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Abstract: The paper considers the digital control of a continuous-time process under stochastic
disturbances. The problem consists in finding a controller that guarantees a certain performance
of the closed loop, while the disturbances belong only to a given class of disturbances. The digital
controller has two parts with different sampling rates, where one rate is a multiple of the other
one. The solution is found by applying the parametric transfer function (PTF) concept and the
method of guaranteed performance control.
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1. INTRODUCTION

The synthesis of controllers with guaranteed performance
has been established as modern direction in control system
design. Here the searched controller has to guarantee a
certain performance of the closed loop, while the system
is excited by stochastic disturbances belonging to a given
class. According to continuous LTI systems, the solution
method for this problem bases on applying the transfer
function concept, and could be find in (Nebylov 2004).

The extension of this approach to single-rate sampled-
data systems by applying the parametric transfer function
(PTF) concept was done in (Rybinskii and Lampe 2001)-
(Rybinskii, Lampe and Rosenwasser 2004). The present
paper generalizes the results of (Rybinskii and Lampe
2001)-(Rybinskii et al. 2004) to dual-rate sampled-data
systems containing two digital controllers acting on contin-
uous processes. At this we assume that the sampling period
of one controller is an integer multiple of the period of the
other one, and the higher-rated controller is designed at
first. In this case the solution of the control problem with
guaranteed performance leads to the design problem for
a certain equivalent single-rate system with the period of
the slower controller.

The investigation of multirate sampled-data systems is
very actual, because in many modern control systems, we
have various microcontrollers working with different rates.
Making all controllers working with the same sampling
rate would be an unnecessary constraint. On the other
side, it is well known that multirate sampling needs
higher effort in modelling and design of the control system
(Ragazzini and Franklin 1958).

1 The authors are grateful to the German Science Foundation (DFG)
for financial support

Sampled-data systems of this class are described in liter-
ature mostly for the case, where the sampling periods are
commensurable, i.e. when we can find a common period
for all controllers. So the system becomes periodic and
this makes its investigation easier.

Various approaches to analysis and synthesis of multi-
rate systems are presented in (Kranc 1957, Kalman and
Bertram 1959, Araki and Yamamoto 1986, Al-Rahmani
and Franklin 1990, Colaneri, Scattolini and Schiavoni
1990, Rosenwasser and Lampe 2000). The design prob-
lem for sampled-data systems of this class show essential
specific properties which do not allow to apply directly
the methods developed for single-rate sampled-data sys-
tems (see (Chen and Francis 1995)). The papers (Meyer
1990, Ravi, Khargonekar, Minto and Nett 1990) investi-
gate continuous LTI processes with a central multirate
digital controller. Here the parameterized set of stabi-
lizing controllers is constructed in a similar way as the
well known Youla-Kučera parameterization with sufficient
constraints to ensure the causality of the control algorithm.
The papers (Berg, Amit and Powell 1988, Lennartson
1988, Meyer 1992, Voulgaris and Bamieh 1993, Qiu and
Chen 1994, Colaneri and De Nicolao 1995) provide the
solution of the LQR/LQG-problem for multirate systems
of general form, while the H∞-problem is considered in
(Voulgaris and Bamieh 1993, Chen and Qiu 1994, S̊agfors,
Toivonen and Lennartson 1998).

The present paper deals with the problem of stochastic
control with guaranteed performance, when we have to
diminish the influence of external stochastic disturbances
ensuring stability of the system. At this in contrast to the
traditional problem statement, we assume that the spec-
tral density Sg of the excitation g(t) is not exactly known,
but it belongs to a given class S of known characteristics.
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It is supposed that the performance of the system is char-
acterized by a certain cost function J(Sg, C), depending
on the spectral density Sg and the controller C. In the
paper at hand, we use as cost function a weighted sum
of the expected mean variance of the output signal under
stationary stochastic excitation at the system input. Then
the optimization problem can symbolically be written in
the form

C = arginf
C∈C

sup
Sg∈S

J(Sg, C) . (1)

Assume C∗ be a solution of (1), i.e.

J∗ = sup
Sg∈S

J(Sg, C∗) .

Then it can be guaranteed that for all excitations sat-
isfying Sg ∈ S, the cost function does not exceed J∗.
Therefore, the corresponding control algorithm realizing
this solution of problem (1), will be called performance
guaranteing control.

