
The Verification of Real Time Systems
using the TINA Tool ?

Pedro M. Gonzalez del Foyo ∗ Jose Reinaldo Silva ∗∗

∗Dept. Of Mechatronics, University of São Paulo, Av. Prof. Mello
Moraes 2231, Cidade Universitária, São Paulo, Brazil
(Tel: 55-11-30919848; e-mail: pedro.foyo@poli.usp.br).

∗∗Dept. Of Mechatronics, University of São Paulo, Av. Prof. Mello
Moraes 2231, Cidade Universitária, São Paulo, Brazil

(Tel: 55-11-30915688; e-mail: reinaldo@usp.br).

Abstract: In this paper, we propose a method for building a Timed Transition Graph (TTG)
that uses a single clock from the state class graph of a bounded time Petri Net (TPN). To build
this TTG a special state class construction - available in Tina - is used. This structure can be
used to calculate “quantitative” temporal properties for the worst case scenario. It is possible to
check efficiently several properties over the same TTG if no design modifications are made. Such
properties are represented by a framework proposed in the literature were TCTL properties are
defined on TPN.

Keywords: Real-time systems, Verification, Time Petri Nets

1. INTRODUCTION

The verification of the real time aspects of high-integrity
computer-based system can usually be seen as a three
stage process which aims to assert the feasibility of the
requeriments, its design and implementation (Burns 2003).
In this paper we are interested in the first two stages. To
examine the requirements and design, it is necessary to
build a model that represents the temporal behavior of
the proposed system. The model obtained is then checked
for feasibility and safety.

In order to express temporal requirements and design
properties, a modeling schema must represent the delay
and deadline concepts (Burns & Wellings 2001), besides
being able to express the inherent concurrency character-
istic of real time systems.

Model checking has turned out to be an useful technique
for verifying temporal properties of finite-state systems
(Larsen et al. 1995). Particularly, real-time model checking
has been mostly studied and developed in the framework
of Alur and Dill’s Timed Automata (TA), that is, using au-
tomata extended with clocks that progress synchronously
with the time. There now exists a large amount of the-
oretical knowledge and practical experience for this class
of system. However, it is agreed that their main drawback
is the complexity blowup induced by timing constraints -
most verification problems are at least PSPACE-hard for
TA.

Since the work of Alur et al. (1993) a wide variety of model
checkers has been developed based on the TA formalism.
Some of this modeling formalisms are supported by analy-
sis tools, such as UPPAAL (Larsen et al. 1997) and Kro-

? This work was partially supported by CAPES, and CNPq, the
national research agences.

nos (Daws et al. 1995). Conventional timed model checkers
are usually based in two algorithms: the one known as
forward, which can work on-the-fly, and another called
backwards. This last one, although does not fit for on-
the-fly composition, but provides the basis for verification
of the complete TCTL logic (Alur et al. 1993).

Petri nets have been used successfully in formal descrip-
tion and analysis of concurrent systems in their original
formulation but do not deal explicitly and quantitatively
with time, what makes them unsuitable to the modeling
and specification of strict real-time systems. Therefore,
Petri nets have been augmented in several ways to allow
the description of time dependent phenomena. The two
main time extensions are Time Petri Nets (TPN) (Merlin
& Faber 1976) and Timed Petri Nets (Ramchandani 1974).

While a transition can be fired within a given interval for
TPN, in Timed Petri Nets, transitions are fired as soon as
possible. There are also numerous ways for representing
time. TPN are mainly divided in P-TPN, A-TPN and
T-TPN whether a time interval is relative to places (P-
TPN), arcs (A-TPN) or transitions (T-TPN). (David &
Alla 2005) has an interesting survey on that subject.

For real-time systems, TPN is an adequate choice because
it can represent delays, deadlines and the inherent con-
currency of that systems. Time is represented in terms
of time intervals, capturing the non deterministic nature
of processes such as code execution durations, timeouts
and communication delays. It can also be used to model
different events and situations that appear in RTS, e.g.,
concurrence, asynchronous transfer of control, events, pe-
riodic and aperiodic activities.

