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Abstract: Kalman filter based hybrid estimation algorithms have been used in many appli-
cations. However, performance analysis of these algorithms is difficult because many of these
algorithms use a set of Kalman filters that are coupled with each other. We present an algorithm
to compute the means and cross-covariances of the residuals of the set of coupling (or interacting)
Kalman filters. Specifically, we derive the cross-covariances, each of which is the covariance of
the residuals of two interacting Kalman filters, to account for the mutual interactions between
the Kalman filters. From the means and cross-covariances of the Kalman filter residuals, we
then compute the means of the likelihood functions and the mean-squared estimation errors as
performance measures of hybrid estimation algorithms. We consider the Interacting Multiple
Model algorithm as an example in this paper. In general, the proposed algorithm could be
applicable to various Kalman filter based hybrid estimation algorithms.

1. INTRODUCTION

Hybrid estimation (or multiple model) algorithms have
been used in various applications, such as target track-
ing [Bar-Shalom et al. (2001); Maybeck (1982)] and fault
diagnosis [Zhang and Li (1998)]. In these applications, the
system dynamics can be modeled as a stochastic hybrid
system consisting of both continuous state evolutions and
discrete state (or mode) transitions. Hybrid estimation
(HE) involves estimating both the continuous state and
the mode of the system. A Kalman filter based HE al-
gorithm typically consists of a bank of Kalman filters,
each matched to a mode of the hybrid system. The HE
algorithm uses the residuals from the Kalman filters to
compute the respective mode probabilities (i.e. probabil-
ities of the modes being the correct one.) The optimal
solution to this problem has an exponentially increasing
complexity with respect to time due to the need to con-
sider all mode histories [Li and Bar-Shalom (1993a)]. Two
well-known suboptimal (but practical) solutions are the
Generalized Pseudo Bayesian algorithm of order n (GPBn)
[Maybeck (1982)] and the Interacting Multiple Model al-
gorithm [Blom and Bar-Shalom (1988)]. The GPBn algo-
rithm considers rn previous mode histories (or hypotheses)
at each time step, where r is the number of modes. The
IMM algorithm considers only r mode histories. However,
it uses a more sophisticated hypothesis merging technique,
known as “mixing” to achieve comparable performance as
the GPB2 algorithm with a lower computational complex-
ity. On the other hand, the “mixing” technique results in
mutual interactions among the Kalman filters, and makes
the analysis of the IMM algorithm difficult.

In most Kalman filter based HE algorithms, the Kalman
filter residuals are the only information for mode proba-
bility updates. Hence, a good understanding of the char-
acteristics of the Kalman filter residuals is important to

the analysis of the algorithms’ performances. Hanlon and
Maybeck (2000) proposed a method to compute the mean
and covariance of the residual of a single Kalman filter in
the presence of model mismatches. This method may be
used to analyze HE algorithms, such as GPB1, in which the
set of Kalman filters run independently without mutual
interactions. However, this method cannot be used in a HE
algorithm that uses a set of interacting Kalman filters. In
this paper, we consider a bank of interacting Kalman filters
and characterize their residuals by computing (in addition
to their respective means and covariances) their cross-
covariances, where each cross-covariance is the covariance
of the residuals of two interacting Kalman filters. This
cross-covariance term, which is a novel idea of this paper,
accounts for the coupling between the two Kalman filters.
In addition, from the characterization of the Kalman fil-
ter residuals, we propose an algorithm to investigate the
performance of the HE algorithm off-line, a task which
otherwise has to be carried out by costly Monte Carlo
simulations in most cases. Furthermore, our analytical
approach provides different insights into the performance
of the HE algorithm compared to the simulation approach.
In this paper, we consider the performance analysis of
the IMM algorithm as an example. The proposed algo-
rithm could be applicable to various Kalman filter based
HE algorithms in general. We would like to note that
an algorithm for off-line performance predictions of the
IMM algorithm has also been proposed by Li and Bar-
Shalom (1993b). However, they do not explicitly compute
the cross-covariances of the Kalman filter residuals to
account for the mutual interactions between the various
Kalman filters. Furthermore, their algorithm requires some
restrictive assumptions, such that the various modes of the
hybrid system are required to have the same state matrix
and output matrix. Our proposed algorithm does not need
these assumptions.
The rest of the paper is organized as follows: Section
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2 presents some preliminary discussions, which includes
a review of the IMM algorithm and a definition of the
operating scenario under which the IMM algorithm is eval-
uated. The algorithm development is presented in Section
3. Section 4 presents some simulation results to illustrate
the proposed algorithm. Conclusions are given in Section
5.

