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Abstract: The control of the longitudinal flight dynamics of an F-16 aircraft is challenging
because the system is highly nonlinear, and also non-affine in the input. We consider a sliding
mode control design based on linearization of the aircraft, with the the altitude h and velocity
V (Mach number) as the trim variables. The design further exploits the modal decomposition of
the dynamics into its short-period and phugoid approximations. The primary design objective
is model-following of the pitch rate q, which is the preferred system for aircraft approach and
landing. Regulation of the aircraft velocity V (or the Mach-hold autopilot) is also considered,
but as a secondary objective. It is shown that the inherent robustness of the SMC design
provides a convenient way to design controllers without gain scheduling, with a steady-state
response that is comparable to that of a conventional gain-scheduled approach with integral
control, but with improved transient performance. Finally, we apply the recently developed
technique of “conditional integrators” to achieve asymptotic regulation with constant exogenous
signals, without degrading the transient response. Through extensive simulation on the nonlinear
multiple-input multiple-output (MIMO) longitudinal model of the F-16 aircraft, we show that
the conditional integrator design outperforms the one based on the conventional approach,
without requiring any scheduling.

Keywords: F-16 Longitudinal Dynamics; Pitch-Rate Control; Sliding-mode Control; Integral
Control; Model Following.

1. INTRODUCTION

The dynamic response characteristics of aircraft are
highly nonlinear. Traditionally, flight control systems have
been designed using mathematical models of the air-
craft linearized at various flight conditions, with the con-
troller parameters or gains “scheduled” or varied with
the flight operating conditions. Various robust multivari-
able techniques including linear quadratic optimal control
(LQR/LQG), H∞ control, and structured singular value
µ-synthesis have been employed in controller design, an
excellent and exhaustive compendium of which is available
in Magni et al. [1998]. Nonlinear design techniques such as
dynamic inversion have been used in Adams et al. [1994],
Reigelsperger and Banda [1998], Snell et al. [1992], while a
technique that combines model inversion control with an
online adaptive neural network to “robustify” the design
is described in Rysdyk and Calise [2005], and a nonlinear
adaptive design based on backstepping and neural net-
works in Lee and Kim [2001]. A succinct “industry per-
spective” on flight control design, including the techniques
of robust control (H∞, µ-synthesis), LPV control, dynamic
inversion, adaptive control, neural networks, and more, can
be found in Balas [2003].

⋆ The first author was financially supported in part by the Royal
Thai Air Force.

Our interest is in the design of robust sliding mode con-
trol (SMC) for the longitudinal flight dynamics of a F-16
aircraft, and is based on a recent technique in Seshagiri
and Khalil [2005] for introducing integral action in sliding
mode control. Our primary emphasis is on the transient
and steady-state performance of control of the aircraft’s
pitch rate, with the steady-state performance and dis-
turbance rejection of the aircraft’s velocity as a (minor)
secondary objective. Our design exploits the modal decom-
position of the linearized dynamics into its short-period
and phugoid approximations, and our controller has a very
simple structure. It is simply a high-gain PI controller
with an “anti-windup” integrator, followed by saturation.
This controller structure is a special case of a general
design for robust output regulation for multiple-input
multiple-output (MIMO) nonlinear systems transformable
to the normal form, with analytical results for stability
and performance described in Seshagiri and Khalil [2005].
Through extensive simulations, we show that this design
outperforms a traditional gain-scheduled controller design
based on the polynomial approach to model-following de-
sign.

The rest of this paper is organized as follows. In Section
2, we describe the nonlinear mathematical aircraft model,
its linearization and the decomposition of the dynamics
into the short-period and phugoid modes. The design
of the pitch controller is taken up in Section 3, and
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simulation results showing the efficacy of the design, along
with comparisons to gain scheduled controllers using the
(linear) transfer-function based polynomial approach to
model-following are presented in Section 4. Finally, a
summary of our work and some suggestions for possible
extensions are provided in Section 5.

