Xie (2005)). In the latter case, most results
focus on quantifying the minimal data rates that allow
one to stabilize a given plant (see Nair and Evans (2004);
Tatikonda and Mitter (2004)) or to achieve a certain level
of performance (Savkin (2006)). In relation to the last
body of work referred to above, an interesting alterna-
tive viewpoint has been proposed by Braslavsky et al.
(2007). That work uses a power constrained additive noise
channel model and derives explicit expressions for the
minimal signal-to-noise ratio that allows one to stabilize
a single-input single-output (SISO) linear system. Using
elementary information theory concepts, this result can
be interpreted in terms of minimal rates for stabilization,
recovering (in some cases) the results in Nair and Evans
(2004).

In the present work, we also use an additive noise channel
model for the link between the controller and the plant.
However, unlike Braslavsky et al. (2007), we consider a
signal-to-noise ratio constraint and adopt a more perfor-
mance oriented viewpoint. We characterize (in terms of
a single scalar parameter) the controller that minimizes
the tracking error variance, while respecting the channel
signal-to-noise ratio constraint. As a byproduct, we also
establish easily computable bounds on the achievable per-
formance and provide a characterization of the optimal
tradeoff curve in the performance versus signal-to-noise
ratio plane. The present work complements our recent
contributions documented in Silva et al. (2007a); Goodwin
et al. (2008); Silva et al. (2007b), where coding system
design for NCS’s has been explored.

The remainder of this paper is organized as follows:
Section 2 introduces the notation used throughout the
paper and recalls some basic results. Section 3 describes
the NCS architecture of interest here. Section 4 presents
analysis guidelines, while Section 5 studies performance
limits. Section 6 derives the main results of this paper.
We illustrate our findings with an example in Section 7.
Concluding remarks and directions for future work are
given in Section 8.

2. NOTATION AND PRELIMINARIES

We use standard vector space notation for signals, i.e., x
denotes {x(k)}k∈N0

. We also use z as both the argument of
the z-transform and as the forward shift operator, where
the meaning is clear from the context.

The set of all real rational SISO transfer functions is
denoted by R. We also define the sets U∞ ⊂ RH∞ ⊂
Rp ⊂ R, whose distinctive features are as follows: Rp

contains proper transfer functions, RH∞ contains stable
and proper transfer functions, and U∞ contains transfer
functions in RH∞ that have inverses in RH∞. Every
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A(z) ∈ R having no poles on the unit circle belongs to
L2. If this is the case, then we define the 2−norm of A(z)
via

||A(z)||22 ,
1

2π

∫ π

−π

∣

∣A(ejω)
∣

∣

2
dω,

where |·| denotes magnitude.

For a standard 1-degree of freedom (dof) control loop (i.e.,
the loop in Fig. 1 with no channel), having SISO plant G(z)
and SISO controller C(z), we define the following closed
loop transfer functions:

S(z) , (1 + G(z)C(z))−1, T (z) , 1 − S(z),

Si(z) , G(z)S(z), Su(z) , C(z)S(z) = G(z)−1T (z).

The well known Youla parameterization states that every
1-dof admissible controller 1 for G(z) ∈ Rp can be written
as (see, e.g., Francis (1987))

C(z) = (X(z) + M(z)Q(z)) (Y (z) − N(z)Q(z))−1 , (1)

where M(z), N(z) ∈ RH∞ are coprime and G(z) =
N(z)M(z)−1, X(z), Y (z) ∈ RH∞ are such that N(z)X(z)+
M(z)Y (z) = 1, and Q(z) ∈ RH∞ is a free parameter (the
Youla parameter). With this parameterization for C(z),
every closed loop transfer function defined above can be
written as an affine function of Q(z).

3. NCS ARCHITECTURE

In this paper we consider the NCS architecture depicted in
Fig. 1. In that figure, G(z) ∈ Rp is the plant model, C(z) ∈
Rp is the controller transfer function, r is a wide sense
stationary process that models the reference, 2 and y is the
plant output. Without loss of generality, we will restrict
attention to reference sequences having power spectral
density functions that admit spectral factors Ωr(z) ∈ U∞.

