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Abstract: In the present article it is proved that stability can be ensured by quasi-linear compensators for 
plants with global Lipschitz nonlinearity. In the present article, it is shown that arbitrarily fast tracking can 
be obtained achieved using quasi-linear feedback are explored for various numbers of poles in excess of 
zeros in a given plant. This is a study of the intrinsic capability of feedback systems to achieve arbitrarily 
high performance because in industrial applications the raise of the gain is limited by hardware protection. 
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1. INTRODUCTION 

Motivation. In many technological systems there is an 
increasing demand of fast and accurate responses to input 
signals and fast attenuation of disturbances. The 
responsibility for ensuring such a good performance falls on 
feedback control systems. The difficulty of the control design 
problem is amplified by the fact that many plant models are 
non-linear and with uncertain parameters, and subjected to 
unknown disturbances. In a recent article Bensoussan and 
Kelemen (2007), it was shown that global Lipsschitz non-
linearities are Laplace transformable. We now show that 
arbitrarily fast tracking can be enforced by quasi linear 
compensators (Kelemen and Bensoussan (2004), Kelemen 
(2002)) for plants with global Lipschitz nonlinearity. It has 
been shown that quasi linear control allows the designer to 
benefit from all the advantages of high gains without any 
drawbacks, i.e. guarantied stability margins, non oscillatory 
and arbitrarily fast response, etc. There the plant was linear 
while now we consider global Lipschitz nonlinearity in the 
plant.  

The arbitrarily fast tracking is also a stability result of the 
Bounded-input bounded output type and enriches the family 
of criterias of stability of non-linear feedback systems. Lurie 
and Postnikov (1944) addressed the problem of defining the 
restriction on a linear plant with a sector nonlinearity (0, k) in 
its feedback loop.  Popov (1960) has found a very elegant 
solution to this problem. Zames (1966) proposed a 
mathematical framework which defined an algebra of sectors 
that could handle sector/conic nonlinearities, which translated 
into a graphical criterion, the circle criterion, independently 
developed by Sandberg (1964).  In fact, the Popov criterion 
which applies to nonlinearities bounded by slopes (0, k) can 
be seen as a particular case of a sector/conic nonlinearities 
bounded by slopes (a, b). The Popov criterion can be 
translated in a graphical criterion in a Popov plot coordinates 

� �^ ` � �^ `� �Im G , Re GZu Z Z  while the circle criteria can be 

translated in a graphical criterion is a regular Nyquist plot 

coordinates � �^ ` � �^ `� �Im G , Re GZ Z . Moreover, whenever 

the derivative 
� �dN y

dy
 of the linearity is bounded by a sector 

(a, b), the output of a feedback system including in its loop 
such a nonlinearity cascaded with a linear plant is continuous. 
The same condition on the nonlinearity leads to the off-axis 
circle criteria Narendra and Goldwyn (1964) on a Nyquist 
plot, while a standard sector condition on a nonlinearity leads 
to a parabola criterion Narendra and Taylor (1973) on the 
Popov plot. 

The algebra of relations and operators introduced by Zames 
allowed to combine sector nonlinearities � �n �  with linear 

operators � �G Z  in a unified framework. However the 

restriction � �n 0 0  is needed to validate such a 

mathematical framework. Such an assumption excludes many 
nonlinearities and this limitation is not necessary in the 
present result which ties in with a previous one Bensoussan 
and Kelemen (2007) according to which it is justified to 
assume that Lipschitz nonlinearities have a Laplace transform 
and that they can therefore be analyzed in the frequency 
domain.  

2. PRELIMINAIRIES ON QUASI-LINEAR FEEDBACK 

A quasi-linear compensator is one with a finite number of 
poles and zeros but whose poles depend appropriately on the 
compensator gain. 

Let be the following convolution system: 

� � � � � � � � � � � �� �> @

� � � �� �
0

1

,

0,

t
p e

p

y t w t h t c n y w d

t h t P s

W W W W W

�

�  � � �

t  

³
L

 (1) 

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 12200 10.3182/20080706-5-KR-1001.0702



 
 

     

 

This can be seen as a feedback loop where � � � �y t w t�  is the 

output, w(t) is a disturbance and � �ec W  is an input to the 

plant. Here P(s) is the transfer function of the linear element 

in the forward path, 1�
L  is the inverse Laplace transform, 

� �ph t  is the impulse response corresponding to P(s) and n(z) 

is the memoryless nonlinearity in the return path. Suppose 

� � � � � �2 1P s P s P s , where � �1P s  and � �2P s  are 

polynomials in the complex variable s with 

� �� �1deg P s ! � �� �2deg P s  and � �� �1 1deg P s t ; by deg we 

denote the degree of a polynomial in the Laplace variable s. 
Also, P(s) has d poles more than zeros. Then the initial 
conditions which may affect the input respectively the output 
of the linear component alone can be written as: 
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where � �0x A  denotes the initial condition on the derivative A  

of the variable x. 