The proposal of a verification framework in this paper is
related to those presented in (Virbitskaite & Pokozy 1999)
and (Lime & Roux 2006). In (Virbitskaite & Pokozy

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 525 10.3182/20080706-5-KR-1001.0708

1999) a model-checking algorithm for TCTL over TPN
was proposed based on the region graph approach. The
quantitative part is checked adding a special transition
to check the time of the TCTL formula. Therefore it is
necessary to check an extra transition per formula. The
complexity of such algorithm is similar to the one proposed
in (Alur et al. 1993). A partial order reduction method is
used to decrease the state-space size in order to improve
the complexity of the model checking algorithm. The use
of TPN as a model formalism instead of TA allowed the
to represent concurrent systems in a more natural way.

Lime & Roux (2006) also used TPN to model the system
behavior. They used the state class approach to build a
TA that preserves the behavior of TPN using less clock
variables as possible. The system is then verified using
UPPAAL. They also presented a definition of TCTL
for TPN. The difference from the definitions presented in
(Alur et al. 1993) is that the atomic propositions usually
associated with states are properties of marking.

Our proposal also use the TPN to model the system
behavior and then use the state class approach to build
the TCTL structure where the verification must be done.
We claim that labeling algorithms could be executed over
such structure with better complexity results.

This paper is organized as follows: Section 2 gives a formal
semantics for TPN in terms of timed transition systems
and present the state class graph definitions used in TINA
(Berthomieu et al. 2004). Then, Section 3, a proposal is
presented to extend this construction that allows to build
the state class graph as a TTG with one clock. In Section 4,
we use a framework for checking TCTL properties on the
TPN presented in Lime & Roux (2006) and based on our
structure. The verification method is shown throughout an
example also in Section 4. Finally, Section 5 brings some
analysis and conclusions about the Petri Net based method
for model checking.

2. TIME PETRI NETS AND STATE CLASSES

Merlin’s Time Petri Net (TPN) extend Petri Nets with
temporal intervals associated with transitions, specifying
firing delays range. Time Petri Nets was defined in Merlin
& Faber (1976).

This section gives a formal definition of TPN and for
states in TPN according to Berthomieu & Diaz (1991).
The notion of state and state class will be useful to discuss
behavioral analysis for TPN.

A Time Petri Net is a tuple (P, T,B, F,Mo, SIM) where:

• P is a finite non-empty set of places pi;
• T is a finite non-empty set of transitions ti;
• B is the backward incidence function

B : P × T −→ N ;
where N is the set of nonnegative integers;
• F is the forward incidence function

F : T × P −→ N ;
• Mo is the initial marking function

Mo : P −→ N
• SIM is a mapping called static interval

SIM : T −→ Q∗ × (Q∗ ∪∞)
where Q∗ is the set of positive rational numbers.

The static interval is composed by two positive rational
numbers (α, β), where α represents the earlier firing time
(EFT) and β the latest firing time (LFT). Assuming that
a transition t became enabled at time τ , then t cannot fire
before (τ + α) and no later than (τ + β) unless disabled
by firing some other transition.

In TPN, the enabling condition of a transition is the same
as in Petri Nets. According to the definition of TPN the
”enabling condition” will be:

(∀p)(M(p) ≥ B(ti, p)); (1)

Some transitions may be enabled by marking M , but
not all of them may be allowed to fire due to the firing
constraints of transitions (EFT′s and LFT′s). Thus, the
“firing condition” depends on two conditions:

(1) the transition is enabled, formally expressed by Eq.
(1)

(2) express the fact that enabled transitions may not fire
before its EFT and must fire before or at its LFT
unless another transition fires before, modifying the
marking M in a way that the transition is no longer
enabled.

According to the second condition, a transition ti enabled
by M at absolute time τ could be fired at the firing time
θ, iff θ is not smaller than the EFT of transition ti and not
greater than the smallest of the LFT’s of all the transitions
enabled by marking M , that is: EFT of ti ≤ θ ≤min{ LFT
of tk} where k ranges over the set of all transitions enabled
by M . If transition ti fires, it leads the system to another
state, at time τ + θ.

The state of the system can be defined as a pair S = (M, I)
where:

• M is a marking
• I is a firing interval set which is a vector of possible

firing times. The number of entries of this vector
is given by the number of transitions enabled by
marking M .

The single behavior “transition ti is firable from state S
at time θ and its firing leads to a state S′” will be denoted

by S
(ti,θ)−→ S′.

The firing rule permits the computation of states and
a reachability relation among them. The set of states
that are reachable from the initial state, or the set of
firing schedules feasible from the initial state, characterizes
the behavior of the TPN, the same way that the set of
reachable markings characterize the behavior of a Petri
net.