In contrast to standard (i.e., non networked) control sys-
tems, the communication link between the controller and
the plant in Fig. 1 is not transparent: it comprises a non
ideal channel. We will focus on an additive noise channel,
i.e., we will model the relationship between the channel
output w and the channel input v via

w = v + n,

where n is the channel noise. The noise sequence n is
assumed to be a zero mean white noise sequence, uncor-
related with the reference r, having variance 0 < σ2

n < ∞
and power spectral density

Φn(ejω) = σ2
n , ∀ω ∈ [−π, π].

A key feature of our model is that the channel has a
fixed and given signal-to-noise ratio. This means that σ2

n

is proportional to the variance of the input of the channel
(i.e., proportional to σ2

v ) and is not a given constant. We
define the channel signal-to-noise ratio as γ:

γ ,
σ2
v

σ2
n

∈ R
+
0 . (2)

The model described above has been widely used in
the signal processing literature to model bit rate limited
1 i.e., a proper stabilizing controller that defines a well possed 1-
dof control loop (Zhou et al. (1996)). By extension, a closed loop
transfer function is said admissible if and only if it is associated with
an admissible controller.
2 In our framework, the consideration of plant disturbances and
measurement noise presents no additional technical difficulties.
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Fig. 1. Considered networked architecture.

channels (see, e.g., Jayant and Noll (1984); Schreier and
Temes (2004)). It has also found application in the study
of NCS architectures, as described in Xiao et al. (2003);
Goodwin et al. (2008). A simplified version of this model,
that assumes given noise statistics, has been employed by
Braslavsky et al. (2007).

The channel description and signal assumptions made
above will be used implicitly in the remainder of this
paper.

4. ANALYSIS

In this section we provide analysis guidelines for the NCS
described in Section 3.

From Fig. 1 it follows that the tracking error, e, defined as

e , r − y,

satisfies (recall the definitions in Section 2)

e = S(z)r − Si(z)n. (3)

We are interested in NCS performance and, thus, we will
focus on the variance of e, namely σ2

e . From (3) it follows
that

σ2
e = ||S(z)Ωr(z)||22 + σ2

n ||Si(z)||22 . (4)

In view of (2), σ2
n is not an independent constant. It

depends on v and this signal, in turn, depends on the
reference sequence and the channel noise. Indeed, it is easy
to see from Fig. 1 that

σ2
v = ||Su(z)Ωr(z)||22 + σ2

n ||T (z)||22 . (5)

We note that (5) establishes a relationship between σ2
v and

σ2
n that arises from the system architecture. Indeed, from

(5) we have that the signal-to-noise ratio imposed by the
system architecture is given by

σ2
v

σ2
n

=
1

σ2
n

||Su(z)Ωr(z)||22 + ||T (z)||22 . (6)

This relationship may not be consistent with (2), a rela-
tionship imposed by the channel. Indeed, one can prove
the following (see also Braslavsky et al. (2007)):

Lemma 1. (Bound on γ). Consider the NCS in Fig. 1 with
the reference and channel models described in Section 3.
Then, (6) can be made consistent with (2) if and only if

||T (z)||22 < γ. (7)

Proof. Immediate from (6). �

Motivated by Lemma 1, we can use the Youla parameter-
ization to define

γinf , min
Q(z)∈RH∞

||T (z)||22 . (8)

It thus becomes clear that γinf is the largest lower bound
on the channel signal-to-noise ratio that allows one to
stabilize the NCS in Fig. 1 (within the model of Section
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3). Explicit analytic expressions for γinf are presented in
Braslavsky et al. (2007).

The following immediate corollary to Lemma 1 is also
informative:

Corollary 2. (Behavior as γ → γinf). Consider the condi-
tions of Lemma 1 and assume that (7) holds. Then:

(1) If G(z) is stable, then γinf = 0 and

lim
γ→γinf

σ2
e = ∞,

unless the plant is left in open loop (i.e., unless

Su(z) = 0). In that case, σ2
e = ||Ωr(z)||22 for all γ.