2. PRELIMINARIES

2.1 Review of the IMM Algorithm

The Interactive Multiple Model Estimation (IMM) algo-
rithm uses a bank of Kalman filters, each matched to a
mode of the following stochastic hybrid system:

x(k) = Am(k)x(k − 1) + Bm(k)u(k) + wm(k)(k) (1)

z(k) = Cm(k)(k)x(k) + vm(k)(k) (2)

where x(k) is the (discrete-time) continuous state; u(k) is
the input vector; z(k) is the measurement vector; m(k) ∈
{1, 2, . . . , r} is the discrete state (or mode); wm(k)(k) and
vm(k)(k) are uncorrelated Gaussian noise vectors with co-
variance matrices Qm(k) and Rm(k) respectively. The ma-
trices Aj , Bj , etc. model the system dynamics correspond-
ing to mode m(k) = j. Denoting the event {m(k) = j} as
mj(k), the evolution of mode m(k) is described by

πij = p[mj(k)|mi(k − 1)] for i, j = 1, . . . , r

where πij is a constant; p[·|·] denotes a conditional proba-
bility. We assume that at time k − 1, we have, from each
Kalman filter i, the posterior mean x̂i(k−1) and covariance
Pi(k−1) of the continuous state estimate; and the posterior
mode probability (that the true mode is mode i) αi(k−1).
The IMM algorithm updates the mean x̂j(k), covariance
Pj(k), and mode probability αj(k) for each Kalman filter
j recursively as follows:

(1) Mixing/Interacting: Compute mixing probability

γji(k − 1) := p[mi(k − 1)|mj(k)]

=
1

∑r

l=1 πljαl(k − 1)
πijαi(k − 1)

(3)

The initial conditions to Kalman filter j are given by

x̂j0(k − 1) =
r

∑

i=1

γji(k − 1)x̂i(k − 1) (4)

Pj0(k − 1) =

r
∑

i=1

{

Pi(k − 1) + [x̂i(k − 1)−

x̂j0(k − 1)][x̂i(k − 1) − x̂j0(k − 1)]T
}

γji(k − 1)

(5)

(2) Filtering: Each Kalman filter j computes

x̂−

j (k) = Aj x̂j0(k − 1) + Bju(k) (6)

x̂j(k) = x̂−

j (k) + Kj(k)rj(k) (7)

rj(k) := z(k) − Cj x̂
−

j (k) (8)

Kj(k) = P−

j (k)CT
j Sj(k)−1 (9)

P−

j (k) = AjPj0(k − 1)AT
j + Qj (10)

Sj(k) = CjP
−

j (k)CT
j + Rj (11)

Pj(k) = [I − Kj(k)Cj ]P
−

j (k) (12)

(3) Mode Probability Update: Compute the Likelihood
function

Λj(k) := Nq(rj(k); 0, Sj(k)) (13)

where q is the dimension of rj(k); Nq(·;µ,Σ) denote
a q-dimensional multivariate Gaussian pdf with mean
µ and covariance Σ. Compute the prior mode proba-
bility

α−

j (k) =
r

∑

i=1

πijαi(k − 1) (14)

The posterior mode probability is given by

αj(k) =
1

∑r

l=1 Λl(k)α−

l (k)
Λj(k)α−

j (k) (15)