For the calculation of the cost function J(S, C), we will
use the parametric transfer function (PTF) approach
and the parametric frequency response (PFR), which
are able to consider the properties of multirate sampled
data systems in continuous time (Rosenwasser and Lampe
2000, Rosenwasser and Lampe 2006).

The paper is organized as follows. Section 2 provides the
statement of the optimization problem for performance
guaranteing control. In section 3 we derive a close expres-
sion for the cost function using expressions for the PTF of
the system. Closed expressions for the PTFs of dual-rate
systems are presented in section 4. They open possibilities
for practical calculations. In section 5 is shown that under
the taken suppositions, the stabilization problem for dual-
rate systems can be reduced to the stabilization prob-
lem for a corresponding single-rate system, for which the
parameterized set of stabilizing controllers is constructed
having the period of the system. Section 6 addresses special
aspects of the numerical search of the optimal solution and
section 7 presents an illustrative numerical example.

2. PROBLEM

Consider the dual-rate sampled-data system with the
structure shown in Fig. 1. Solid and dashed lines in Fig. 1
indicate analogue and digital signals, respectively. The
system contains analogue elements with rational transfer
functions F1(s), F2(s) and P (s) as well as two digital
blocks (in the dashed boxes), working with different sam-
pling periods T1 6= T2. However, there exists an integer
N > 1 such that one of the relations T1 = NT2 or
T2 = NT1 is fulfilled. For concreteness, let us assume

T1 = NT2 .

Therefore, the whole system is periodic with the period
T = T1.

The digital control algorithm is given by a linear difference
equation associated with the discrete transfer function (see
(Rosenwasser and Lampe 2000))

Ci(s) =

∑qi

r=0
βire

−rTis

∑qi

r=0
αire−rTis

, i = 1, 2 , (2)

where qi (i = 1, 2) are nonnegative integers and βir, αir

are constant coefficients, hereby αi0 6= 0. Hereinafter, the
number qi is called the order of the controller Ci. The
blocks with the transfer functions Hi(s) (i = 1, 2) model
the hold devices, converting the discrete-time signals into
the analogue inputs to the continuous-time processes.

Furthermore, we assume that all blocks apart from C1(s),
including the transfer function of fast-rate controller
C2(s), are given. The excitation signal g(t) is acting on
the input of the continuous process P (s). As output of
the system, entering into the performance, we consider the
signals y(t) and u(t).

Let g(t) be a stationary centered stochastic excitation with
known spectral density. When the system is stable, then
the centered signals y(t) and u(t) in the stationary mode
can be characterized by its variances

vy(t) = E
{
y2(t)

}
, vu(t) = E

{
u2(t)

}
,

where E {·} symbolizes the mathematical expectation.
Since the system is T -periodic, the variances are also time-
periodic:

vy(t) = vy(t + T ) , vu(t) = vu(t + T ) .

For the cost function, we apply

J = v̄y + ρ2 v̄u . (3)

This quantity characterize the dynamics of the system in
continuous time. Herein, ρ2 is a nonnegative real weighting
coefficient, and

v̄y =
1

T

T∫

0

vy(t) dt , v̄u =
1

T

T∫

0

vu(t) dt

are the mean variances of the signals y(t) and u(t),
respectively.

The classical stochastic optimization problem consists in
finding a controller C1(s), which ensures the stability of
the system and minimizes cost function (3). The cost
function can be presented in the form J(Sg, C1), where
Sg(ν) is the spectral density of the signal g(t) as a function
of the frequency ν. However, in many cases the spectral
density Sg(ν) is not exactly known, and therefore, the
calculation of cost function (3) is impossible.

Assume that the spectral density Sg belongs to a certain
class S, for which we can find upper estimate of the mean
variances My and Mu, so that we have

v̄y ≤ My, v̄u ≤ Mu, ∀Sg(ν) ∈ S .

Then we can choose as cost function the upper estimate

J̃(S, C1) = My + ρ2Mu , (4)

which only depends on the properties of the class S and
the chosen C1(s).

Obviously, for any controller C1(s)

J(Sg, C1) ≤ J̃(S, C1) , ∀Sg(ν) ∈ S .