(2) If G(z) is unstable, then γinf > 0 and

lim
γ→γinf

σ2
e = ∞

for every admissible controller.

Proof. Since (7) holds, we have from (2), (4) and (6) that

σ2
e = ||S(z)Ωr(z)||22 +

||Su(z)Ωr(z)||22 ||Si(z)||22
γ − ||T (z)||22

≥ ||S(z)Ωr(z)||22 +
||Su(z)Ωr(z)||22 ||Si(z)||22

γ − γinf
.

The result follows upon noting that for stable plants
T (z) = 0 ( ⇔ Su(z) = 0) is admissible, and that for
unstable plants T (z) must be non zero. �

Remark 3. If C(z) were fixed (and non-zero for stable

plants), then σ2
e → ∞ for every γ → ||T (z)||22. In our

setting, however, we can choose the controller C(z) so as

to avoid ||T (z)||22 being close to γ. The only case where
this is not possible is when γ → γinf . �

Corollary 2 shows that if γ → γinf , then both the stability
and performance of the NCS under study will be heavily
compromised (see also Baillieul (2002)). This motivates
the question of what is the best achievable performance,
as measured by σ2

e , for any γ > γinf , and how to design
a controller that achieves that performance. To give an
answer to this question, we start studying in Section 5
performance limits for the considered networked control
system setup. These results are then exploited in Section
6 to give an answer to the question raised above.

5. PERFORMANCE LIMITS

This section explores performance limits for the considered
NCS setup. To that end, we will assume throughout this
section that σn is a given positive number. This will allow
us to elucidate optimal trade off curves in the performance
versus signal-to-noise ratio plane (see, e.g., Section 4.7 in
Boyd and Vandenberghe (2004)). As a byproduct, we will
also obtain bounds on the achievable performance for the
NCS under study.

We use the Youla parameterization (see Section 2) to
define

Jσn
(Q(z)) , ||S(z)Ωr(z)||22 + σ2

n ||Si(z)||22 , (9)

Rσn
(Q(z)) , σ−2

n ||Su(z)Ωr(z)||22 + ||T (z)||22 . (10)

Jσn
(Q(z)) is the tracking error variance, as a function of

Q(z) ∈ RH∞, when the noise channel variance equals
σ2
n ; Rσn

(Q(z)) is the corresponding channel signal-to-noise
ratio.

The set of all achievable pairs (Jσn
, Rσn

) is given by

Fσn
,

{

(αe, αγ) ∈ R
2 : Jσn

(Q(z)) ≤ αe and

Rσn
(Q(z)) ≤ αγ for some Q(z) ∈ RH∞} .

We note that, given the fact that we consider σn > 0, the
constraint (7) is implicit in the definition of Fσn

.

It is clear that Jσn
and Rσn

are competing objectives, i.e.,
one cannot simultaneously minimize both Jσn

and Rσn
. As

a consequence, the set Fσn
has no optimal point, i.e., there

exist no (αe, αγ) ∈ Fσn
such that αe ≤ Jσn

(Q(z)) and,
simultaneously, αγ ≤ Rσn

(Q(z)) for every Q(z) ∈ RH∞.
Nevertheless, we can consider the set Pσn

⊂ Fσn
containing

the points in the (Jσn
, Rσn

) plane that provide the best
tradeoff in the following sense: (θe, θγ) ∈ Pσn

if and only
if, for every (αe, αγ) ∈ Fσn

, αe ≤ θe and αγ ≤ θγ implies
αe = θe and αγ = θγ . Roughly speaking, Pσn

contains the
points in Fσn

that cannot be improved in both components
simultaneously.

Paraphrasing Boyd and Vandenberghe (2004), we conclude
that if one is interested in good solutions, then one should
focus on Pσn

. Indeed, there exist Youla parameters that
achieve less tracking error variance at the expense of a
smaller signal-to-noise ratio for every point in Fσn

that
does not belong to Pσn

. The set Pσn
cointains the so-called

Pareto optimal points for the problem of simultaneously
minimizing Jσn

and Rσn
. In our case, Pσn

defines a curve
in R

2, the optimal tradeoff curve. The next lemma char-
acterizes Pσn

.