We apply now a feedback to the plant (1), see also figure 1. 
The feedback is represented in the Laplace domain because it 
is a quasi-linear one, i.e. in which the poles of the 
compensator depend on its gain k: 

� � � � � � � �� � � � � �2e k kC s G s U s Y s k N s DG s �   (2) 

here � �eC s  and U(s) are the Laplace transforms of � �ec t  

and of a reference input u(t). The compensator � �kG s  is a 

rational transfer function in the variable s, with k a positive 
gain, and N2 (s) and � �kDG s  are two polynomials with 

� �� � � �� �2kdeg DG s deg N st .   
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Fig. 1: Quasi-linear feedback control of a non-linear plant. 
Following  Kelemen and Bensoussan (2004) we can rewrite 
the closed loop transfer function � �kT s  as:  
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Following (Kelemen and Bensoussan (2004)), we know that, 
provided � �1 1d f df� � �  and 2d t , the asymptotic values 

in k of the poles of Tdk(s) are given by (see Kelemen and 
Bensoussan (2004)):. 
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Throughout this article, � �kT s  will be subjected to the 

following requirement as in (Kelemen and Bensoussan 
(2004)): 

(r 1) k > 0 appears in � �kDG s  only with rational exponents. 

Denote by f the maximal exponent of � �kD s  in (3) and 

suppose f < 1; 

(r 2) All the zeros of N(s) and the poles of � �dkT s  from (3) 

are simple. Moreover, if two poles of � �dkT s  have the same 

exponent nA  in the expansion (3) then their difference 

behaves as � �� �1 1nAk o�A  too, for some positive constant A. 

Simple poles and zeros are for computational convenience. 
Finally, we recall from (Kelemen and Bensoussan (2004)) the 
necessary and sufficient properties required for arbitrarily fast 
tracking by feedback AFTF, corresponding to � �kT s . The 

'physical' meaning of AFTF will be given in Corollary below. 
First we express the step response of � �kT s  with the residue 

theorem as: 
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Then these properties (5) are: 

(pr 1) lim 1k kDof  ; 

(pr 2) for every T > 0 � �lim 0k k tEof   uniformly in 

> @,t T� f ;                                                                 (5) 

(pr 3) � �0sup , 0 large,t k t B kEEt d � f ! BE     

independent of k ; 

(pr 4) there exists a number � > 0 such that 0p J� d � �� . 

It is useful to define for each T > 0 the sequence 

� � � �, supt T kk T tE Et . Then � � � �2 ,lim 0k k Tpr Eof�   

for every T > 0. 

Fact: If the feedback is linear, i.e. � �kD s  is independent of 

k, the conditions (pr2) and (pr4) are met if and only if d = 1 
>1@. The properties (5) show that for any T > 0 the function 

� �kH t  converges to 1 uniformly in > @,t T� f  when k goes 

to infinity, and it is bounded independently of large k and 
t > 0. The Theorem below proves that these “good” 
properties for a step input lead to certain “good” properties 
for a large class of inputs and disturbances. Moreover, using 
the function � �kH t  will allow to estimate the difference 

yk(t) � u(t) in absolute value not in integral norm, which is 
the figure of merit sought off in many applications. 

We present now our main result. The theorem is an extension 
to plants having Lipschitz nonlinearity, with which it shares 
hypothesis � �1i  and the class of input and disturbance 

functions. This hypothesis is a sufficient condition to satisfy 
the AFTF properties of (5). 

3. THEOREM 

We assume that: 

� �1i  in addition to (r1) and � �2r  the poles and zeros of � �kT s  

from (3) satisfy: 

aA  ! 0 and 
R

nA  > 0 for all the poles p� A
�  of � �dkT s , and 

Re zA  > 0 for all the zeros z� A  of � �zkT s ; 

� �2i  the reference input u(t) and the disturbance input w(t) 

are bounded functions with support t > 0. Moreover, for t > 0 
they are continuous and continuously differentiable with 
bounded derivatives. The bounds on the functions are 
denoted by 0supu tB ut  < f , 0supw tB wt  < f , 

� �0supu tB u t! � �  < f , and � �0supw tB w t! � �  < f . 