If J̃(S, C1) ≤ J0, where J0 is an admissible limit value
of the cost function, then this controller is performance
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Figure 1. Structure of the dual-rate sampled-data control system

guaranteing, i.e. it ensures the demanded properties of the
system for all excitations of the given class.

Thus the problem of optimal guaranteed performance
controller design can be formulated as follows (Rybinskii
et al. 2004):

Optimal control with guaranteed performance:
Let all elements of the system in Fig. 1, except for
C1(s), and an upper bound for the admissible controller
order q1 be given. Moreover, assume that the class
of excitations is described by the envelope spectral
density S̄g(ν), such that

S : Sg(ν) ≤ S̄g(ν), ∀ ν . (5)

Then, find the transfer function of a controller C1∗(s)
of order not higher than q1, which stabilizes the system
and minimizes the criterion (4).

3. CONSTRUCTION OF THE COST FUNCTION

For the calcualtion of the cost function (3), we apply the
parametric transfer function (PTF) method (Rosenwasser
and Lampe 2000, Rosenwasser and Lampe 2006), which
allows an exact description of the behavior of linear
periodic sampled-data systems in continuous time.

The I/O behavior of the investigated system is charac-
terized by the PTFs Wy(s, t) and Wu(s, t) from the input
g(t) to the outputs y(t) and u(t), respectively. Suppose the
input signal g(t) to have the spectral density Sg(ν). As was
shown in (Rosenwasser and Lampe 2000), the variances
vy(t) and vu(t) could be find by the expressions

vy(t) =
1

2π

∞∫

−∞

A2

y(ν, t)Sg(ν) dν , (6)

vu(t) =
1

2π

∞∫

−∞

A2

u(ν, t) Sg(ν) dν , (7)

where Ay(ν, t) and Au(ν, t) denote the parametric ampli-
tude frequency responses (Rosenwasser and Lampe 2000):

Ay(ν, t) = |Wy(jν, t)| , Au(ν, t) = |Wu(jν, t)| ,

and j =
√
−1. For the mean variance of the weighted

outputs over the interval [0, T ], we obtain

J(Sg, C1) =
1

2π

∞∫

−∞

A2(ν) Sg(ν) dν ,

where

A2(ν) =
1

T

T∫

0

[
A2

y(ν, t) + ρ2A2

u(ν, t)
]

dt . (8)

Owing to the fact that A2(ν) and Sg(ν) are nonnegative
by construction, for all spectral densities of the class (5),

we find the estimate J(Sg, C1) ≤ J̃(S, C1), where

J̃(S, C1) =
1

2π

∞∫

−∞

A2(ν) S̄g(ν) dν . (9)

Below for concrete explanation, we consider the class of
excitations given by an envelope spectral density. Never-
theless, the treated approach is directly extendable, e.g.
to another case, when the variance of the signal g(t) and
those of several derivatives are known (Nebylov 2004).

4. PTF OF MULTIRATE SYSTEMS

The parametric transfer function is an universal I/O
characteristic of a periodic system, and its properties
are very close to the properties of the ordinary transfer
function of LTI systems (Rosenwasser and Lampe 2000,
Rosenwasser and Lampe 2006). An important role for
the construction of the PTF is imputed to the d isplaced
pulse frequency response (DPFR), which is defined for the
quantity X(s) by

ΦX(T, s, t) =
1

T

∞∑

k=−∞

X

(
s + k

2πj

T

)
ek

2πj

T
t .

As was shown in (Rosenwasser and Lampe 2000), for all t
and integers N > 1 the following equation holds:

ΦX(T, s, t) =
N−1∑

i=0

ΦX(NT, s, t − iT ) .

On basis of this relation, the so-called polyphase decompo-
sition is possible, which allows to present a system with
period T as a parallel connection of N systems with period
NT .
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Using the general approach, developed in (Rosenwasser
and Lampe 2000, Rosenwasser and Lampe 2006), we can
show that

Wy(s, t) = P (s)

(
1 − ΦPF1H1

(T, s, t) Ψ(s)

Λ(s)

)
, (10)

Wu(s, t) =−P (s)
ΦF1H1

(T, s, t) Ψ(s)

Λ(s)
, (11)

where

Ψ(s) = C1(s)C2(s)ΦF2H2
(T2, s, 0) ,

Λ(s) = 1 + C1(s) D(s) ,

and

D(s) =
N−1∑

i=0

ΦPF1H1
(T, s, iT2) ΦC2F2H2

(T, s,−iT2) . (12)

Closed formulae for the calculation of the DPFR arising
in (10) and (11), are provided in (Rosenwasser and Lampe
2000).