Lemma 4. (Characterization of Pσn
). Consider ǫ ∈ R and

define

Lσn,ǫ(Q(z)) , ǫJσn
(Q(z)) + (1 − ǫ)Rσn

(Q(z)), (11)

Qσn,ǫ(z) , arg min
Q(z)∈RH∞

Lσn,ǫ(Q(z)). (12)

The following holds:

(1) (Jσn
(Qσn,ǫ(z)), Rσn

(Qσn,ǫ(z))) ∈ Pσn
if and only if

ǫ ∈ [0, 1].
(2) For every σn > 0,

min
Q(z)∈RH∞

(Jσn(Q(z)),Rσn(Q(z)))∈Fσn

Jσn
(Q(z)) = Jσn

(Qσn,1(z))

Proof.

(1) A standard result (see, e.g., Boyd and Vandenberghe
(2004)) states that, if λ1, λ2 > 0, then Qp(z), defined
by

Qp(z) , arg min
Q(z)∈RH∞

λ1Jσn
(Q(z)) + λ2Rσn

(Q(z)),

defines a point in Pσn
, i.e., Qp(z) is such that

(Jσn
(Qp(z)), Rσn

(Qp(z))) ∈ Pσn
. Moreover, since

both Jσn
and Rσn

are convex in Q(z), we have that
for every (θe, θγ) ∈ Pσn

, there exist λ1, λ2 ≥ 0, λ1 +
λ2 > 0, such that Qp(z) defines the point (θe, θγ).
It is easy to verify that, in our case, Qp(z) defines
points in Pσn

for λ1 = 0 and for λ2 = 0 (as long as
λ1 + λ2 6= 0). Therefore, Qp(z) defines points in Pσn

for every λ1, λ2 ≥ 0, λ1 + λ2 > 0. To complete the
proof, we define M , λ1 + λ2 (M 6= 0) and note that

Qp(z) = arg min
Q(z)∈RH∞

λ1

M
Jσn

(Q(z)) +
λ2

M
Rσn

(Q(z)).
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The result follows making ǫ , λ1/M (which lies in
[0, 1]) and using the definitions in (11) and (12).

(2) By definition of Qσn,ǫ(z) and Lσn,ǫ we have that

Qσn,1(z) = arg min
Q(z)∈RH∞

Lσn,1(Q(z))

= arg min
Q(z)∈RH∞

Jσn
(Q(z)). (13)

Since minimization of Lσn,ǫ (for ǫ ∈ [0, 1]) restricts
the search to Pσn

(see Part 1 of this Lemma), we
conclude that (13) also holds if we restrict the opti-
mization problem to all (Jσn

(Q(z)), Rσn
(Q(z))) ∈

Pσn
. The result follows upon noting that, by defi-

nition of Pareto optimal points (i.e., those in Pσn
),

Jσn
(Qσn,1(z)) is actually the minimum of Jσn

on Fσn
.

�

With the aid of Lemma 4 we can find, for every σn > 0, an
optimal tradeoff curve in the tracking error variance versus
channel signal-to-noise ratio plane. Each of these curves
can be found by solving a series of convex optimization
problems, namely by finding

arg min
Q(z)∈RH∞

ǫJσn
(Q(z)) + (1 − ǫ)Rσn

(Q(z))

for ǫ ∈ [0, 1].

It is straightforward to use Lemma 4 to derive an upper
bound on the minimal tracking error variance when the
channel has a given (admissible) signal-to-noise ratio γ.
If we denote that minimum variance by [σ2

e ]γopt, then it is
immediate to see that, for every γ > γinf ,

[σ2
e ]γopt ≤ Bu(γ) , Jσ∗

n
(Qσ∗

n ,1(z)),

where σ∗
n is such that Rσ∗

n
(Qσ∗

n ,1(z)) = γ. In the case of
stable plants, we can tighten the bound for small γ. To
that end, we define

Σ1 ,

{

σn > 0 : Jσn
(Qσn,1(z)) > ||Ωr(z)||22

}

,

R1 , max {Rσn
(Qσn,1(z)) : σn ∈ Σ1} .