In general, using this set of states for analysis purpose is
not feasible, once this set could be infinite. That is why
Berthomieu & Menasche (1983) introduce an enumerative
approach for analyzing TPN using what they call state
classes.

A state class, denoted by C will be defined by a pair
(M,D) where M is a marking and D is a firing domain.
The firing domain D will finitely represent the infinite
number of firing times possible from marking M , through
the set of solutions of a system of inequalities that capture
the global timed behavior of the TPN.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

526

The number of state classes will be finite if the underlying
Petri net is bounded. Proof of boundeness for TPN has
been shown to be undecidable but a number of sufficient
conditions could be stated (Berthomieu & Diaz 1991).
TINA (TIme petri Net Analyzer) proposes several state
class space constructions, preserving some properties ex-
pressed either in linear time temporal logics (such as LTL)
or in branching time temporal logics (such as CTL).

In this paper, we are concerned with a class of properties of
great practical interest for which no dedicated construction
has been proposed by the authors of TINA. That “quanti-
tative” temporal properties may be expressed, for instance,
in TCTL logic. However, TINA has other constructions
such as atomic state classes (ASCG), which preserve the
branching properties just as CTL or CTL*. Any graph of
classes bisimilar with the state graph of the net preserves
all its branching properties, but, time information is omit-
ted on this graph in TINA (Berthomieu et al. 2004). This
will be addressed in the next section.

3. THE TIMED TRANSITION GRAPH

In this paper we are proposing a modification in the Timed
Transition Graph in order to simplify the model checking
algorithm. The TCTL logic can be verified over such
structure in polynomial time, in a similar way that the
labeling algorithm verify TCTL over the structure builded
using the region graph approach (Alur et al. 1993).

Our Timed Transition Graph is a tupleG= (S, µ, s0, A,E, It),
where

• S is a finite set of nodes;
• µ : S → P is a labeling function assigning to each

node the set of atomic propositions that are true in
this node;
• s0 ∈ S is the start node;
• A is a set of actions or events.
• E ⊆ S ×A×S is a set of edges which has a bijection

with the set A;
• It : E −→ Q∗ × (Q∗ ∪ ∞) is the minimum and

maximum time to change the current state to the next
through the occurrence of a ∈ A; (where Q∗ is the set
of positive rational numbers)

Consider the example of Figure 1 that depicts a TPN
model of a real time system composed by two processes:
one for control and one for supervision. In this example
the two processes share an A/D D/A card. The control
process execute a control loop, composed for three rou-
tines: reading (read the variable to control using and A/D
channel), computing (executes the control algorithm to
determine the control action) and action generation (write
the control action to the correspondent output channel in
the card). This routines and its durations are represented
respectively for transitions t3, t4 and t6. The supervision
task is composed by two routines: reading (read the vari-
able to supervise) and recording (create a history of the
variable for supervision purposes). Transitions t10 and t11
represents those routines. Place p9 represents the resource
shared by this two processes, in this case, the A/D D/A
card.

The time intervals for t3, t4, t6, t10 and t11 contain the
Best Case Execution Time (BCET) and the Worst Case

Execution Time (WCET) of the code, respectively, while
time intervals in transitions t0 and t7 represent the period
of each task. The state of the system is identified in a TPN

Fig. 1. Example of real time system.

as S = (M, I). Let τ be the time when the system achieve
the S state. Consider that exists at least one transition
enabled in S, then exists a time interval in which S could
leave to state S′ through the occurrence of that transition.
These could be represented as:

S
t1[θ1,θ2]−→ S′

where τ + θ1 is the minimum time in which the system
could achieve state S′ coming from S through the occur-
rence of transition t1 and τ + θ2 is the maximum time in
which the system could achieve state S′ coming from S
through the occurrence of transition t1.

Consider that there is more than one transition enabled at
S, so:

S
t2[θ3,θ4]−→ S′′

of course, θ1 ≤ θ4 and θ3 ≤ θ2. Transitions t1 and t2 are
present in I, t1 is present in I ′′ and t2 is present in I ′.

If we have the reachability graph, the state classes and the
static time interval for each transition in the net we could
calculate the time interval It for each edge in the TTG.
States S in the TTG correspond to the state classes of the
TPN. The labeling function µ is constructed assigning to
each state s ∈ S the marked places in its equivalent state
class.