2. 3-DOF LONGITUDINAL MODEL

The decoupled equations of pure longitudinal motion (as-
suming no thrust-vectoring) of a six degree-of-freedom
(DOF) aircraft can be described by the 5th order nonlinear
state model

V̇ =
q̄Sc̄q

2mV
[Cxq(α) cos α + Czq(α) sin α] − g sin (θ − α)

+
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(1)
where V , α, θ, q and h are the aircraft’s velocity, angle-of-
attack, pitch attitude, pitch rate and altitude respectively,
T the thrust force, δe the elevator angle, m the mass of
the aircraft, Iy the moment of intertia about the Y-body
axis, q̄ = q̄(h, V ) = 1

2
ρ(h)V 2 the dynamic pressure, S the

wing area, ∆ the distance between the reference and actual
center of gravity, Cm(·) the pitching moment coefficient
along the Y-body axis, Cmq(·) = ∂Cm

∂q
the variation of

Cm with pitch rate, Cx(·) and Cz(·) the force coefficients
along the stability X and Z axes respectively, and Cxq(·)
and Czq(·) the variations of these coefficients with the pitch
rate. The system (1) can be compactly written in standard
form as

ẋ = f(x, u), y = h(x, u) (2)

where
x = [V α θ q h]T ∈ R5

is the state vector, and

u = [T δe]
T ∈ R2, y = [V h]T ∈ R2

are the control input and the measured output respec-
tively 1 . For the purpose of simulating our controller
design, we build a Simulink model for the longitudinal
dynamics of a scaled F-16 aircraft model based on NASA
Langley wind tunnel tests, as described in Russell [2003],
Stevens and Lewis [2003], and based on the work in
Nguyen et al. [1979]. In particular, the model that we
build corresponds to the low fidelity F-16 longitudinal
model in Russell [2003], and to the longitudinal F-16 model
developed in Lu [2004], but without thrust vectoring. For

1 We use y for the purpose of linearization, but the “regulated
outputs” are the pitch-rate q and the velocity V .

the aerodynamic data we use the approximate data in
Nguyen et al. [1979], Stevens and Lewis [2003], with the
mass and geometric properties as listed in Table 1. The

Table 1. Mass and geometric properties.

Parameter Symbol Value

Weight W (lb) 20500
Moment of inertia Iy (slug-ft2) 55814

Wing area S (ft2) 300
Mean aerodynamic chord c̄ (ft) 11.32
Reference CG location xcg,ref 0.35c̄

coefficients Cxq(α), Czq(α), Cmq(α), Cx(α, δe), Cz(α, δe),
and Cm(α, δe) are taken from Nguyen et al. [1979], Stevens
and Lewis [2003], and are included in [Promtun, 2007, Ap-
pendix A.1] in tabular form. In the simulation, the data is
interpolated linearly between the points, and extrapolated
beyond the table boundaries.

It can easily be verified that given any desired equilibrium

value ŷ = [V̂ , ĥ]T , there exist a unique equilibrium input
u = û and state x = x̂, such that f(x̂, û) = 0. Defining the
perturbation input, state, and output respectively by

uδ = u − û, xδ = x − x̂, yδ = y − ŷ (3)

results inthe linear approximation

ẋδ = Axδ + Buδ, yδ = Cxδ + Duδ (4)

where

A =
∂f

∂x
(x̂, û), B =

∂f

∂u
(x̂, û), C =

∂h

∂x
(x̂, û), D =

∂h

∂u
(x̂, û)

(5)

Since the drag coefficients Ci(·) are not specified explicitly
as functions of their arguments, but in tabular form (as
look-up data), we use numerical techniques to solve for the
trim (equilibrium) points and to compute the linearization.
The flight envelope that we use for computing the trim
conditions and the linearization is the cross product set

(V̂ , ĥ) ∈ ΩV × Ωh, where ΩV = [300, 900] ft/s in steps
of 100, while Ωh = [5000, 40000] ft in steps of 5000. In
order to simplify subsequent notation, we reorder the state
variables as follows. Define

z = [α q V θ h]T
def
= Ex (6)

and define zδ = z − ẑ, so that

żδ = EAE−1zδ + EBuδ
def
= Azzδ + Bzuδ (7)

Partitioning the states as

zT = [zT
1 zT

2 h], z1
def
= [α q]T , z2

def
= [V θ]T

it follows that we can rewrite (7) as



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


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]