Then, we can conclude that for stable plant models, and
for every γ ≥ 0,

[σ2
e ]γopt ≤ Bs

u(γ),

where

Bs
u(γ) ,







||Ωr(z)||22 , if γ < R1

Jσ∗

n
(Qσ∗

n ,1(z)) , if γ ≥ R1, where σ∗
n is such

that Rσ∗

n
(Qσ∗

n ,1(z)) = γ.

A trivial lower bound on the best achievable performance
can be obtained by noting that

[σ2
e ]γopt ≥ Bl , min

Q(z)∈RH∞

||S(z)Ωr(z)||22 .

Bl is the minimal achievable tracking error variance when
the channel is transparent, i.e., in the non networked case.

These bounds can be used to initialize numerical algo-
rithms capable of estimating the actual best achievable
performance, as outlined in Section 6.

6. OPTIMAL CONTROLLER DESIGN

In this section we return to the question of our interest.
We give a characterization of the controller that minimizes
σ2
e , while respecting the channel signal-to-noise ratio con-

straint.

If γ > γinf , then Rσn
(Q(z)) = γ defines σ2

n in terms of
Q(z) (recall (10)). In that cases, it makes sense to define

Qγ
opt(z) , arg min

Q(z)∈RH∞

Rσn (Q(z))=γ

σ2
e .

Qγ
opt(z) is the Youla parameter associated with the con-

troller that minimizes the tracking error variance subject
to the fact that the channel has a signal-to-noise ratio
equal to γ. 3 Consistent with the notation introduced in
Section 5, we have that

[

σ2
e

]γ

opt
, min

Q(z)∈RH∞

Rσn(Q(z))=γ

σ2
e

is the associated minimum tracking error variance.

The next theorem, whose proof relies on the results in
Section 5, gives a characterization of Qγ

opt(z):

Theorem 5. (Optimal Youla parameter). Consider γ >
γinf . Define the set

Σ , {σn > 0 : ∃ǫ ∈ [0, 1] such that γ = Rσn
(Qσn,ǫ(z))}

and consider the function f : Σ → [0, 1] implicitly defined
via γ = Rσn

(Qσn,f(σn)(z)). Then,

Qγ
opt(z) = Qσopt,f(σopt)(z),

[

σ2
e

]γ

opt
= Jσopt

(Qγ
opt(z)),

where

σopt , arg min
σn∈Σ

Jσn
(Qσn,f(σn)). (14)

Proof. Consider γ > γinf and fix σn ∈ Σ. In these
conditions, σ2

e depends only on Q(z) and, indeed, equals
Jσn

(see (9)). Accordingly, we can define the auxiliary
problem of finding

Qσn
(z) , arg min

Q(z)∈RH∞

Rσn(Q(z))≤γ

Jσn
(Q(z)). (15)

The well known KKT optimality conditions (see, e.g.,
Luenberger (1969); Boyd and Vandenberghe (2004)) state
that Qσn

(z) must be a stationary point of

L(Q(z)) , λ1Jσn
(Q(z)) + λ2Rσn

(Q(z)),

for some non-negative λ1 and λ2, satisfying λ1 + λ2 > 0
and λ2 (R(Qσn

(z)) − γ) = 0. Proceeding as in the proof
of Lemma 4, Part 1, we conclude that Qσn

(z) must be
a stationary point of Lσn,ǫ for some ǫ ∈ [0, 1]. Moreover,
since Lσn,ǫ is convex in Q(z), it has only one stationary
point at Qσn,ǫ(z) (see (12)). Therefore, Qσn

(z) = Qσn,ǫ(z)
for some ǫ ∈ [0, 1] such that (1 − ǫ) (R(Qσn,ǫ(z)) − γ) = 0.

If ǫ 6= 1, then it is immediate to see that the inequality
constraint in (15) is active at the optimum. Using the
definition of Pareto optimality, one can conclude that this
also holds when ǫ = 1. As a consequence, ǫ = f(σ) (recall
the definition of f). The previous discussion implies that

Qσn
(z) = Qσn,f(σn)(z) = arg min

Q(z)∈R∞

Rσn(Q(z))=γ

Jσn
(Q(z)).