(4) Output: The mean and covariance of the combined
state estimate are

x̂(k) =
r

∑

j=1

αj(k)x̂j(k) (16)

P (k) =

r
∑

j=1

{

Pj(k)+[x̂j(k)−x̂(k)][x̂j(k)−x̂(k)]T
}

αj(k)

(17)

2.2 Operating scenario

The performance of the IMM algorithm (as well as other
HE algorithms in general) depends on the operating sce-
nario [Li and Bar-Shalom (1993b)]. Mathematically, we
describe an operating scenario in discrete time by the
following dynamic system (which we call the true system):

xT (k) = AT (k)xT (k − 1) + BT (k)u(k) + wT (k) (18)

z(k) = CT (k)xT (k) + vT (k) (19)

where xT (k) is the true system state vector; wT (k) and
vT (k) are mutually uncorrelated white Gaussian noise
vectors with covariance matrices QT (k) and RT (k) respec-
tively. We use S to denote the operating scenario defined
above. Note that the system (18) (as well as (19)) is general
in the sense that AT (k) may or may not belong to the
mode set A = {A1, A2, . . . , Ar} of the IMM algorithm.
In other words, the true system, (18) and (19), could be
more general than the hybrid system model, (1) and (2),
assumed by the IMM algorithm. This would be useful if we
want to analyze the performance of the IMM algorithm in
the presence of mismatches in the Kalman filter models.

From (18), the true system state xT (k) is a stochastic
process under the operating scenario S. Our objective is to
analyze the average performance of the IMM algorithm un-
der S. This scenario-dependent approach to performance
analysis/predcition of HE algorithm has also been used
by other authors, such as Li and Bar-Shalom (1993b);
Hanlon and Maybeck (2000). The requirement to specify a
specific operating scenario implicity implies that we need
to specify the true mode sequence in our analysis. However,
this does not necessarily limit the practical applicability of
the performance analysis algorithm. For example, in target
tracking applications, one may use the proposed algorithm
to predict the tracking errors when the target performs
certain maneuvers. Hanlon and Maybeck (2000) also used
a similar scenario-dependent approach to characterize the
residual of a Kalman filter when a fault of a system occurs.
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As noted by Li and Bar-Shalom (1993b), the scenario-
dependent approach average out the randomness due to
uncertainties in the continuous subspace (of xT (k) and
z(k) in this case) whereas the essential information con-
cerning the scenario is retained. In fact, if a Monte Carlo
simulation was used to investigate the performance of the
IMM algorithm, one would also need to define an operating
scenario in order to set up the simulation. It is precisely
because of the scenario dependency of the performances of
HE algorithms that we need a more analytical approach
to investigate them.

3. ALGORITHM DEVELOPMENT

In this section, we present an algorithm to characterize
the Kalman filter residuals and to compute the means of
likelihood functions and mean-squared estimation errors
for the IMM algorithm. First, we compute the means
and cross-covariances of the Kalman filter residuals under
the operating scenario S. Thus, at each time step k, we
compute the mean of each Kalman filter residual rj(k) by
taking the conditional expectation

r̄j(k) = E
{

rj(k)|S
}

Note that we use a bar over a vector to denote its mean
under the conditional expectation.

The cross-covariance of two vectors X, Y is defined as

Cov(X, Y ) := E
{

(X − X̄)(Y − Ȳ )T |S
}

Thus, the cross-covariance of two Kalman filter residuals
ri(k) and rj(k) is Cov

(

ri(k), rj(k)
)

. The covariance of the

residual rj(k) is Cov
(

rj(k), rj(k)
)

.

We define the state estimation error for Kalman filter j

ej(k − 1) := xT (k − 1) − x̂j(k − 1) (20)

and the error for the mixed initial condition
ej0(k − 1) := xT (k − 1) − x̂j0(k − 1)

=

r
∑

i=1

γji(k − 1)ei(k − 1)
(21)

3.1 Characterization of Residuals

This subsection presents a recursive algorithm to compute
the means and cross-covariances of the Kalman filter
residuals. In the derivations, we shall omit the time index k
for the matrices AT (k), ∆Aj(k), Kj(k), etc, for simplicity.