+




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B21 B22

0 0





[

Tδ

δeδ

]

(8)

Assumption 1. For each linearization

A12 ≈ A13 ≈ A23 ≈ B11 ≈ 0

While this has been verified numerically in this work, for
each operating condition, an analytical discussion can be
found in [Stevens and Lewis, 2003, Chapter 4]. It follows
from Assumption (1) that the MIMO linearization (7) can
be further decoupled into the SISO-like state equations
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ż1δ =

[

α̇δ

q̇δ

]

≈ A11

[

αδ

qδ

]

+ B12 δeδ

˙z2δ =

[

V̇δ

θ̇δ

]

≈ A21

[

αδ

qδ

]

+ A22

[

Vδ

θδ

]

+ B21 Tδ + B22 δeδ

(9)

By way of physical insight into this decoupling, we men-
tion that it is well known that aircraft dynamics behave
differently to elevator and throttle inputs. In particular,
the former excites a “natural mode” where α and θ vary
together, causing very little change in the flight-path angle

γ
def
= θ−α, and is called the short period mode. The phugoid

mode is excited by the thrust input, which has very little
effect on the short-period mode. It is clear from (9) then
that the dynamics of the variables z1 and z2 constitute the
short-period and phugoid modes respectively.

We exploit the decoupling in (9) in our controller designs
in the next section. In particular, we use the elevator δe

to control the pitch rate q, and the thrust T to control
the aircraft’s velocity V . This makes the control design
problem much simpler than the one for the original MIMO
system. Note that we did not include the altitude equation
in (9). This is because (i) h is not a regulated output (we
mentioned earlier that we wish to regulate q and V ) and
(ii) since A13 ≈ A23 ≈ 0, h does not enter the short-period
and phugoid approximations explicitly, and is therefore
not important for the control design. However, it does
appear implicitly in the computation of the coefficient
matrices. In the next section, we take up the controller
design starting from the fourth-order system (9), which

is obtained for each trim condition [V̂ , ĥ]T . However, the
design is evaluated on the full fifth order nonlinear state
model (2).

3. CONTROL DESIGN

Our primary control objective in this work is the design
of a pitch-rate command system. It is well-known that a
deadbeat response to pitch-rate commands is well suited to
precise tracking of a target by means of a sighting device,
and that control of the pitch rate is also the preferred
system for approach and landing. Since the original system
is MIMO, we also consider, but as a secondary objective,
a Mach-hold autopilot, which is chiefly used on military
aircraft during climb and descent. During a climb the
throttles may be set at a fairly high power level, and
feedback of Mach number to the elevator is used to achieve
a constant-Mach climb. The speed will vary over the range
of altitude, but the constant Mach number provides the
best fuel efficiency. Similarly, a descent will be flown at
constant Mach with the throttles near idle.

For the pitch-rate command system, the entire dynamic
response is important, and we assume that the desired
specifications are encapsulated in a reference model. We
employ the same reference model as in Barbu et al. [2005],
Hess and Kalteis [1991]

Gm(s) =
qm(s)

qd(s)
=

1.4s + 1

s2 + 1.5s + 1

where qd is the pitch rate pilot command. Our approach
to control design for the pitch-rate is based on minimum-
phase systems transformable to the normal form

η̇ = φ(η, ξ)

ξ̇ = Acξ + Bc γ(x) [u − α(x)]

y = Ccξ

where x ∈ Rn is the state, u the input, ρ is the system’s
relative degree, ξ ∈ Rρ the output and its derivatives up to
order ρ − 1, η ∈ Rn−ρ the part of the state corresponding
to the internal dynamics, and the triple (Ac, Bc, Cc) a
canonical form representation of a chain of ρ integrators. A
SMC design for such a system (or actually a more general
MIMO system) was carried out in Seshagiri and Khalil
[2005], with the assumption that the internal dynamics
η̇ = φ(η, ξ) are input-to-state stable (ISS) with ξ as the
driving input. We apply this design to the short period
approximation (9), with δeδ

as input and qδ as output.
Note that this is a relative degree ρ = 1 system. In order to
apply the technique in Seshagiri and Khalil [2005], we need
to transform the system to normal form and check internal
stability. The next proposition states these properties, and
is straightforward to verify.