The previous analysis holds for every σn ∈ Σ. It thus
suffices to pick the value of σn that minimizes σ2

e , when
evaluated at Qσn

(z) (or, equivalently, at Qσn,f(σn)(z)). This
is achieved using (14). �

3 The optimal controller can be recovered directly from (1).
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The characterization of Qγ
opt(z) (and the corresponding

minimal tracking error variance) given by Theorem 5,
although analytical, is not explicit. Nevertheless, it can
be used as the basis of very simple numerical algorithms
to approximately find the optimal Youla parameter and
the corresponding minimal cost. Indeed, one can evaluate
Jσn

(Qσn,f(σn)(z)) quite easily: For any σn ∈ Σ, standard
bisection allows one to find ǫ ∈ [0, 1] such f(σn) = ǫ.
Then, minimization of Lσn,f(σn) yields Qσn,f(σn)(z) and
consequently, Jσn

(Qσn,f(σn)(z)). Once one is able to eval-
uate Jσn

(Qσn,f(σn)(z)), it is possible to use elementary
optimization procedures to find σopt (for example, one can
use the so-called golden section optimization procedure;
see, e.g., Press et al. (1988)). Once this is accomplished,
finding Qγ

opt(z) is straightforward.

The only point that needs clarification in the numerical
procedure described above is how to calculate Qσn,f(σn)(z)
or, more generally, Qσn,ǫ(z). This problem can be tackled
using Parseval’s relation to interpret Lσn,ǫ in the time
domain and, in that domain, using standard LQR tools
(this approach is illustrated in (Goodwin et al., 2001,
Section 22.6)). One can also use standard model matching
techniques (see, e.g., Francis (1987)), as described next.
Recall the notation in Section 2 and define

ξN (z) , zr

nc
∏

i=1

1 − zc̄i

z − ci

, ξM (z) ,

np
∏

i=1

1 − zp̄i

z − pi

,

Ñ(z) , ξN (z)N(z), M̃(z) , ξM (z)M(z),

where r is the relative degree of G(z) and {ci}i=1,··· ,nc

(resp. {pi}i=1,··· ,np
) denotes the set of zeros (resp. poles)

of G(z) in |z| > 1.

Theorem 6. (Closed form expression for Qσn,ǫ(z)). Assume
that Ωr(z) ∈ U∞ and that G(z) is free of unstable hidden
modes. Define

P (z) ,









√
ǫ M̃(z)Ñ(z)Ωr(z)

σn

√
ǫ Ñ(z)2

−σ−1
n

√
1 − ǫ M̃(z)2Ωr(z)

−
√

1 − ǫ M̃(z)Ñ(z)









and consider an inner-outer factorization of P (z) given by
P (z) = Pi(z)Po(z), where Pi(z) is inner and Po(z) is outer
(see, e.g., Francis (1987)). Also define

A(z) ,









√
ǫ M̃ξN (z)Y (z)Ωr(z)

σn

√
ǫ Ñ(z)ξN (z)Y (z)

σ−1
n

√
1 − ǫ M̃(z)ξM (z)X(z)Ωr(z)√
1 − ǫ Ñ(z)ξM (z)X(z)









.

Then, for every σn > 0 and every ǫ ∈ (0, 1), 4

Qσn,ǫ(z) = Po(z)−1
(

{[

Pi(z
−1)T A(z)

]

⊥

}
∣

∣

z=0
+

[

Pi(z
−1)T A(z)

]

∞

)

, (16)

where [M(z)]∞ denotes the portion of M(z) in RH∞,

[M(z)]⊥ , M(z) − [M(z)]∞, and {M(z)}|z=0 , M(0).

If, in addition, G(z) has no poles or zeros on the unit circle,
then (16) also holds for ǫ ∈ {0, 1}.

Proof. For brevity, we omit the proof (it proceeds along
the lines of the proofs in, e.g., Chen et al. (2003)). �

4 (·)T denotes transposition.