5. STABILIZATION

As in the single-rate case (Rosenwasser and Lampe 2000),
the poles of the PTF Wy(s, t) and Wu(s, t) determine
the dynamics of the transient processes and the stability.
When non-controllable and non-observable poles are ab-
sent, the system of Fig. 1 is stable, if and only if all roots
of the equation

Λ(s) = 0 (13)

posses negative real part.

It can be shown that the function D(s) in (12) comes out
as a rational function of the variable ζ = e−sT . Moreover,
the transfer function of the unknown controller C1(s) has
this property too. Therefore, in equation (13) we can pass
to the variable ζ:

1 + C1(ζ) D(ζ) = 0 , (14)

where C1(ζ) = C1(s)|e−sT =ζ and D(ζ) = D(s)|e−sT =ζ . Let
us write the rational functions in the form

C1(ζ) =
β1(ζ)

α1(ζ)
, D(ζ) =

b(ζ)

a(ζ)
,

where (β1(ζ), α1(ζ)) and (b(ζ), a(ζ)) are pairs of coprime
polynomials. If the system is non-pathological, then the
product C1(ζ)D(ζ) is irreducible and the set of roots of
(14) coincides with the set of roots of the polynomial

∆(ζ) = β1(ζ)b(ζ) + α1(ζ)a(ζ) . (15)

With account of ζ = e−sT , it is easy to show that for
the stability of the system all roots of the characteristic
polynomial ∆(ζ) are located outside of the unit circle. We
will say, that this polynomial is stable.

Expression (15) formally coincides with the characteristic
polynomial of a single-rate system containing a process
with the discrete model D(ζ). Therefore, for solving the
stabilization problem, we can apply in this case all results
from (Rosenwasser and Lampe 2000).

For the solution of the original problem we need to find
polynomials β1(ζ) and α1(ζ) of degree not higher than
q1, for which the polynomial ∆(ζ) in (15) has only roots
outside the unit circle and cost function (9) takes its
minimum.

6. NUMERICAL OPTIMIZATION

Since the envelope spectral density S̄g(ν) is not supposed
to be a rational function of ν, for the search of the optimal
controller, we will apply numerical search algorithms.

Let p = max{deg b(ζ),deg a(ζ)}. Depending on the de-
sired controller degree q1, we have to consider two cases:

Case 1. If q1 < p − 1, a stabilizing controller does not
always exist, and the parameter vector for the optimization
has the 2q1 + 1 unknown coefficients of the polynomials
β1(ζ) and α1(ζ) (without loss of generality we set α10 = 1,
because the controller should become realizable). For every
test controller the stability of the polynomial ∆(ζ) (15)
must be ensured.

Case 2. If q1 ≥ p − 1, the optimization must be taken
over the set of stabilizing controllers in the following way.
Suppose that we have selected a certain stable polynomial
∆, such that

deg ∆(ζ) ≤ p + q1 .

Then equation (15) is solvable for polynomials β1(ζ) and
α1(ζ) of degree not higher than q1, where the set of all
admissible solutions can be parameterized in the form

β1(ζ) = β0

1
(ζ) + ξ(ζ) a(ζ) ,

α1(ζ) = α0

1
(ζ) − ξ(ζ) b(ζ) ,

where (β0

1
(ζ), α0

1
(ζ)) is the solution of minimal degree, and

ξ(ζ) is zero or any polynomial with degree not higher
then q1 − p (Kučera 1979, Polyakov, Rosenwasser and
Lampe 2005). Therefore, the vector of unknown coeffi-
cients includes the roots of the polynomial ∆(ζ) (or more
suitable, their reverse quantities) and the coefficients of the
polynomial ξ(ζ). Thus the optimization runs directly over
the set of stabilizing controllers and an additional stability
test is not necessary.

For the search of the optimal solution numerical proce-
dures of direct search can be used, e.g. genetic algorithms
(Man, Tang and Kwong 1999).