Proposition 1. Consider the short-period approximation
[

α̇δ

q̇δ

]

def
=

[

aαα aαq

aqα aqq

] [

αδ

qδ

]

+

[

bαδ

bqδ

]

δeδ

with output qδ. Then (i) bqδ > 0, (ii) the (invertible)
change of coordinates

[

ξ
η

]

def
=





0 1

1 −
bαδ

bqδ





[

αδ

qδ

]

transforms the system to normal form
[

η̇

ξ̇

]

def
=

[

aηη aηξ

aξη aξξ

] [

η
ξ

]

+

[

0
1

]

δeδ

qδ = ξ

and (iii) aηη < 0, i.e., the system is minimum-phase.

As in the previous section, we have only verified parts
(i) and (iii) of Proposition 1 numerically, for each trim
condition, but an analytic discussion based on the stability
derivatives can be found in Stevens and Lewis [2003].

Proposition 1 allows us to SMC controller design in Se-
shagiri and Khalil [2005] for the q-dynamics. For com-
pleteness, we briefly point out the ingredients of such a
design. In the absence of integral control, a standard SMC
design for such a system takes the form u = −k sgn(e),
where e = q − qm is the tracking error 2 , and sgn(s) the
signum function. It is easy to show that the design achieves
asymptotic error regulation for “sufficiently large” k. In
order to alleviate the chattering problem (see Young et al.
[1999]) that is common with ideal discontinuous control, it
is common to replace the above design with its continuous

approximation u = −k sat
(

e
µ

)

, where sat(s) is the stan-

dard saturation function, and µ the width of the “bound-
ary layer”. This modification can reduce chattering, but
at the expense of only achieving practical regulation of
the error e, with |e| = O(µ). Consequently, reducing the
steady-state error requires making µ small, which again
leads to chattering. In order to achieve asymptotic error
regulation with continuous SMC, robustly in the presence

2 Note that for each trim condition q̂ = 0, so that qδ ≡ q, which is
why we simply use q in defining e.
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of disturbances and unknown parameter values, one can
augment the system with an integrator driven by the error,
i.e. σ̇ = e, and include the integrator output σ as part of
the sliding variable s. Such a design can be found in Khalil
[2000], where it is shown that the design reduces to a PI
controller, followed by saturation. The drawback of this
design is that the recovery of the steady-state asymptotic
error regulation (of ideal SMC) is achieved at the expense
of transient performance degradation, in part due to an
increase in system order, and in part as a consequence
of controller saturation interacting with the integrator,
resulting in “integrator windup”.

The “conditional integrator” design in Seshagiri and Khalil
[2005] is a novel way to introduce integral action in
continuous SMC, while retaining the transient response
of ideal SMC (without integral control). In this approach,
we modify the sliding surface design to

s = k0σ + e (10)

where k0 > 0 is arbitrary, and σ is the output of

σ̇ = −k0σ + µ sat(s/µ), σ(0) = 0 (11)

To see the relation of (11) to integral control, observe
that inside the boundary layer {|s| ≤ µ}, (11) reduces
to σ̇ = e, which implies that e = 0 at equilibrium. Thus
(11) represents a “conditional integrator” that provides
integral action only inside the boundary layer. The control
is simply taken as the continuous approximation of ideal
SMC, i.e.,

δe = −k sat(s/µ) = −k sat

(

k0σ + e

µ

)

(12)

This completes the design of the pitch-rate controller, and
analytical results for stability and performance of such
a design applied to control-affine minimum-phase MIMO
nonlinear systems can be found in Seshagiri and Khalil
[2005]. Note that we have simply applied the technique
in Seshagiri and Khalil [2005] to the linear short period
approximation (9).