� �3i  the nonlinearity n(z) satisfies a global Lipschitz property 

on the real axis with Lipschitz constant 0ipL ! , i.e. the 

nonlinearity :n R Ro  is piecewise continuous and satisfies: 

� � � �1 2 1 2ipn x n x L x x� d �  

Then: 

(c1) for every set � �^ `0 0, , , , , 0N ipR u w o i L n  and 

numbers 0T ! , 0!0  there is a number � �, , 0NK R T !0 so 

that if � �, ,Nk K R Tt 0 . 
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here 1B  is a positive constant; there are also the coefficients 

2B , 3B and 4B  which depend on ipL  (see proof below). 

Corollary: It follows from theorem 1 that the tracking 

precision � � � �ky t u t�  can be made arbitrarily small, 

uniformly in > @,t T� f , by taking 0T !  and 0!�0  small 

enough and 0k !  sufficiently large; at the same time the 
peak of the tracking error is bounded independently of 0t !  
and large k.  

Proof : Note that if  n(z) = 0, � �1c  follows directly from 

Kelemen and Bensoussan (2004). Our approach is to work 
with the plant (1) in implicit form and thus considering the 
non-linear term as an input adding up to � �ec t  assumed 

bounded and continuous. This makes easier the computations 
including the fact that the initial conditions could be treated 
as in open loop. Only toward the end of the proof, we convert 
an implicit inequality involving � �y t  into an explicit one by 

using a generalization of the Gronwall inequality. 

We apply now the Laplace transform as it is easier to 
visualize the application of (a dynamic) feedback and the 
actual feedback design can be performed in the frequency 
domain. Thus we obtain the open loop transfer function: 
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where � �W s  is the Laplace transform of � �w t . The 

functions � �0 , ,oC i n s  and � �,oC o s  are the polynomials in s 

of degrees � �� �2 1deg P sd �  and � �� �1 1deg P sd �  with 

coefficients depending on the initial conditions of the input 
respectively the output of the open loop >10@. Also 

� � � �n y w s�  is the Laplace transform of � � � �� �n y t w t� . 

Concerning � �0 , ,oC i n s  the notations means that to � �0ec  is 

added � � � �� �0 0n y w�  because the function � �n z  “reads” 
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only � � � �� �y t w t�  not its time derivatives. And also since 

the effective input to the linear plant is 

� � � � � �� �ec t n y t w t� �  , see (1). 

We prove now that the Laplace transform was applied in a 
legitimate way. For this we have to show, according to 

Schwartz (1966), that � �y t  is locally 1L  integrable and that 

� �y t  does not grow faster than an exponential, i.e. there are 

real numbers 0A ! , c, such that � � cty t Aed ; 0t d . Now 

the plant (1) with the initial conditions included is: 
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What we obtained is a non-linear Volterra integral 
convolution equation. Due to the Lipschitz property of � �n z  

and the continuity and boundedness of � �0ec  this equation 

has a unique and continuous solution on the interval > @0;t , 

0t !  arbitrary but given; the solution is continuously 
differentiable for 0T ! . These statements are proved at 

conclusion � �1c  of lemma in the Appendix (Kelemen 

(2002)). Therefore the solution is locally 1L . In particular this 
shows that there can not be a finite escape time. As for the 
growth condition it was proved in the same lemma at � �2c . 

Thus the Laplace transform was applied correctly. 

Note that also � � � �� �n y t w t�  is Laplace transformable and 

the corresponding abscissa of convergence is the maximum 

between that of � � � �� �y t w t�  and 0 (which appears if 

� �0 0n z ). This can be checked directly by using the 

Lipschitz property of � �n z  in the Laplace integral (Schwartz 

(1966)).  

Moreover, both � �Y s  and � �� �n y w s�  are inverse Laplace 

transformable. For this, we have to show by >12@ that both 

� � � �� �y t w t�  and � � � �� �n y t w t�  are locally of bounded 

variation around every 0t ! . This is true for � � � �� �y t w t�  

because we showed it is of 1C  class for 0T ! . Thus we 
apply the mean value theorem for derivatives and get the 

required result (Doetsch, (1974)). For � � � �� �n y t w t� , the 

property follows as before but using first the Lipschitz 
condition. 

Now with (2), (5), and the notations from (3) the closed loop 
response in Laplace domain becomes for every given 0k ! . 
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where (the index M stands for “modified”) 
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�
. 

By definition, see also (6), (3), (2) and (1), we have: 

� � � �� � � �� �0 , 1k kdeg DG s C o s deg D sd � , 

� � � �� � � �� �0 0, , 1k kdeg DG s C i n s deg D s� �  and 

� � � �� � � �� �2 1k kdeg P s DG s deg D sd � . 