Substituting (6) and (19) into (8), we have

rj(k) = CT xT (k)+vT (k)−Cj [Aj x̂j0(k−1)+Bju(k)] (22)

Substituting (18) and (21) into (22),

rj(k) =CjAjej0(k − 1) + [CT AT − CjAj ]

xT (k − 1) + [CT BT − CjBj ]u(k)

+ CT wT (k) + vT (k)

(23)

Similarly, using (18), (6), (7) and (20),

ej(k) = [I − KjCj ]Ajej0(k − 1) + [AT − Aj−

Kj(CT AT − CjAj)]xT (k − 1)+

[BT − Bj − Kj(CT BT − CjBj)]u(k)

+ [I − KjCT ]wT (k) − KjvT (k)

(24)

Taking the conditional expectation on (23) and (24) re-
spectively, we have

r̄j(k) =CjAj ēj0(k − 1) + [CT AT − CjAj ]

x̄T (k − 1) + [CT BT − CjBj ]u(k)
(25)

ēj(k) = [I − KjCj ]Aj ēj0(k − 1) + [AT − Aj−

Kj(CT AT − CjAj)]x̄T (k − 1) + [BT

− Bj − Kj(CT BT − CjBj)]u(k)

(26)

where, from (21),

ēj0(k − 1) =
r

∑

i=1

γji(k − 1)ēi(k − 1) (27)

and from (18),

x̄T (k) = AT x̄T (k − 1) + BT u(k) (28)

Thus, the means of the residual and the state estimation
error for Kalman filter j are computed recursively from
(25)-(28).

Next, to derive the cross-covariance of the residuals, we
subtract (25) from (23), yielding

rj(k) − r̄j(k) = CjAj [ej0(k − 1) − ēj0(k − 1)]+

[CT AT − CjAj ](xT (k − 1) − x̄T (k − 1))

+ CT wT (k) + vT (k)

Then, the cross-covariance of the residuals is

Cov(ri(k), rj(k)) = E{[ri(k) − r̄j(k)][ri(k) − r̄j(k)]T |S}

= CiAiCov(ei0(k − 1), ej0(k − 1))AT
j CT

j + [CT AT

− CiAi]Cov(xT (k − 1), xT (k − 1))[CT AT − CjAj ]
T

+ CiAiCov(ei0(k − 1), xT (k − 1))[CT AT − CjAj ]
T

+ [CT AT − CiAi]Cov(xT (k − 1), ej0(k − 1))AT
j CT

j

+ CT QT CT
T + RT

(29)

where, using (18), (21) and (24),

Cov(xT (k),xT (k)) =

AT Cov(xT (k − 1), xT (k − 1))AT
T + QT

(30)

Cov(ej0(k), xT (k)) =
r

∑

i=1

γjiCov(ei(k), xT (k)) (31)

Cov(ej(k), xT (k)) = [I − KjCj ]Aj

Cov(ej0(k − 1), xT (k − 1))AT
T + [AT − Aj−

Kj(CT AT − CjAj)]Cov(xT (k − 1), xT (k − 1))AT
T

+ [I − KjCT ]QT

(32)

In deriving (29)-(32), we use the fact that w(k) and v(k)
are mutually uncorrelated white noise vectors.