Remark 7. (The case of ǫ ∈ {0, 1}). If G(z) has poles or
zeros on the unit circle, and σn is such that f(σn) ∈ {0, 1},
then we can still use (16) to calculate Jσn

(

Qσn,f(σn)(z)
)

.
We note, however, that in that case the “min” operator in
the definition of Lσn,ǫ needs to be replaced by an “inf”.
Nevertheless, f(σn) ∈ {0, 1} ⇔ σn ∈ {0,∞} and these
situations arise only in degenerate cases where γ = 0 or
γ → ∞. �

The crucial point in calculating Qσn,ǫ(z) is the inner-outer
factorization of P (z). This can be made with the aid of
the algorithms described in, e.g., Oarǎ (2005) and the
references therein.

7. EXAMPLE

In this section we illustrate the results in this paper with
an example where the communication channel is bit-rate
limited (i.e., not strictly signal-to-noise ratio constrained).
To enforce the bit rate limit, we will use an uniform
quantizer to quantize v prior transmission. As is usual in
the signal processing literature (see, e.g., Jayant and Noll
(1984); Schreier and Temes (2004)), we will assume, for the
purpose of design, that the quantization noise sequence is
zero mean white noise, uncorrelated to the reference. If,
in addition, we assume that overload is rare and that v is
Gaussian, then we can use the model described in Section 3
with a signal-to-noise ratio given by

γ =
3

α2
(2b − 1)2. (17)

In (17), b is the number of bits of the quantizer and α is
the overload factor. We will use α = 4 (see Jayant and
Noll (1984) for further details).

We consider the plant and reference models

G(z) =
0.3

(z − 0.8)
, Ωr(z) =

0.1

(z − 0.9)
,

and take the sampling interval as 1[s]. For this situa-
tion, we use the results in Section 5 to determine upper
and lower bounds on the best achievable performance,
for b ∈ [0, 8]. In a second step, we employ Theorem 5
to establish the actual best achievable performance for
b ∈ {0, 1, · · · , 8}. The results are summarized in Fig. 2,
where “Upper Bound”, “Lower Bound” and “Optimal”
refer to the situations described above. We also included
two additional curves: “MV” refers to the performance
achieved when using the minimum variance controller,
i.e., the controller associated with the lower bound Bl, in
the quantized situation; “Empirical” refers to simulation
results obtained using an actual uniform quantizer. 5 It
is apparent that as b → ∞ (equivalently, as γ → ∞),
the channel becomes transparent, no matter what the con-
troller design is. Nevertheless, for low signal-to-noise ratios
(i.e., small bit rates) improved performance is achieved by
using the optimal controller studied in this paper. Indeed,
for b ∈ {0, 1} the minimum variance controller does not
satisfy (7) and cannot be used in the networked situation.
It is also worth noting that the agreement 6 between sim-
ulation data and our theoretical analysis is remarkable for
5 For every b ∈ {0, · · · , 8}, the results correspond to the average of
200 simulations (with different reference realizations and considering
105 samples).
6 Recall that the bit rate limited channel is not strictly signal-to-
noise ratio constrained.
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Fig. 2. Tracking error variance as a function of the channel
bit rate.

b ≥ 2 (there is a 3.8% mismatch for b = 2 and less than
0.4% mismatch for b ≥ 3). For b = 1, the mismatch is
about 54%. However, the qualitative behavior of the loop
is as predicted by our analysis.

8. CONCLUSION

This paper has studied the optimal design of scalar NCS’s
where the communication channel has a signal-to-noise
ratio constraint. In particular, we have derived a closed
form expression for the optimal controller and have char-
acterized the set of admissible signal-to-noise ratios and
associated performance specifications. An interesting di-
rection for future work would be to combine the results
in this paper with those in Goodwin et al. (2008). This
would provide optimal NCS designs that exploit the possi-
bility of simultaneously synthesizing controllers and coding
systems. Another extension would be the consideration
of unreliable signal-to-noise ratio constrained channels, as
those studied in, e.g., Silva et al. (2007a).
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