We apply now the inverse Laplace transform 1�
L  to (8). To 

prove this is possible, we apply it first formally and obtain 
the non-linear Volterra integral equation from below. 
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Here: 
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Then observe that (9) has exactly the form of (7). Indeed, for 
every fixed 0k !  the feedback is linear. Thus in Laplace 
domain the closed loop (8) has exactly the form of the open 
loop (6), including the fact that all the transfer functions are 
strictly proper. Hence, � �ky t  and � �Mkh t  are the impulse 

responses corresponding to strictly proper transfer functions 
as was � �ph t  from (1) before. What has changed are the 

singularities of � �kY s  and � � � �kn y w s� , which might be 

shifted but with a finite amount for every k. Thus we can use 
the same arguments for (9) as for (7) including lemma 2 from 
appendix Kelemen (2002). Therefore we are led to the 
conclusion that both the direct and inverse Laplace 
transforms are applicable to the closed loop and that 

� � � �ky t w t�  is continuous for 0T t  and class 1C  for 

0T t . 
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To get some useful estimates, we proceed by integrating by 
parts in (9) the integrals containing � �u t  and � �w t  (first and 

fourth term). Then replacing � �kH t  thus obtained with (4), 

we get: 
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The absolute value of the terms from the right hand side, 
except the last 3, can be estimated as in (Kelemen 2002) 

� �1c . This result is applicable in view of hypotheses � �1i  and 

� �2i  of the present theorem, see also (Kelemen 2002), � �11c , 

� �12c . Thus with (5), we obtain for every 0T !  and large 

0k ! .
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We have to estimate now the last three terms from the two 
inequalities from above, which were defined at (8). We begin 

with � �,oC t k .  

 We recall that � � � �� � � �� �0 , 1k kdeg DG s C o s deg D sd �  and 

the maximal exponent of k of � �kDG s  is 1f �  by � �1r  from 

hypothesis � �1i . So, with the full power of hypothesis � �1i  � 

which includes requirement � �2r  � we can apply the method 

of proof from Kelemen (2002), theorem 2, � �12c  based on 

formula (27) (from there). Thus, there are some numbers 

0opB t , 0ozB t , 0 mina a�  A ; so that for any T > 0 and 

large 0k ! ,  0 n min nR R
�  A 0 min iz Rez� �� . 
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                    (12) 

Similarly, since � � � �� � � �� �0 , 1k kdeg DG s C o s deg D sd �  

and � � � �� � � �� �2 1k kdeg P s DG s deg D sd � , we get for some 

numbers 0ipB t , 0izB t , 0MpB t , 0MzB t . 
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However, owing to the integrals appearing in (11) a more 
appropriate estimate is: 

� � � � � �10

t Mp Mz
Mk n fR

B B
h t d

ak zk
W W

�
� d �³

�

,                    (14) 

which follows from the previous two inequalities by 
replacing T with t (we are no longer concerned with the 
uniform in t bound from there). 

Due to the global Lipschitz property of � �n z , there is a 

Lipschitz constant 0ipL ! , so that: 
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      (15) 

We note that all the numbers found in the estimates 
beginning with (10) are independent of t, T and large k > 0. 
Now employing (12), (13), (14) and (15) in (11) we obtain 
the new estimate: 
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 (16) 

where: 
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and 

 1 op ipB B B � , � �� �2 0Mp ip u ip wB B L B L B n � � ,  

� � � �� �3 4, 0oz iz Mz ip u ip wB B B B B z L B L B n �  � �� .  

Next we use a generalization of the Gronwall (Hirsch and 
Smale (1974)). Since � �u t  and � �w t  are continuous by 

( � �2i  and � �ky t ) was proved to be so after (10), we get: 
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Carrying out the computations by using again (14), we obtain 
for every 0T !  and large 0k ! . 
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Finally, these estimates lead to the following inequalities: for 

every set � �^ `0 0, , , , , 0N ipR u w o i L n  and numbers 0T !  

and 0!0 , there is a number � �, , 0NK R T H ! so that if 

� �, ,Nk K R T Ht , then: 
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Indeed this follows from the coefficients � �,a T k , � �1 ,a T k  

for large 0k ! , and noting that the expression X from above 
approaches 0 as k goes to infinity.  

Which proves theorem 1. 

4. CONCLUSIONS 

It has been shown that global Lipschitz nonlinearities can be 
controlled in a feedback system in order to get arbitrarily fast 
tracking of the input. The time response to an echelon input 
can be squeezed in a tube which can be made narrower by 

increasing the gain of the quasi-linear controller.  How this 
bounded input-bounded output stability combined with faster 
time response preserves the robustness properties of quasi-
linear control is a topic which deserves to be studied in the 
next future. 
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