Let be C1
ti[l,u]−→ C2 a state class transition where C1 =

(M1, D1) and C2 = (M2, D2), ti is an enabled transition
at M1 and [l, u] is a fair time interval of global time for
the firing of transition ti in state class C1 leading to the

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

527

state class C2. Of course, that interval must be consistent
with the firing domain of both classes.

The consistency checking for the firing domains is given
by the solution of the following set of inequations:

ai ≤ θi ≤ bi, ti is the fired transition;
aj ≤ θj ≤ bj , ∀j | tj ∈ enb(M1) ∩ enb(M2);

a′k ≤ θk + t ≤ b′k, ∀k | tk ∈ enb(M1) ∩ enb(M2);

where ai, bi represents the static interval for transition ti;
aj , bj belongs to the firing domain D1 and a′k, b′k belongs
to the firing domain D2. The sets enb(M1) and enb(M2)
contain the transitions enabled by marking M1 and M2

respectively. Then, the solution of variable t is the fair time
interval of global time for the firing of transition ti. The
algorithm to solve that follows from the set of inequations:

a′j − aj ≤ t ≤ b′j − bj , ∀j|tj ∈ (enb(M1) ∩ enb(M2)) ∪ {ti}

So, the interval It : [l, u] for transition C1
ti[l,u]−→ C2 will be:

l = max(0,max(a′j − aj))

u = max(0,min(b′j − bj))

Even when the complexity of the state class generation
algorithm has not been established by its creators, we can
say that the algorithm is proportional to the size of the
reachability graph of the TPN. If we consider the input
of the algorithm a k-bounded TPN the complexity will be
O(|P |k × |T |) which is an exponential algorithm.

Region graph and state class approaches are both timed-
abstraction bisimulations from the modeled systems. The
state class approach produces a better state space par-
tition since it don’t uses transitions to model the time
progress. According to Yovine (1996) this yields to a coars-
est partition of the state space. The algorithm to build
the TTG from the state class graph is polynomial in the
number of state classes but since the computation of the
state classes is ttime exponential, the construction of the
TTG remains exponential.

The example shown in Figure 1 was analyzed using TINA
and 41 state classes were obtained. The results show that
the TPN is bounded and there is no dead class or dead
transition. Thus, the time interval was calculated for each
transition obtaining the TTG in Figure 2.

4. THE VERIFICATION APPROACH

In this paper we use Timed Computation Tree Logic
(TCTL) that extend CTL model-checking (E. M. Clarke
& Sistla 1986) to the analysis of real time systems whose
correctness depend on the magnitudes of the timing de-
lays. To deal with specifications, the syntax of CTL was
extended to allow quantitative temporal operators in Alur
et al. (1993). TCTL is a branching temporal logic for the
specification of dense-time systems.

In (Lime & Roux 2006) was presented a definition of
TCTL for TPN. The difference to the definition presented
in (Alur et al. 1993) is that atomic propositions usually
associated with states are properties of markings. We

Fig. 2. Timed Transition Graph for the example shown in
Figure 1.

use that definition for TCTL model checking in order to
construct formulas that represent properties to be checked.

Usually, several properties must be checked to guarantee
the adequate behavior of the system. As stated in (Alur
et al. 1993), the labeling algorithm runs in polynomial
time with the size of the graph, once the TCTL structure
has been computed using the region graph approach. Our
claim is that if we do the construction of the entire state
space once, with all time increments over an unique clock
variable, we can then verify several properties without
the necessity to recompute the state space - which is
the exponential part of the verification method. Thus, we
run once an exponential algorithm and several times a
polynomial one.

Since we are using an unique clock variable, there is no
need to specify the clock variable in the TCTL formula.
On the other hand, real time system processes could be
executed in different devices (such as different PLC´s),
and for the sake of verification purposes only certain events
contribute to time system execution, what explains why a
clock projection must be defined for each formula to be
checked.

The clock for the formula could be defined as a set of
edges, i.e. clk ⊆ A, which affects the time of the process
being verified. Going back to the example of Figure 1,
consider that we need to check whether the control action
is generated in at least 20 time units since the beginning
of the process.

The formula to be checked representing this property is,

∀(p4 ∨ p5 ∨ p6 ∨ p7)U≤20(p2); (2)

The clock for this formula is the set of significant events
for the control process.

clk = (t0, t1, t2, t3, t4, t5, t6, t9, t10)

t9 and t10 are in clk due to the resource sharing. If no
clock is specified for a formula then the default is used

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

528

which is all transitions count to compute the time for that
formula.