7. EXAMPLE

Consider the system from Fig. 1, where P (s) is a plant,
F2(s) is a measuring device, and F1(s) is an actuator. We
have to control the motion variable y(t) using the control
u(t). Assume that

P (s) =
0.1

s(s − 3)
, F1(s) = 1 , F2(s) =

0.1

s + 1
.

Moreover, let T1 = 0.6sec, and T2 = 0.2sec, i.e. N =
3. Notice that the considered process has one unstable
pole and one pole at the stability border. Assume that
the system does not make use of preprocessing for the
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measuring data, i.e. C2(s) = 1. Furthermore, we use zero-
order hold elements with the transfer functions

Hi(s) =
1 − e−sTi

s
, i = 1, 2 .

The class of admissible excitation S is determined by the
envelope spectral density (Rybinskii et al. 2004)

S̄g(ν) =
7.57

ν4 + 2.49ν2 + 1.85
. (16)

So any stochastic excitation g(t) with spectral density

Sg(ν) ≤ S̄g(ν) ∀ν

is admissible. In this case for ξ(ζ) = 0 (q1 = 2), the con-
troller with guaranteed performance, providing for ρ2 =
0.1 a minimal estimate (9), has the transfer function

C1∗(s) =
413.5 − 638 e−sT +225.6 e−2sT

0.554 + 2.065 e−sT +e−2sT
, (17)

yielding the values

My = 2.73 · 102, Mu = 2.31 · 103 ⇒ J = 5.04 · 102 . (18)

So we have shown that for any excitation g(t) satisfying
Sg(ν) ∈ S, the weighted mean variances of the signals y(t)
and u(t) will not exceed the value (18).

In order to demonstrate the benefit from applying the
above derived methods for the investigation of dual-rate
systems, for comparison we consider the design problem for
the controller C1(s) under the assumption of a simplified
single-rate model, when in the system of Fig. 1 the sampler
with T2 and the hold H2(s) are absent. But all other
conditions of the considered example remain valid.

Then for the design of the discrete controller with guar-
anteed performance C1(s), the design methods with guar-
anteed performance for single-rate systems are applicable,
which are described in (Rybinskii et al. 2004). As a result,
we obtain

C1∗alt(s) =
602.7 − 933.5 e−sT +330.8 e−2sT

1.463 + 2.962 e−sT +e−2sT
. (19)

The simulation results of the system in Fig. 1 with the
calculated controllers C1∗(s) and C1∗alt(s) are presented
in Fig. 2 and 3, where respectively the signals y(t) and u(t)
are shown under the condition of disturbances with ‘worst’
spectral density (16). Moreover, these pictures contain the
limits of the standard deviation, which are held from the
estimate of the variance (18) by the formula

σy =
√

My, σu =
√

Mu .

As can be seen from these pictures, the behavior of the
system with controller C1∗alt is essentially worse than that
of the system with controller C1∗. The values of both
signals y(t) and u(t) substantially leave the admissible
region (18), when controller C1∗alt is used.

CONCLUSIONS

The paper presents an approach to optimization of dual-
rate sampled-data systems containing two digital con-
trollers working with different rates, that allows to guaran-
tee the performance of the control system for all stochastic
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Figure 2. Output signal y(t) of the closed loop

0 5 10 15 20 25 30
−60

−40

−20

0

20

40

60

80

100

120

140

controller C
1*

controller C
1*alt

estimation border

Figure 3. Control signal u(t) of the closed loop

excitations of a given class. As cost function, the weighted
sum of the mean variances of the output signals is used,
when a stationary stochastic signal is acting on the input
of the system. For the calculation of the cost function,
the concepts of the parametric transfer function and the
parametric frequency response have been applied. They
allow to take into account all values of the continuous
signals, not only the values at the sampling instants.

The results have been achieved under the assumption
that the controller C2 possesses the smaller sampling
period. However, the case T2 = NT1 can be considered
analogously without essential modifications.

The proposed methods allow to design a controller with
guaranteed performance, where the sampling period coin-
cides with the period of the whole system. In case of an un-
known fast-rate controller, additional difficulties arise from
the causality constraints to the solution (Meyer 1990, Chen
and Qiu 1994). The extension of the provided method to
this case will be a topic of our future work.
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