Since we are only interested in the Mach-hold autopilot
(for V ) as a secondary objective (of minor importance),
and this is usually designed simply to meet specifications
on steady-state error and disturbance rejection, we only
design a simple PI controller for the thrust T to regulate
V . To do so, we start with the observation that from θ̇ = q,
the matrices of the linearization in (8) are of the form

A21 =

[

∗ ∗
0 1

]

, A22 =

[

∗ ∗
0 0

]

, B21 =

[

∗ ∗
0 0

]

, B22 =

[

∗ ∗
0 0

]

so that we the equations for the z2δ-subsystem in (9) can
be further simplified as

V̇δ
def
= aV ααδ + aV qqδ + aV V Vδ + aV θθδ + bV T Tδ + bV δδeδ

θ̇δ = qδ

(13)

It can be verified that for each trim condition, aV V < 0,
i.e., the Vδ-subsystem is Hurwitz, and it is clear (looking

at the V̇ equation) that bV T = g/m. We view the
term aV ααδ+ aV qqδ+ aV θθδ+ bV δδeδ

as constituting a
“matched disturbance”, and simply design Tδ as the PI
controller

Tδ = −kP Vδ − kIσV , σ̇V = Vδ (14)

with the gains kp, kI > 0 chosen to assign the eigenvalues
of the 2nd-order system with states σV and Vδ at desired
pole locations. This completes the design of the Mach-hold
autopilot controller.

We do not provide a rigorous analysis since our design is
based on linearization of a non-affine in the input system,
and the analytical results of Seshagiri and Khalil [2005]
do not directly apply to this design. However, we believe
that our controller achieves boundedness of all states,
and asymptotic error regulation of the error e, which can
be explained as follows. The SMC (12) achieves robust
regulation of the pitch-rate q, provided the value of k
is “sufficiently large”. The variable α is bounded since
the system is minimum-phase. The variable θ evolves
according to θ̇ = q, and hence is bounded whenever q is.
The PI controller (14) achieves boundedness of the velocity

V . Finally, from the equation of ḣ, it follows that h is
bounded for all finite time whenever V is, so that with our
SMC and PI controllers for δe and T respectively, all the
states of the closed-loop system are bounded.

4. SIMULATION RESULTS

Numerical values of the SMC parameters that we use in
all the simulations are k0 = 10, and that k = 25, so that
−25 ≤ δe ≤ 25, which are the limits mentioned in Russell
[2003], Sonneveldt [2006]. The boundary layer width µ is
chosen “sufficiently small”, and we will say more on this
when we present the simulation results. The control is
always tested on the full 5th order nonlinear model. For
comparison, we also plot the results from a classical gain-
scheduled approach to model following, with the details
of the design described in [Promtun, 2007, Chapter 3].
The initial values in all simulations correspond to trim

conditions with (V̂ , ĥ) = (600ft/s, 20000ft).

Our first simulation shows the performance of a continuous

SMC with no integral action, i.e., u = −k sat
(

e1

µ

)

when

the pilot pitch-rate command qd is a doublet, for 2 different
values of magnitude of qd, 5 deg/s and 30 deg/s. The
results are shown in Figure 1, plotted for 2 different values
of µ in the SMC design, and we see that the performance
of the SMC is superior to the gain-scheduled approach. We
have had to clip the y-axis limits in the error subplots so
that the difference between the errors for µ = 0.1 and
µ = 0.01 can be observed. For the first error subplot,
corresponding to qd = 5, the error for the polynomial
approach is roughly between ≈ ±1, while we have limited
the plot axis to ±0.1. Similarly, for the error subplot
corresponding to qd = 30, the error for the polynomial
approach is roughly between ≈ ±7, while we have limited
the plot axis to ±0.7. By contrast, the error for the SMC
with µ = 0.1 is roughly less than 0.02 for qd = 5, and less
than 0.1 for qd = 30 in “steady-state”. By steady-state,
we refer to the period t > 2s. The reason for the relatively
large peak error of about 0.5 (which itself is roughly 14
times smaller than the error with the polynomial approach
!) is that the control reaches its saturation limits (in
particular, δ = −25◦ between 0.7 and 1.35s) with the
SMC approach. We do not apply saturation limits for
the polynomial approach. In other words, this simulation
shows that SMC with no gain-scheduling, no integral
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control, and control saturation, outperforms the gain-
scheduled polynomial approach controller with integral
control and without saturation.
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Fig. 1. Tracking errors with SMC: Nonlinear model, qd =
5, and qd = 30 deg/s.