Figure 3 shows the TTG where states are marked light
gray when subformula (p4 ∨ p5 ∨ p6 ∨ p7) evaluate to true
and marked dark gray when subformula p2 evaluate to
true. The clock is updated related to the process control
only. The time is obtained as the sum of the maximum
time from the interval where the subformula (p4 ∨ p5 ∨
p6 ∨ p7) was evaluated to true. Note that t11 is reset to
[0,0] because t11 /∈ clk The test fails because there is at

Fig. 3. Timed Transition Graph evaluated to formula 2.

least one computation path where (p4∨p5∨p6∨p7) could
delay 24 time units.

S13
(t7,0)−→ S17

(t8,0)−→ S20
(t3,4)−→ S22

(t9,0)−→ S24
(t10,4)−→ S26

(t11,0)−→
S29

(t4,12)−→ S32
(t5,0)−→ S35

(t6,4)−→ S38

Therefore, modifications must be introduced even in time
constraints or in the system itself in order to converge to
a solution. The test shows that the constraint must be
relaxed to 24 time units or the routines represented by
t3, t4, t6 and t10 must be executed faster.

If the system design don’t change, other verifications can
be done without constructing another TTG. The labeling
algorithm evaluates each subformula on each state and
then check whether the general formula is valid or not.
At most, depending on the property, a new clock for the
formula must be established.

Consider that we want to check if the supervision task
could delay more than 10 time units to capture the
measured variable since it was called. The formula to be
checked representing such property is,

∃(p13 ∨ p15 ∨ p16)U>10(p17); (3)

The clock for this formula is the set of significant events
for the supervision task.

clk = (t2, t3, t7, t8, t9, t10, t11)

t2 and t3 are in clk due to the resource sharing. Notice that
there is no need to recompute the state class graph since
the state class graph have the maximum and minimum
time increment over the global clock. Thus, we only
need to specify the transitions which time counts for the
computation of that formula. The verification of formula 3
fails since the maximum time spending in the supervision
process until the measured variable is capture is 8 time
units as we can see in Figure 1.

Another method that can be used to verify RTS with
TINA consists in add to a TPN model a place (or places)
that represent the property that must be checked. This
approach known as “TPN + observer” was proposed in
Toussaint et al. (1997). The problem with that approach
is that the “observer net” could be as big as the net if
the property to be verified involves markings, and thus,
the number of classes may be squared. Furthermore, each
property requires an specific observer, and thus a new
computation of the state class graph (Lime & Roux 2006).

Using the reachability analysis of TINA, other verifica-
tions could be done. Consider again the example of Fig-
ure 1 but this time, in the supervisor routine, calculations
are made to determine whether or not changes in the
control algorithm must be done. In case of a change, the
new setpoint value must be sent to the control routine.
Figure 4 shows the TPN model for this problem. Now we

Fig. 4. TPN model of the example with new supervision
task.

are interested in determining the timeout values that allow
no missed informations between the processes. In Figure 4,
transition t12 represents the fact that the setpoint must be
changed. The occurrence of t17 indicates that the commu-
nication was successfully completed, t15 and t18 are the
timeout transitions.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

529

We began with values 10 and 5 for t15 and t18 respectively.
The verification problem was reduced to find the timeout
values that turns those transitions dead. This values must
be high enough to allow no missing packages and low
enough to guaranty the scalability of both processes. Some
iterations where done to achieve the values shown in
Figure 4.

5. CONCLUSIONS

In this paper, we proposed a method for building a
structure in which the TCTL can be verified from the
state class graph of a TPN. Such structure is based on the
results of the atomic state classes (ASCG), which preserves
the branching properties like CTL or CTL*, supported
by TINA. The time interval attached to each edge of
the automaton allow us to calculate quantitative temporal
properties like those expressed in TCTL. Such properties
have proved to be useful in practical applications.

Even when Lime & Roux (2006) uses the state class
approach in their verification framework, the reduction
in complexity achieved in this work is due to the use of
symbolic and on-the-fly techniques applied in UPPAAL
and because of that a new computation is needed for
each formula to be checked. There is also the restriction
in the subset of TCTL formulas that can be verified by
UPPAAL.

Since Virbitskaite & Pokozy (1999) uses the region graph
approach in their verification framework the complexity is
quite similar of that in (Alur et al. 1993). The difference is
the use of TPN to model the system behavior. In general,
a recomputation of the region graph is needed for each
formula to be checked.