Subtracting (26) from (24),

ej(k) − ēj(k) = (I − KjCj)Aj [ej0(k − 1) − ēj0(k − 1)]+

[AT − Aj − Kj(CT AT − CjAj)][xT (k − 1) − x̄T (k − 1)]

+ (I − KjCT )wT (k) − KjvT (k)

Then, similar to (29), the cross-covariance of the state
estimation error is
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Cov{ei(k), ej(k)} = (I − KiCi)Ai

Cov{ei0(k − 1), ej0(k − 1)}AT
j (I − KjCj)

T

[AT − Ai − Ki(CT AT − CiAi)]Cov(xT (k − 1),

xT (k − 1))[AT − Aj − Kj(CT AT − CjAj)]
T

+ [I − KiCi]AiCov(ei0(k − 1), xT (k − 1))

[AT − Aj − Kj(CT AT − CjAj)]
T

+ [AT − Ai − Ki(CT AT − CiAi)]

Cov(xT (k − 1), ei0(k − 1))AT
j [I − KjCj ]

T

+ (I − KiCT )QT (I − KjCT )T + KiRT KT
j

(33)

Similarly, subtract (27) from (21), and then substitute the
result into the following cross-covariance:

Cov{ei0(k − 1), ej0(k − 1)} = E

{

r
∑

l=1

γil(k − 1)[el(k − 1)

− ēl(k − 1)]
r

∑

s=1

γjs(k − 1)[es(k − 1) − ēs(k − 1)]|S
}

=
r

∑

l=1

r
∑

s=1

γil(k − 1)γjs(k − 1)Cov{el(k − 1), es(k − 1)}

(34)

Thus, the cross-covariances of the residuals and the state
estimation errors are computed recursively from (29)-(34).

From the means and cross-covariances of the Kalman filter
residuals, we can compute two performance measures of
the IMM algorithm as presented below.

3.2 Mean of Likelihood Function

The likelihood functions are often used to determine the
mode probabilities in HE algorithms. We compute their
mean values as a performance measure of the mode esti-
mation accuracy. The likelihood function Λj(k), defined in
(13), depends on the Kalman filter residual rj(k), which
has a Gaussian pdf given by

p[rj(k)|S] = Nq(rj(k); r̄j(k), V (k))

From Section 3.1, the mean r̄j(k) is given by (25) and
the covariance V (k) = Cov(rj(k), rj(k)) is given by (29).
Thus, the mean of the likelihood function for mode j is
given by

Λ̄j(k) =

∫

Rq

Nq(rj ; 0, Sj(k))Nq(rj ; r̄j(k), V (k))drj (35)

It can be verified that for any functions Nq(x; µ1,Σ1) and
Nq(x; µ2, Σ2) [Li and Bar-Shalom (1993b)]

Nq(x; µ1,Σ1)Nq(x; µ2, Σ2) = κNq(x; µ12, Σ12) (36)

where

κ =
|Σ12|

1

2

(2π)
n
2 |Σ1|

1

2 |Σ2|
1

2

e−0.5(µT
i Σ−1

1
µ1+µT

2
Σ−1

2
µ2−µT

12
Σ−1

12
µ12)

(37)
Σ−1

12 = Σ−1
1 + Σ−1

2 (38)

µ12 = Σ12

(

Σ−1
1 µ1 + Σ−1

2 µ2

)

(39)

Using (36)-(39), (35) becomes

Λ̄j(k) =
|(Sj(k)−1 + V (k)−1)−1|

1

2

(2π)
q

2 |Sj(k)|
1

2 |V (k)|
1

2

e−0.5{r̄j(k)T [V −1(k)−V −1(k)(S−1

j
(k)+V −1(k))V −1(k)]r̄j(k)}

Using the matrix inversion lemma , we have [Householder
(1965)]

Λ̄j(k) =
|(Sj(k)−1 + V (k)−1)−1|

1

2

(2π)
q

2 |Sj(k)|
1

2 |V (k)|
1

2

e−0.5{r̄j(k)T [V (k)+Sj(k)]−1r̄j(k)}

(40)

3.3 Mean-squared Error of Estimation

The mean-squared error of the continuous state estimate
for Kalman filter j is

Fj(k) := E
{

[xT (k) − x̂j(k)][xT (k) − x̂j(k)]T |S
}

= E
{

ej(k)ej(k)T |S
}

= E
{

[ej(k) − ēj(k)][ej(k) − ēj(k)]T |S
}

+ ēj(k)ēj(k)T

= Cov
{

ej(k), ej(k)
}

+ ēj(k)ēj(k)T

(41)

Note that (41) can be evaluated using (26) and (33).