In order to demonstrate the performance of the robustness
of the SMC approach to matched disturbances, we assume
that there is an input additive disturbance at the elevator
input (which can alternately be thought of as offset of

the trim value of δe), i.e., δe = δ̂e + d. Note that this
disturbance effectively replaces δe in every equation in (1)
by δe + d. Figure 2 shows the simulation results for d = 5,
and it is again clear that the SMC far outperforms the
polynomial approach based controller design, with no gain
scheduling requirements.
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Fig. 2. Tracking errors with SMC: Full linear model with
input additive disturbance.

Next, we repeat the first simulation, but with the condi-
tional integrator. Since we have already plotted the results
of SMC without integral control and shown that they are
superior to the polynomial approach, we simply compare
the errors for the SMC with and without integral control,
and only do so for qd = 30 deg/s. The simulation results
are done for µ = 1 and µ = 0.1. The reason to include
a larger value of µ is twofold (i) to demonstrate the fact
that the inclusion of integral action means that we don’t
need to make µ very small to achieve regulation, only
small enough to stabilize the equilibrium point, and (ii)
to highlight the issue of chattering with small µ, which we
relegate to the next simulation. The simulation results are

shown in Figure 3, from which two inferences might be
drawn. The first is that, in the absence of integral control,
since |e| = O(µ), we must decrease µ in order to achieve
smaller steady-steady state errors, and this is clear from
the two subplots. The second inference is that the inclusion
of integral action decreases the steady-state error, and in
fact, achieves asymptotic error regulation.
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Fig. 3. Tracking errors with with conditional integrator
SMC: Nonlinear model, qd = 30 deg/s.

Next, we show decreasing µ, while reducing the steady-
state error in an ideal scenario, can lead to chattering
when there are switching imperfections such as delays. To
demonstrate this, we repeat the previous simulation with a
delay of 5ms (which is not really very large) preceding the
input. The simulation results are shown in Figure 4, and we
see considerable chattering in the control for µ = 0.1,
and we see that the control frequently hits the saturation
lower limit. This chattering can excite unmodeled high-
frequency dynamics, degrade system performance, cause
actuator wear, and even result in instability. In order
that chattering be avoided, we must make µ large, but
doing so without integral control will lead to larger errors,
since |e| = O(µ). The inclusion of integral control using
conditional integrators offers a way to retain transient
performance of ideal SMC and achieve zero steady-state
error, without having to make µ very small, so that
chattering can be avoided, and this is readily inferred from
Figure 4.

Lastly, before we summarize our results, we present our
results for velocity tracking with the PI controller, with
gains kP = 828.4 and kI = 191.2 chosen to assign the
roots of the closed-loop characteristic polynomial

λ2 + bV T kP λ + bV T kI

at -0.3 and -1. The desired velocity reference is the output
of the first order filter H(s) = 1

s+1
, to which the input

is a doublet-like signal with an initial value of 600 ft/s,
changing to 500 ft/s at t = 17s, and to 700 ft/s at t = 35s.
The results are shown in Figure 5, and it is clear that this
simple controller achieve robust regulation, even though
its transient performance is not very good, as expected.
We can improve the design of the velocity controller using
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Fig. 4. Time-delays and chattering in continuous SMC.

techniques like SMC or other robust linear techniques, but
do not pursue it, since velocity control is only a secondary
objective.
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Fig. 5. Velocity (Mach-hold) autopilot response to velocity
command: PI controller.

5. CONCLUSIONS

We have presented a new SMC design for control of the
pitch-rate of an F-16 aircraft, based on the conditional
integrator design of Seshagiri and Khalil [2005]. The design
exploits the short-period approximation of the linearized
flight dynamics. The robustness of the method to modeling
uncertainty, disturbances, and time-delays was demon-
strated through extensive simulation, and the simulation
results showed that the method outperforms, without any
scheduling, the transient and steady-state performance of
a conventional gain-scheduled model-following controller.
The conditional integrator design allows us to introduce
integral action to achieve zero steady-state errors without
degrading the transient performance of ideal SMC. While
we did not present any analytical results, we believe, that
analytical results based on a control-affine approximation
of the nonlinear system should be possible. Consequently,
we believe that the results presented in this paper are a
promising start to demonstrate the efficacy of the condi-
tional integrator based SMC design to flight control.
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