The better runtime results using our framework are
achieved thanks to the use of the state class approach,
since the number of state classes are lesser than the
number of regions in the region graph approach. TCTL
formulas show to be decidable over the structure proposed
here. As a tree structure, the labeling algorithm runs in
timeO(|φ|×|S|+|E|) where |φ| is the length of the formula.
Thus, all verifications can be done over the same TTG each
one in polynomial time.

On the other hand, TCTL formulas proved to be easier to
construct in TPN than in TA since the number of states in
PN (represented as markings) are lesser (most of the time
significantly less) than in automata.

We show that some properties could be verified directly
from the results obtained by TINA without the necessity
of building the TTG or running the labeling algorithm. Of
course, those techniques are applicable only in some cases.

ACKNOWLEDGEMENTS

Partially supported by CAPES, and CNPq, the national
research agencies.

REFERENCES

Alur, R., Courcoubetis, C. & Dill, D. L. (1993). Model-
checking in dense real-time, Information and Compu-
tation 104(1): 2–34.

Berthomieu, B. & Diaz, M. (1991). Modelling and veri-
fication of time dependent systems using time petri
nets, IEEE Transaction on Software Engineering
17(3): 259–273.

Berthomieu, B. & Menasche, M. (1983). An enumerative
approach for analyzing time Petri nets, in R. E. A.
Mason (ed.), Information Processing: proceedings of
the IFIP congress 1983, Vol. 9, Elsevier Science Pub-
lishers, Amsterdam, pp. 41–46.

Berthomieu, B., Ribet, P. O. & Vernadat, F. (2004). The
tool tina - construction of abstract state spaces for
petri nets and time petri nets, Int. J. Prod. res.
42(14): 2741–2756.

Burns, A. (2003). How to verify a safe real-time system:
The application of model checking and timed au-
tomata to the production cell case study, Real-Time
Syst. 24(2): 135–151.

Burns, A. & Wellings, A. J. (2001). Real-Time systems
and programming languages (3rd ed.), third edition
edn, Addison-Wesley, Boston MA.

David, R. & Alla, H. (2005). Discrete, Continuous and
Hybrid Petri Nets, Springer-Verlag.

Daws, C., Olivero, A., Tripakis, S. & Yovine, S. (1995).
The tool KRONOS, Hybrid Systems III: Verification
and Control, Vol. 1066, Springer, Rutgers University,
New Brunswick, NJ, USA, pp. 208–219.

E. M. Clarke, E. A. E. & Sistla, A. P. (1986). Automatic
verification of finite state concurrent systems using
temporal logic specifications., ACM transactions on
Programming Languages and Systems 8(2): 244–263.

Larsen, K. G., Pettersson, P. & Yi, W. (1995). Composi-
tional and symbolic model-checking of real-time sys-
tems, IEEE Real-Time Systems Symposium, pp. 76–
89.

Larsen, K. G., Pettersson, P. & Yi, W. (1997). Uppaal
in a Nutshell, Int. Journal on Software Tools for
Technology Transfer 1(1–2): 134–152.

Lime, D. & Roux, O. H. (2006). Model checking of time
petri nets using the state class timed automaton,
Discrete Event Dyn Syst 16: 179–206.

Merlin, P. & Faber, D. (1976). Recoverability of commu-
nication protocols–implications of a theoretical study,
Communications, IEEE Transactions on [legacy, pre-
1988] 24(9): 1036–1043.

Ramchandani, C. (1974). Analysis of asynchronous con-
current systems by timed petri nets, Technical report,
Massachusetts Institute of Technology, Cambridge,
MA, USA.

Toussaint, J., Simonot-Lion, F. & Thomesse, J.-P. (1997).
Time constraints verification methods based on time
petri nets, Proc. 6th IEEE Workshop on Future
Trends of Distributed Computing Systems (FTDCS
’97), IEEE Computer Society, Washington, DC, USA,
p. 262.

Virbitskaite, I. & Pokozy, E. (1999). A partial order
method for the verification of time petri nets, in
G. Ciobanu & G. Paun (eds), FCT, Vol. 1684, Springer
Verlag, pp. 547–558.

Yovine, S. (1996). Model checking timed automata, Eu-
ropean Educational Forum: School on Embedded Sys-
tems, pp. 114–152.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

530