The mean-squared error of the combined state estimate
(i.e. the output (16) of the IMM algorithm) is

F (k) := E{[xT (k) − x̂(k)][xT (k) − x̂(k)]T |S}

Using (16) and the fact that
∑r

i=1 αi = 1,

F (k) = E

{ r
∑

i=1

αi[xT (k) − x̂i(k)]

r
∑

j=1

αj [xT (k) − x̂j(k)]T
∣

∣

∣
S

}

=

r
∑

i=1

r
∑

j=1

αiαjE
{

ei(k)ej(k)T
∣

∣S
}

(42)

where, similar to (41),

E
{

ei(k)ej(k)T |S
}

= Cov
{

ei(k), ej(k)
}

+ ēi(k)ēj(k)T

3.4 Summary of the Proposed Algorithm

A cycle of the recursive algorithm for characterizing the
Kalman filter residuals and computing the means of likeli-
hood functions and the mean-squared estimation errors of
the IMM algorithm is as follows.

(1) Compute mixing probability γij(k−1) and the initial
conditions xj0(k − 1) and Pj0(k − 1), for i, j =
1, 2, . . . , r, using (3)-(5).

(2) Compute the means of Kalman filter residuals r̄j(k)
and means of state estimation errors ēj(k) us-
ing (25)-(27). Also, compute the cross-covariances
Cov(ri(k), rj(k)), Cov(ei(k), ej(k)) using (29)-(34).

(3) Update the estimated state for Kalman filter j as

x̂−

j (k) = Aj x̂j0(k − 1) + Bju(k)

x̂j(k) = x̂−

j (k) + Kj(k)r̄j(k)

Note that r̄j(k), of which the randomness due to the
process noise w(k) and measurement noise v(k) has
been averaged out, is used to update the state vector.
The gain Kj(k) is updated using (9)-(11).

(4) Compute the mean of Likelihood function Λ̄j(k) using
(35). Then, compute α−

j (k) using (14) and αj(k) as

αj(k) ≈
Λ̄j(k)α−

j (k)
∑r

l=1 Λ̄l(k)α−

l (k)
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(5) Compute the mean-squared errors of the state esti-
mation Fj(k), F (k) using (41) and (42).

The above algorithm could be applicable to other Kalman
filter based HE algorithms. For example, in the General-
ized Pseudo Bayesian (GPB1) algorithm, instead of the
mixing step (or step 1) of the IMM algorithm, it uses the
combined estimate at the previous time-step as the initial
conditions, i.e. instead of (4) and (5) the initial conditions
are given by

xj0(k − 1) = x̂(k − 1) =

r
∑

i=1

αi(k − 1)x̂i(k − 1)

Pj0(k − 1) = P (k − 1) =
r

∑

i=1

αi(k − 1){Pi(k − 1) + · · · }

The rest of the filtering algorithm (steps 2-4) are the same
as those of the IMM algorithm. Hence, the performance
analysis algorithm presented above could be applicable to
the GPB1 algorithm by replacing the terms γji(k − 1) by
αi(k − 1) in all equations.

4. SIMULATIONS

Scenario: We consider a two-dimensional aircraft tracking
example in Air Traffic Control. The aircraft’s position
(ξ, η) is measured at Ts = 5 sec intervals with a standard
deviation error of 100 m in each axis [Li and Bar-Shalom
(1993a)]. The aircraft flies at constant velocity for 200 sec,
then executes a coordinated turn at a constant turning rate
of 2 deg/s for 45 sec, and finally flies at constant velocity

for another 150 sec. Let xT = [ξ ξ̇ η η̇]T be the true
state of the aircraft. The scenario is described by (18)-(19)
with

AT (k) =









1 Ts 0 −0.5ψ̇(k)T 2
s

0 1 0 −ψ̇(k)Ts

0 0.5ψ̇(k)T 2
s 1 Ts

0 ψ̇(k)Ts 0 1









where ψ̇(k) = 2 deg/s for 40 < k < 50, ψ̇(k) = 0
otherwise; BT (k) = 0, CT (k) =

[

1 0 0 0
0 0 1 0

]

for all k. The
noise covariances are given by

QT (k) = G

[

w2
ξ(k) 0
0 w2

η(k)

]

GT RT (k) =

[

1002 0
0 1002

]

where G =
[ 0.5T 2

s Ts 0 0

0 0 0.5T 2

s Ts

]T
, wξ(k) = wη(k) = 0.1 for

40 < k < 50, wξ(k) = wη(k) = 0.05 otherwise.

Kalman filter models: The IMM algorithm consists of two
Kalman filters, which are described by (1)-(2) with

Ai =









1 Ts 0 −0.5ψ̇iT
2
s

0 1 0 −ψ̇iTs

0 0.5ψ̇iT
2
s 1 Ts

0 ψ̇iTs 0 1









i = 1, 2

where ψ̇1 = 0, ψ̇2 = 1.5 deg/s; B1 = B2 = 0; C1 = C2 =
CT ;

Q1 = G

[

0.052 0
0 0.052

]

GT Q2 = G

[

22 0
0 22

]

GT

and R1 = R2 = RT . This example illustrates that
the proposed algorithm applies to the case in which the
Kalman filter models used do not match the true system.

Simulation results: Figure 1 compares the means of the
Kalman filter residuals computed by the proposed algo-
rithm with the corresponding means computed by aver-
aging the residuals from 60 Monte Carlo simulation runs.
Figures 2, 3 and 4 show the results for the means of the
likelihood functions (Λ̄j(k)) and the root-mean-squared
(RMS) estimation errors. The RMS error of x1(k) of
Kalman filter 1 is the square-root of the first diagonal term
of F1(k) in (41), and so on. The simulation results validate
the accuracy of the proposed algorithm. On the other
hand, the proposed algorithm requires much less compu-
tational time (0.27 sec) compared with that required by
the Monte Carlo simulation (4.4 sec). This reduction in
computational time is important when the performance
analysis needs to be repeated for different algorithm de-
signs and different operational scenarios. Furthermore, our
analytical approach would provide more insight into the
performance of the IMM algorithm.

5. CONCLUSIONS

We have presented an algorithm to compute the means
and cross-covariances of the Kalman filter residuals, and
the means of likelihood functions and mean-squared esti-
mation errors as performance measures of the Interacting
Multiple Model algorithm. The analysis carried out in this
paper could be useful for understanding and evaluating
the performances of general Kalman filter based hybrid
estimation algorithms. As discussed in Section 2.2, the
performances of HE algorithms are scenario dependent.
However, some more general characteristics, such as sta-
bility, of the HE algorithm may be independent of the
operating scenario. Thus, one possible extension of this
analysis is to investigate such general characteristics of the
HE algorithm. Note that it would not be possible to carry
out such generalization with Monte Carlo simulations.
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Fig. 1. Means of Kalman filter residuals computed by
proposed algorithm and those from Monte Carlo sim-
ulations.
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Fig. 2. Means of likelihood functions computed by pro-
posed algorithm and those from Monte Carlo simula-
tions.
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Fig. 3. Root-mean-squared estimation errors of Kalman
filter 1

0 10 20 30 40 50 60 70 80
0

100

200

RMS error of x
1
(k) for Kalman filter 2

0 10 20 30 40 50 60 70 80
0

50

100

RMS error of x
2
(k) for Kalman filter 2

0 10 20 30 40 50 60 70 80
0

100

200

RMS error of x
3
(k) for Kalman filter 2

0 10 20 30 40 50 60 70 80
0

20

40

RMS error of x
4
(k) for Kalman filter 2

time step, k

MC simulation

computed

Fig. 4. Root-mean-squared estimation errors of Kalman
filter 2
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